xref: /openbmc/linux/arch/arm64/net/bpf_jit_comp.c (revision b830f94f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler for ARM64
4  *
5  * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
6  */
7 
8 #define pr_fmt(fmt) "bpf_jit: " fmt
9 
10 #include <linux/bpf.h>
11 #include <linux/filter.h>
12 #include <linux/printk.h>
13 #include <linux/slab.h>
14 
15 #include <asm/byteorder.h>
16 #include <asm/cacheflush.h>
17 #include <asm/debug-monitors.h>
18 #include <asm/set_memory.h>
19 
20 #include "bpf_jit.h"
21 
22 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
23 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
24 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
25 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
26 
27 /* Map BPF registers to A64 registers */
28 static const int bpf2a64[] = {
29 	/* return value from in-kernel function, and exit value from eBPF */
30 	[BPF_REG_0] = A64_R(7),
31 	/* arguments from eBPF program to in-kernel function */
32 	[BPF_REG_1] = A64_R(0),
33 	[BPF_REG_2] = A64_R(1),
34 	[BPF_REG_3] = A64_R(2),
35 	[BPF_REG_4] = A64_R(3),
36 	[BPF_REG_5] = A64_R(4),
37 	/* callee saved registers that in-kernel function will preserve */
38 	[BPF_REG_6] = A64_R(19),
39 	[BPF_REG_7] = A64_R(20),
40 	[BPF_REG_8] = A64_R(21),
41 	[BPF_REG_9] = A64_R(22),
42 	/* read-only frame pointer to access stack */
43 	[BPF_REG_FP] = A64_R(25),
44 	/* temporary registers for internal BPF JIT */
45 	[TMP_REG_1] = A64_R(10),
46 	[TMP_REG_2] = A64_R(11),
47 	[TMP_REG_3] = A64_R(12),
48 	/* tail_call_cnt */
49 	[TCALL_CNT] = A64_R(26),
50 	/* temporary register for blinding constants */
51 	[BPF_REG_AX] = A64_R(9),
52 };
53 
54 struct jit_ctx {
55 	const struct bpf_prog *prog;
56 	int idx;
57 	int epilogue_offset;
58 	int *offset;
59 	__le32 *image;
60 	u32 stack_size;
61 };
62 
63 static inline void emit(const u32 insn, struct jit_ctx *ctx)
64 {
65 	if (ctx->image != NULL)
66 		ctx->image[ctx->idx] = cpu_to_le32(insn);
67 
68 	ctx->idx++;
69 }
70 
71 static inline void emit_a64_mov_i(const int is64, const int reg,
72 				  const s32 val, struct jit_ctx *ctx)
73 {
74 	u16 hi = val >> 16;
75 	u16 lo = val & 0xffff;
76 
77 	if (hi & 0x8000) {
78 		if (hi == 0xffff) {
79 			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
80 		} else {
81 			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
82 			if (lo != 0xffff)
83 				emit(A64_MOVK(is64, reg, lo, 0), ctx);
84 		}
85 	} else {
86 		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
87 		if (hi)
88 			emit(A64_MOVK(is64, reg, hi, 16), ctx);
89 	}
90 }
91 
92 static int i64_i16_blocks(const u64 val, bool inverse)
93 {
94 	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
95 	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
96 	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
97 	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
98 }
99 
100 static inline void emit_a64_mov_i64(const int reg, const u64 val,
101 				    struct jit_ctx *ctx)
102 {
103 	u64 nrm_tmp = val, rev_tmp = ~val;
104 	bool inverse;
105 	int shift;
106 
107 	if (!(nrm_tmp >> 32))
108 		return emit_a64_mov_i(0, reg, (u32)val, ctx);
109 
110 	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
111 	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
112 					  (fls64(nrm_tmp) - 1)), 16), 0);
113 	if (inverse)
114 		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
115 	else
116 		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
117 	shift -= 16;
118 	while (shift >= 0) {
119 		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
120 			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
121 		shift -= 16;
122 	}
123 }
124 
125 /*
126  * Kernel addresses in the vmalloc space use at most 48 bits, and the
127  * remaining bits are guaranteed to be 0x1. So we can compose the address
128  * with a fixed length movn/movk/movk sequence.
129  */
130 static inline void emit_addr_mov_i64(const int reg, const u64 val,
131 				     struct jit_ctx *ctx)
132 {
133 	u64 tmp = val;
134 	int shift = 0;
135 
136 	emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
137 	while (shift < 32) {
138 		tmp >>= 16;
139 		shift += 16;
140 		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
141 	}
142 }
143 
144 static inline int bpf2a64_offset(int bpf_to, int bpf_from,
145 				 const struct jit_ctx *ctx)
146 {
147 	int to = ctx->offset[bpf_to];
148 	/* -1 to account for the Branch instruction */
149 	int from = ctx->offset[bpf_from] - 1;
150 
151 	return to - from;
152 }
153 
154 static void jit_fill_hole(void *area, unsigned int size)
155 {
156 	__le32 *ptr;
157 	/* We are guaranteed to have aligned memory. */
158 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
159 		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
160 }
161 
162 static inline int epilogue_offset(const struct jit_ctx *ctx)
163 {
164 	int to = ctx->epilogue_offset;
165 	int from = ctx->idx;
166 
167 	return to - from;
168 }
169 
170 /* Stack must be multiples of 16B */
171 #define STACK_ALIGN(sz) (((sz) + 15) & ~15)
172 
173 /* Tail call offset to jump into */
174 #define PROLOGUE_OFFSET 7
175 
176 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
177 {
178 	const struct bpf_prog *prog = ctx->prog;
179 	const u8 r6 = bpf2a64[BPF_REG_6];
180 	const u8 r7 = bpf2a64[BPF_REG_7];
181 	const u8 r8 = bpf2a64[BPF_REG_8];
182 	const u8 r9 = bpf2a64[BPF_REG_9];
183 	const u8 fp = bpf2a64[BPF_REG_FP];
184 	const u8 tcc = bpf2a64[TCALL_CNT];
185 	const int idx0 = ctx->idx;
186 	int cur_offset;
187 
188 	/*
189 	 * BPF prog stack layout
190 	 *
191 	 *                         high
192 	 * original A64_SP =>   0:+-----+ BPF prologue
193 	 *                        |FP/LR|
194 	 * current A64_FP =>  -16:+-----+
195 	 *                        | ... | callee saved registers
196 	 * BPF fp register => -64:+-----+ <= (BPF_FP)
197 	 *                        |     |
198 	 *                        | ... | BPF prog stack
199 	 *                        |     |
200 	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
201 	 *                        |RSVD | padding
202 	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
203 	 *                        |     |
204 	 *                        | ... | Function call stack
205 	 *                        |     |
206 	 *                        +-----+
207 	 *                          low
208 	 *
209 	 */
210 
211 	/* Save FP and LR registers to stay align with ARM64 AAPCS */
212 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
213 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
214 
215 	/* Save callee-saved registers */
216 	emit(A64_PUSH(r6, r7, A64_SP), ctx);
217 	emit(A64_PUSH(r8, r9, A64_SP), ctx);
218 	emit(A64_PUSH(fp, tcc, A64_SP), ctx);
219 
220 	/* Set up BPF prog stack base register */
221 	emit(A64_MOV(1, fp, A64_SP), ctx);
222 
223 	if (!ebpf_from_cbpf) {
224 		/* Initialize tail_call_cnt */
225 		emit(A64_MOVZ(1, tcc, 0, 0), ctx);
226 
227 		cur_offset = ctx->idx - idx0;
228 		if (cur_offset != PROLOGUE_OFFSET) {
229 			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
230 				    cur_offset, PROLOGUE_OFFSET);
231 			return -1;
232 		}
233 	}
234 
235 	ctx->stack_size = STACK_ALIGN(prog->aux->stack_depth);
236 
237 	/* Set up function call stack */
238 	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
239 	return 0;
240 }
241 
242 static int out_offset = -1; /* initialized on the first pass of build_body() */
243 static int emit_bpf_tail_call(struct jit_ctx *ctx)
244 {
245 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
246 	const u8 r2 = bpf2a64[BPF_REG_2];
247 	const u8 r3 = bpf2a64[BPF_REG_3];
248 
249 	const u8 tmp = bpf2a64[TMP_REG_1];
250 	const u8 prg = bpf2a64[TMP_REG_2];
251 	const u8 tcc = bpf2a64[TCALL_CNT];
252 	const int idx0 = ctx->idx;
253 #define cur_offset (ctx->idx - idx0)
254 #define jmp_offset (out_offset - (cur_offset))
255 	size_t off;
256 
257 	/* if (index >= array->map.max_entries)
258 	 *     goto out;
259 	 */
260 	off = offsetof(struct bpf_array, map.max_entries);
261 	emit_a64_mov_i64(tmp, off, ctx);
262 	emit(A64_LDR32(tmp, r2, tmp), ctx);
263 	emit(A64_MOV(0, r3, r3), ctx);
264 	emit(A64_CMP(0, r3, tmp), ctx);
265 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
266 
267 	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
268 	 *     goto out;
269 	 * tail_call_cnt++;
270 	 */
271 	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
272 	emit(A64_CMP(1, tcc, tmp), ctx);
273 	emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
274 	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
275 
276 	/* prog = array->ptrs[index];
277 	 * if (prog == NULL)
278 	 *     goto out;
279 	 */
280 	off = offsetof(struct bpf_array, ptrs);
281 	emit_a64_mov_i64(tmp, off, ctx);
282 	emit(A64_ADD(1, tmp, r2, tmp), ctx);
283 	emit(A64_LSL(1, prg, r3, 3), ctx);
284 	emit(A64_LDR64(prg, tmp, prg), ctx);
285 	emit(A64_CBZ(1, prg, jmp_offset), ctx);
286 
287 	/* goto *(prog->bpf_func + prologue_offset); */
288 	off = offsetof(struct bpf_prog, bpf_func);
289 	emit_a64_mov_i64(tmp, off, ctx);
290 	emit(A64_LDR64(tmp, prg, tmp), ctx);
291 	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
292 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
293 	emit(A64_BR(tmp), ctx);
294 
295 	/* out: */
296 	if (out_offset == -1)
297 		out_offset = cur_offset;
298 	if (cur_offset != out_offset) {
299 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
300 			    cur_offset, out_offset);
301 		return -1;
302 	}
303 	return 0;
304 #undef cur_offset
305 #undef jmp_offset
306 }
307 
308 static void build_epilogue(struct jit_ctx *ctx)
309 {
310 	const u8 r0 = bpf2a64[BPF_REG_0];
311 	const u8 r6 = bpf2a64[BPF_REG_6];
312 	const u8 r7 = bpf2a64[BPF_REG_7];
313 	const u8 r8 = bpf2a64[BPF_REG_8];
314 	const u8 r9 = bpf2a64[BPF_REG_9];
315 	const u8 fp = bpf2a64[BPF_REG_FP];
316 
317 	/* We're done with BPF stack */
318 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
319 
320 	/* Restore fs (x25) and x26 */
321 	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
322 
323 	/* Restore callee-saved register */
324 	emit(A64_POP(r8, r9, A64_SP), ctx);
325 	emit(A64_POP(r6, r7, A64_SP), ctx);
326 
327 	/* Restore FP/LR registers */
328 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
329 
330 	/* Set return value */
331 	emit(A64_MOV(1, A64_R(0), r0), ctx);
332 
333 	emit(A64_RET(A64_LR), ctx);
334 }
335 
336 /* JITs an eBPF instruction.
337  * Returns:
338  * 0  - successfully JITed an 8-byte eBPF instruction.
339  * >0 - successfully JITed a 16-byte eBPF instruction.
340  * <0 - failed to JIT.
341  */
342 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
343 		      bool extra_pass)
344 {
345 	const u8 code = insn->code;
346 	const u8 dst = bpf2a64[insn->dst_reg];
347 	const u8 src = bpf2a64[insn->src_reg];
348 	const u8 tmp = bpf2a64[TMP_REG_1];
349 	const u8 tmp2 = bpf2a64[TMP_REG_2];
350 	const u8 tmp3 = bpf2a64[TMP_REG_3];
351 	const s16 off = insn->off;
352 	const s32 imm = insn->imm;
353 	const int i = insn - ctx->prog->insnsi;
354 	const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
355 			  BPF_CLASS(code) == BPF_JMP;
356 	const bool isdw = BPF_SIZE(code) == BPF_DW;
357 	u8 jmp_cond, reg;
358 	s32 jmp_offset;
359 
360 #define check_imm(bits, imm) do {				\
361 	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
362 	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
363 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
364 			i, imm, imm);				\
365 		return -EINVAL;					\
366 	}							\
367 } while (0)
368 #define check_imm19(imm) check_imm(19, imm)
369 #define check_imm26(imm) check_imm(26, imm)
370 
371 	switch (code) {
372 	/* dst = src */
373 	case BPF_ALU | BPF_MOV | BPF_X:
374 	case BPF_ALU64 | BPF_MOV | BPF_X:
375 		emit(A64_MOV(is64, dst, src), ctx);
376 		break;
377 	/* dst = dst OP src */
378 	case BPF_ALU | BPF_ADD | BPF_X:
379 	case BPF_ALU64 | BPF_ADD | BPF_X:
380 		emit(A64_ADD(is64, dst, dst, src), ctx);
381 		break;
382 	case BPF_ALU | BPF_SUB | BPF_X:
383 	case BPF_ALU64 | BPF_SUB | BPF_X:
384 		emit(A64_SUB(is64, dst, dst, src), ctx);
385 		break;
386 	case BPF_ALU | BPF_AND | BPF_X:
387 	case BPF_ALU64 | BPF_AND | BPF_X:
388 		emit(A64_AND(is64, dst, dst, src), ctx);
389 		break;
390 	case BPF_ALU | BPF_OR | BPF_X:
391 	case BPF_ALU64 | BPF_OR | BPF_X:
392 		emit(A64_ORR(is64, dst, dst, src), ctx);
393 		break;
394 	case BPF_ALU | BPF_XOR | BPF_X:
395 	case BPF_ALU64 | BPF_XOR | BPF_X:
396 		emit(A64_EOR(is64, dst, dst, src), ctx);
397 		break;
398 	case BPF_ALU | BPF_MUL | BPF_X:
399 	case BPF_ALU64 | BPF_MUL | BPF_X:
400 		emit(A64_MUL(is64, dst, dst, src), ctx);
401 		break;
402 	case BPF_ALU | BPF_DIV | BPF_X:
403 	case BPF_ALU64 | BPF_DIV | BPF_X:
404 	case BPF_ALU | BPF_MOD | BPF_X:
405 	case BPF_ALU64 | BPF_MOD | BPF_X:
406 		switch (BPF_OP(code)) {
407 		case BPF_DIV:
408 			emit(A64_UDIV(is64, dst, dst, src), ctx);
409 			break;
410 		case BPF_MOD:
411 			emit(A64_UDIV(is64, tmp, dst, src), ctx);
412 			emit(A64_MUL(is64, tmp, tmp, src), ctx);
413 			emit(A64_SUB(is64, dst, dst, tmp), ctx);
414 			break;
415 		}
416 		break;
417 	case BPF_ALU | BPF_LSH | BPF_X:
418 	case BPF_ALU64 | BPF_LSH | BPF_X:
419 		emit(A64_LSLV(is64, dst, dst, src), ctx);
420 		break;
421 	case BPF_ALU | BPF_RSH | BPF_X:
422 	case BPF_ALU64 | BPF_RSH | BPF_X:
423 		emit(A64_LSRV(is64, dst, dst, src), ctx);
424 		break;
425 	case BPF_ALU | BPF_ARSH | BPF_X:
426 	case BPF_ALU64 | BPF_ARSH | BPF_X:
427 		emit(A64_ASRV(is64, dst, dst, src), ctx);
428 		break;
429 	/* dst = -dst */
430 	case BPF_ALU | BPF_NEG:
431 	case BPF_ALU64 | BPF_NEG:
432 		emit(A64_NEG(is64, dst, dst), ctx);
433 		break;
434 	/* dst = BSWAP##imm(dst) */
435 	case BPF_ALU | BPF_END | BPF_FROM_LE:
436 	case BPF_ALU | BPF_END | BPF_FROM_BE:
437 #ifdef CONFIG_CPU_BIG_ENDIAN
438 		if (BPF_SRC(code) == BPF_FROM_BE)
439 			goto emit_bswap_uxt;
440 #else /* !CONFIG_CPU_BIG_ENDIAN */
441 		if (BPF_SRC(code) == BPF_FROM_LE)
442 			goto emit_bswap_uxt;
443 #endif
444 		switch (imm) {
445 		case 16:
446 			emit(A64_REV16(is64, dst, dst), ctx);
447 			/* zero-extend 16 bits into 64 bits */
448 			emit(A64_UXTH(is64, dst, dst), ctx);
449 			break;
450 		case 32:
451 			emit(A64_REV32(is64, dst, dst), ctx);
452 			/* upper 32 bits already cleared */
453 			break;
454 		case 64:
455 			emit(A64_REV64(dst, dst), ctx);
456 			break;
457 		}
458 		break;
459 emit_bswap_uxt:
460 		switch (imm) {
461 		case 16:
462 			/* zero-extend 16 bits into 64 bits */
463 			emit(A64_UXTH(is64, dst, dst), ctx);
464 			break;
465 		case 32:
466 			/* zero-extend 32 bits into 64 bits */
467 			emit(A64_UXTW(is64, dst, dst), ctx);
468 			break;
469 		case 64:
470 			/* nop */
471 			break;
472 		}
473 		break;
474 	/* dst = imm */
475 	case BPF_ALU | BPF_MOV | BPF_K:
476 	case BPF_ALU64 | BPF_MOV | BPF_K:
477 		emit_a64_mov_i(is64, dst, imm, ctx);
478 		break;
479 	/* dst = dst OP imm */
480 	case BPF_ALU | BPF_ADD | BPF_K:
481 	case BPF_ALU64 | BPF_ADD | BPF_K:
482 		emit_a64_mov_i(is64, tmp, imm, ctx);
483 		emit(A64_ADD(is64, dst, dst, tmp), ctx);
484 		break;
485 	case BPF_ALU | BPF_SUB | BPF_K:
486 	case BPF_ALU64 | BPF_SUB | BPF_K:
487 		emit_a64_mov_i(is64, tmp, imm, ctx);
488 		emit(A64_SUB(is64, dst, dst, tmp), ctx);
489 		break;
490 	case BPF_ALU | BPF_AND | BPF_K:
491 	case BPF_ALU64 | BPF_AND | BPF_K:
492 		emit_a64_mov_i(is64, tmp, imm, ctx);
493 		emit(A64_AND(is64, dst, dst, tmp), ctx);
494 		break;
495 	case BPF_ALU | BPF_OR | BPF_K:
496 	case BPF_ALU64 | BPF_OR | BPF_K:
497 		emit_a64_mov_i(is64, tmp, imm, ctx);
498 		emit(A64_ORR(is64, dst, dst, tmp), ctx);
499 		break;
500 	case BPF_ALU | BPF_XOR | BPF_K:
501 	case BPF_ALU64 | BPF_XOR | BPF_K:
502 		emit_a64_mov_i(is64, tmp, imm, ctx);
503 		emit(A64_EOR(is64, dst, dst, tmp), ctx);
504 		break;
505 	case BPF_ALU | BPF_MUL | BPF_K:
506 	case BPF_ALU64 | BPF_MUL | BPF_K:
507 		emit_a64_mov_i(is64, tmp, imm, ctx);
508 		emit(A64_MUL(is64, dst, dst, tmp), ctx);
509 		break;
510 	case BPF_ALU | BPF_DIV | BPF_K:
511 	case BPF_ALU64 | BPF_DIV | BPF_K:
512 		emit_a64_mov_i(is64, tmp, imm, ctx);
513 		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
514 		break;
515 	case BPF_ALU | BPF_MOD | BPF_K:
516 	case BPF_ALU64 | BPF_MOD | BPF_K:
517 		emit_a64_mov_i(is64, tmp2, imm, ctx);
518 		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
519 		emit(A64_MUL(is64, tmp, tmp, tmp2), ctx);
520 		emit(A64_SUB(is64, dst, dst, tmp), ctx);
521 		break;
522 	case BPF_ALU | BPF_LSH | BPF_K:
523 	case BPF_ALU64 | BPF_LSH | BPF_K:
524 		emit(A64_LSL(is64, dst, dst, imm), ctx);
525 		break;
526 	case BPF_ALU | BPF_RSH | BPF_K:
527 	case BPF_ALU64 | BPF_RSH | BPF_K:
528 		emit(A64_LSR(is64, dst, dst, imm), ctx);
529 		break;
530 	case BPF_ALU | BPF_ARSH | BPF_K:
531 	case BPF_ALU64 | BPF_ARSH | BPF_K:
532 		emit(A64_ASR(is64, dst, dst, imm), ctx);
533 		break;
534 
535 	/* JUMP off */
536 	case BPF_JMP | BPF_JA:
537 		jmp_offset = bpf2a64_offset(i + off, i, ctx);
538 		check_imm26(jmp_offset);
539 		emit(A64_B(jmp_offset), ctx);
540 		break;
541 	/* IF (dst COND src) JUMP off */
542 	case BPF_JMP | BPF_JEQ | BPF_X:
543 	case BPF_JMP | BPF_JGT | BPF_X:
544 	case BPF_JMP | BPF_JLT | BPF_X:
545 	case BPF_JMP | BPF_JGE | BPF_X:
546 	case BPF_JMP | BPF_JLE | BPF_X:
547 	case BPF_JMP | BPF_JNE | BPF_X:
548 	case BPF_JMP | BPF_JSGT | BPF_X:
549 	case BPF_JMP | BPF_JSLT | BPF_X:
550 	case BPF_JMP | BPF_JSGE | BPF_X:
551 	case BPF_JMP | BPF_JSLE | BPF_X:
552 	case BPF_JMP32 | BPF_JEQ | BPF_X:
553 	case BPF_JMP32 | BPF_JGT | BPF_X:
554 	case BPF_JMP32 | BPF_JLT | BPF_X:
555 	case BPF_JMP32 | BPF_JGE | BPF_X:
556 	case BPF_JMP32 | BPF_JLE | BPF_X:
557 	case BPF_JMP32 | BPF_JNE | BPF_X:
558 	case BPF_JMP32 | BPF_JSGT | BPF_X:
559 	case BPF_JMP32 | BPF_JSLT | BPF_X:
560 	case BPF_JMP32 | BPF_JSGE | BPF_X:
561 	case BPF_JMP32 | BPF_JSLE | BPF_X:
562 		emit(A64_CMP(is64, dst, src), ctx);
563 emit_cond_jmp:
564 		jmp_offset = bpf2a64_offset(i + off, i, ctx);
565 		check_imm19(jmp_offset);
566 		switch (BPF_OP(code)) {
567 		case BPF_JEQ:
568 			jmp_cond = A64_COND_EQ;
569 			break;
570 		case BPF_JGT:
571 			jmp_cond = A64_COND_HI;
572 			break;
573 		case BPF_JLT:
574 			jmp_cond = A64_COND_CC;
575 			break;
576 		case BPF_JGE:
577 			jmp_cond = A64_COND_CS;
578 			break;
579 		case BPF_JLE:
580 			jmp_cond = A64_COND_LS;
581 			break;
582 		case BPF_JSET:
583 		case BPF_JNE:
584 			jmp_cond = A64_COND_NE;
585 			break;
586 		case BPF_JSGT:
587 			jmp_cond = A64_COND_GT;
588 			break;
589 		case BPF_JSLT:
590 			jmp_cond = A64_COND_LT;
591 			break;
592 		case BPF_JSGE:
593 			jmp_cond = A64_COND_GE;
594 			break;
595 		case BPF_JSLE:
596 			jmp_cond = A64_COND_LE;
597 			break;
598 		default:
599 			return -EFAULT;
600 		}
601 		emit(A64_B_(jmp_cond, jmp_offset), ctx);
602 		break;
603 	case BPF_JMP | BPF_JSET | BPF_X:
604 	case BPF_JMP32 | BPF_JSET | BPF_X:
605 		emit(A64_TST(is64, dst, src), ctx);
606 		goto emit_cond_jmp;
607 	/* IF (dst COND imm) JUMP off */
608 	case BPF_JMP | BPF_JEQ | BPF_K:
609 	case BPF_JMP | BPF_JGT | BPF_K:
610 	case BPF_JMP | BPF_JLT | BPF_K:
611 	case BPF_JMP | BPF_JGE | BPF_K:
612 	case BPF_JMP | BPF_JLE | BPF_K:
613 	case BPF_JMP | BPF_JNE | BPF_K:
614 	case BPF_JMP | BPF_JSGT | BPF_K:
615 	case BPF_JMP | BPF_JSLT | BPF_K:
616 	case BPF_JMP | BPF_JSGE | BPF_K:
617 	case BPF_JMP | BPF_JSLE | BPF_K:
618 	case BPF_JMP32 | BPF_JEQ | BPF_K:
619 	case BPF_JMP32 | BPF_JGT | BPF_K:
620 	case BPF_JMP32 | BPF_JLT | BPF_K:
621 	case BPF_JMP32 | BPF_JGE | BPF_K:
622 	case BPF_JMP32 | BPF_JLE | BPF_K:
623 	case BPF_JMP32 | BPF_JNE | BPF_K:
624 	case BPF_JMP32 | BPF_JSGT | BPF_K:
625 	case BPF_JMP32 | BPF_JSLT | BPF_K:
626 	case BPF_JMP32 | BPF_JSGE | BPF_K:
627 	case BPF_JMP32 | BPF_JSLE | BPF_K:
628 		emit_a64_mov_i(is64, tmp, imm, ctx);
629 		emit(A64_CMP(is64, dst, tmp), ctx);
630 		goto emit_cond_jmp;
631 	case BPF_JMP | BPF_JSET | BPF_K:
632 	case BPF_JMP32 | BPF_JSET | BPF_K:
633 		emit_a64_mov_i(is64, tmp, imm, ctx);
634 		emit(A64_TST(is64, dst, tmp), ctx);
635 		goto emit_cond_jmp;
636 	/* function call */
637 	case BPF_JMP | BPF_CALL:
638 	{
639 		const u8 r0 = bpf2a64[BPF_REG_0];
640 		bool func_addr_fixed;
641 		u64 func_addr;
642 		int ret;
643 
644 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
645 					    &func_addr, &func_addr_fixed);
646 		if (ret < 0)
647 			return ret;
648 		emit_addr_mov_i64(tmp, func_addr, ctx);
649 		emit(A64_BLR(tmp), ctx);
650 		emit(A64_MOV(1, r0, A64_R(0)), ctx);
651 		break;
652 	}
653 	/* tail call */
654 	case BPF_JMP | BPF_TAIL_CALL:
655 		if (emit_bpf_tail_call(ctx))
656 			return -EFAULT;
657 		break;
658 	/* function return */
659 	case BPF_JMP | BPF_EXIT:
660 		/* Optimization: when last instruction is EXIT,
661 		   simply fallthrough to epilogue. */
662 		if (i == ctx->prog->len - 1)
663 			break;
664 		jmp_offset = epilogue_offset(ctx);
665 		check_imm26(jmp_offset);
666 		emit(A64_B(jmp_offset), ctx);
667 		break;
668 
669 	/* dst = imm64 */
670 	case BPF_LD | BPF_IMM | BPF_DW:
671 	{
672 		const struct bpf_insn insn1 = insn[1];
673 		u64 imm64;
674 
675 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
676 		emit_a64_mov_i64(dst, imm64, ctx);
677 
678 		return 1;
679 	}
680 
681 	/* LDX: dst = *(size *)(src + off) */
682 	case BPF_LDX | BPF_MEM | BPF_W:
683 	case BPF_LDX | BPF_MEM | BPF_H:
684 	case BPF_LDX | BPF_MEM | BPF_B:
685 	case BPF_LDX | BPF_MEM | BPF_DW:
686 		emit_a64_mov_i(1, tmp, off, ctx);
687 		switch (BPF_SIZE(code)) {
688 		case BPF_W:
689 			emit(A64_LDR32(dst, src, tmp), ctx);
690 			break;
691 		case BPF_H:
692 			emit(A64_LDRH(dst, src, tmp), ctx);
693 			break;
694 		case BPF_B:
695 			emit(A64_LDRB(dst, src, tmp), ctx);
696 			break;
697 		case BPF_DW:
698 			emit(A64_LDR64(dst, src, tmp), ctx);
699 			break;
700 		}
701 		break;
702 
703 	/* ST: *(size *)(dst + off) = imm */
704 	case BPF_ST | BPF_MEM | BPF_W:
705 	case BPF_ST | BPF_MEM | BPF_H:
706 	case BPF_ST | BPF_MEM | BPF_B:
707 	case BPF_ST | BPF_MEM | BPF_DW:
708 		/* Load imm to a register then store it */
709 		emit_a64_mov_i(1, tmp2, off, ctx);
710 		emit_a64_mov_i(1, tmp, imm, ctx);
711 		switch (BPF_SIZE(code)) {
712 		case BPF_W:
713 			emit(A64_STR32(tmp, dst, tmp2), ctx);
714 			break;
715 		case BPF_H:
716 			emit(A64_STRH(tmp, dst, tmp2), ctx);
717 			break;
718 		case BPF_B:
719 			emit(A64_STRB(tmp, dst, tmp2), ctx);
720 			break;
721 		case BPF_DW:
722 			emit(A64_STR64(tmp, dst, tmp2), ctx);
723 			break;
724 		}
725 		break;
726 
727 	/* STX: *(size *)(dst + off) = src */
728 	case BPF_STX | BPF_MEM | BPF_W:
729 	case BPF_STX | BPF_MEM | BPF_H:
730 	case BPF_STX | BPF_MEM | BPF_B:
731 	case BPF_STX | BPF_MEM | BPF_DW:
732 		emit_a64_mov_i(1, tmp, off, ctx);
733 		switch (BPF_SIZE(code)) {
734 		case BPF_W:
735 			emit(A64_STR32(src, dst, tmp), ctx);
736 			break;
737 		case BPF_H:
738 			emit(A64_STRH(src, dst, tmp), ctx);
739 			break;
740 		case BPF_B:
741 			emit(A64_STRB(src, dst, tmp), ctx);
742 			break;
743 		case BPF_DW:
744 			emit(A64_STR64(src, dst, tmp), ctx);
745 			break;
746 		}
747 		break;
748 
749 	/* STX XADD: lock *(u32 *)(dst + off) += src */
750 	case BPF_STX | BPF_XADD | BPF_W:
751 	/* STX XADD: lock *(u64 *)(dst + off) += src */
752 	case BPF_STX | BPF_XADD | BPF_DW:
753 		if (!off) {
754 			reg = dst;
755 		} else {
756 			emit_a64_mov_i(1, tmp, off, ctx);
757 			emit(A64_ADD(1, tmp, tmp, dst), ctx);
758 			reg = tmp;
759 		}
760 		if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) {
761 			emit(A64_STADD(isdw, reg, src), ctx);
762 		} else {
763 			emit(A64_LDXR(isdw, tmp2, reg), ctx);
764 			emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
765 			emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
766 			jmp_offset = -3;
767 			check_imm19(jmp_offset);
768 			emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
769 		}
770 		break;
771 
772 	default:
773 		pr_err_once("unknown opcode %02x\n", code);
774 		return -EINVAL;
775 	}
776 
777 	return 0;
778 }
779 
780 static int build_body(struct jit_ctx *ctx, bool extra_pass)
781 {
782 	const struct bpf_prog *prog = ctx->prog;
783 	int i;
784 
785 	for (i = 0; i < prog->len; i++) {
786 		const struct bpf_insn *insn = &prog->insnsi[i];
787 		int ret;
788 
789 		ret = build_insn(insn, ctx, extra_pass);
790 		if (ret > 0) {
791 			i++;
792 			if (ctx->image == NULL)
793 				ctx->offset[i] = ctx->idx;
794 			continue;
795 		}
796 		if (ctx->image == NULL)
797 			ctx->offset[i] = ctx->idx;
798 		if (ret)
799 			return ret;
800 	}
801 
802 	return 0;
803 }
804 
805 static int validate_code(struct jit_ctx *ctx)
806 {
807 	int i;
808 
809 	for (i = 0; i < ctx->idx; i++) {
810 		u32 a64_insn = le32_to_cpu(ctx->image[i]);
811 
812 		if (a64_insn == AARCH64_BREAK_FAULT)
813 			return -1;
814 	}
815 
816 	return 0;
817 }
818 
819 static inline void bpf_flush_icache(void *start, void *end)
820 {
821 	flush_icache_range((unsigned long)start, (unsigned long)end);
822 }
823 
824 struct arm64_jit_data {
825 	struct bpf_binary_header *header;
826 	u8 *image;
827 	struct jit_ctx ctx;
828 };
829 
830 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
831 {
832 	struct bpf_prog *tmp, *orig_prog = prog;
833 	struct bpf_binary_header *header;
834 	struct arm64_jit_data *jit_data;
835 	bool was_classic = bpf_prog_was_classic(prog);
836 	bool tmp_blinded = false;
837 	bool extra_pass = false;
838 	struct jit_ctx ctx;
839 	int image_size;
840 	u8 *image_ptr;
841 
842 	if (!prog->jit_requested)
843 		return orig_prog;
844 
845 	tmp = bpf_jit_blind_constants(prog);
846 	/* If blinding was requested and we failed during blinding,
847 	 * we must fall back to the interpreter.
848 	 */
849 	if (IS_ERR(tmp))
850 		return orig_prog;
851 	if (tmp != prog) {
852 		tmp_blinded = true;
853 		prog = tmp;
854 	}
855 
856 	jit_data = prog->aux->jit_data;
857 	if (!jit_data) {
858 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
859 		if (!jit_data) {
860 			prog = orig_prog;
861 			goto out;
862 		}
863 		prog->aux->jit_data = jit_data;
864 	}
865 	if (jit_data->ctx.offset) {
866 		ctx = jit_data->ctx;
867 		image_ptr = jit_data->image;
868 		header = jit_data->header;
869 		extra_pass = true;
870 		image_size = sizeof(u32) * ctx.idx;
871 		goto skip_init_ctx;
872 	}
873 	memset(&ctx, 0, sizeof(ctx));
874 	ctx.prog = prog;
875 
876 	ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
877 	if (ctx.offset == NULL) {
878 		prog = orig_prog;
879 		goto out_off;
880 	}
881 
882 	/* 1. Initial fake pass to compute ctx->idx. */
883 
884 	/* Fake pass to fill in ctx->offset. */
885 	if (build_body(&ctx, extra_pass)) {
886 		prog = orig_prog;
887 		goto out_off;
888 	}
889 
890 	if (build_prologue(&ctx, was_classic)) {
891 		prog = orig_prog;
892 		goto out_off;
893 	}
894 
895 	ctx.epilogue_offset = ctx.idx;
896 	build_epilogue(&ctx);
897 
898 	/* Now we know the actual image size. */
899 	image_size = sizeof(u32) * ctx.idx;
900 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
901 				      sizeof(u32), jit_fill_hole);
902 	if (header == NULL) {
903 		prog = orig_prog;
904 		goto out_off;
905 	}
906 
907 	/* 2. Now, the actual pass. */
908 
909 	ctx.image = (__le32 *)image_ptr;
910 skip_init_ctx:
911 	ctx.idx = 0;
912 
913 	build_prologue(&ctx, was_classic);
914 
915 	if (build_body(&ctx, extra_pass)) {
916 		bpf_jit_binary_free(header);
917 		prog = orig_prog;
918 		goto out_off;
919 	}
920 
921 	build_epilogue(&ctx);
922 
923 	/* 3. Extra pass to validate JITed code. */
924 	if (validate_code(&ctx)) {
925 		bpf_jit_binary_free(header);
926 		prog = orig_prog;
927 		goto out_off;
928 	}
929 
930 	/* And we're done. */
931 	if (bpf_jit_enable > 1)
932 		bpf_jit_dump(prog->len, image_size, 2, ctx.image);
933 
934 	bpf_flush_icache(header, ctx.image + ctx.idx);
935 
936 	if (!prog->is_func || extra_pass) {
937 		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
938 			pr_err_once("multi-func JIT bug %d != %d\n",
939 				    ctx.idx, jit_data->ctx.idx);
940 			bpf_jit_binary_free(header);
941 			prog->bpf_func = NULL;
942 			prog->jited = 0;
943 			goto out_off;
944 		}
945 		bpf_jit_binary_lock_ro(header);
946 	} else {
947 		jit_data->ctx = ctx;
948 		jit_data->image = image_ptr;
949 		jit_data->header = header;
950 	}
951 	prog->bpf_func = (void *)ctx.image;
952 	prog->jited = 1;
953 	prog->jited_len = image_size;
954 
955 	if (!prog->is_func || extra_pass) {
956 		bpf_prog_fill_jited_linfo(prog, ctx.offset);
957 out_off:
958 		kfree(ctx.offset);
959 		kfree(jit_data);
960 		prog->aux->jit_data = NULL;
961 	}
962 out:
963 	if (tmp_blinded)
964 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
965 					   tmp : orig_prog);
966 	return prog;
967 }
968 
969 void *bpf_jit_alloc_exec(unsigned long size)
970 {
971 	return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
972 				    BPF_JIT_REGION_END, GFP_KERNEL,
973 				    PAGE_KERNEL, 0, NUMA_NO_NODE,
974 				    __builtin_return_address(0));
975 }
976 
977 void bpf_jit_free_exec(void *addr)
978 {
979 	return vfree(addr);
980 }
981