1 /* 2 * BPF JIT compiler for ARM64 3 * 4 * Copyright (C) 2014-2015 Zi Shen Lim <zlim.lnx@gmail.com> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License version 2 as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program. If not, see <http://www.gnu.org/licenses/>. 17 */ 18 19 #define pr_fmt(fmt) "bpf_jit: " fmt 20 21 #include <linux/filter.h> 22 #include <linux/printk.h> 23 #include <linux/skbuff.h> 24 #include <linux/slab.h> 25 26 #include <asm/byteorder.h> 27 #include <asm/cacheflush.h> 28 #include <asm/debug-monitors.h> 29 30 #include "bpf_jit.h" 31 32 int bpf_jit_enable __read_mostly; 33 34 #define TMP_REG_1 (MAX_BPF_REG + 0) 35 #define TMP_REG_2 (MAX_BPF_REG + 1) 36 37 /* Map BPF registers to A64 registers */ 38 static const int bpf2a64[] = { 39 /* return value from in-kernel function, and exit value from eBPF */ 40 [BPF_REG_0] = A64_R(7), 41 /* arguments from eBPF program to in-kernel function */ 42 [BPF_REG_1] = A64_R(0), 43 [BPF_REG_2] = A64_R(1), 44 [BPF_REG_3] = A64_R(2), 45 [BPF_REG_4] = A64_R(3), 46 [BPF_REG_5] = A64_R(4), 47 /* callee saved registers that in-kernel function will preserve */ 48 [BPF_REG_6] = A64_R(19), 49 [BPF_REG_7] = A64_R(20), 50 [BPF_REG_8] = A64_R(21), 51 [BPF_REG_9] = A64_R(22), 52 /* read-only frame pointer to access stack */ 53 [BPF_REG_FP] = A64_R(25), 54 /* temporary register for internal BPF JIT */ 55 [TMP_REG_1] = A64_R(23), 56 [TMP_REG_2] = A64_R(24), 57 }; 58 59 struct jit_ctx { 60 const struct bpf_prog *prog; 61 int idx; 62 int tmp_used; 63 int epilogue_offset; 64 int *offset; 65 u32 *image; 66 }; 67 68 static inline void emit(const u32 insn, struct jit_ctx *ctx) 69 { 70 if (ctx->image != NULL) 71 ctx->image[ctx->idx] = cpu_to_le32(insn); 72 73 ctx->idx++; 74 } 75 76 static inline void emit_a64_mov_i64(const int reg, const u64 val, 77 struct jit_ctx *ctx) 78 { 79 u64 tmp = val; 80 int shift = 0; 81 82 emit(A64_MOVZ(1, reg, tmp & 0xffff, shift), ctx); 83 tmp >>= 16; 84 shift += 16; 85 while (tmp) { 86 if (tmp & 0xffff) 87 emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); 88 tmp >>= 16; 89 shift += 16; 90 } 91 } 92 93 static inline void emit_a64_mov_i(const int is64, const int reg, 94 const s32 val, struct jit_ctx *ctx) 95 { 96 u16 hi = val >> 16; 97 u16 lo = val & 0xffff; 98 99 if (hi & 0x8000) { 100 if (hi == 0xffff) { 101 emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); 102 } else { 103 emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); 104 emit(A64_MOVK(is64, reg, lo, 0), ctx); 105 } 106 } else { 107 emit(A64_MOVZ(is64, reg, lo, 0), ctx); 108 if (hi) 109 emit(A64_MOVK(is64, reg, hi, 16), ctx); 110 } 111 } 112 113 static inline int bpf2a64_offset(int bpf_to, int bpf_from, 114 const struct jit_ctx *ctx) 115 { 116 int to = ctx->offset[bpf_to]; 117 /* -1 to account for the Branch instruction */ 118 int from = ctx->offset[bpf_from] - 1; 119 120 return to - from; 121 } 122 123 static void jit_fill_hole(void *area, unsigned int size) 124 { 125 u32 *ptr; 126 /* We are guaranteed to have aligned memory. */ 127 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 128 *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); 129 } 130 131 static inline int epilogue_offset(const struct jit_ctx *ctx) 132 { 133 int to = ctx->epilogue_offset; 134 int from = ctx->idx; 135 136 return to - from; 137 } 138 139 /* Stack must be multiples of 16B */ 140 #define STACK_ALIGN(sz) (((sz) + 15) & ~15) 141 142 #define _STACK_SIZE \ 143 (MAX_BPF_STACK \ 144 + 4 /* extra for skb_copy_bits buffer */) 145 146 #define STACK_SIZE STACK_ALIGN(_STACK_SIZE) 147 148 static void build_prologue(struct jit_ctx *ctx) 149 { 150 const u8 r6 = bpf2a64[BPF_REG_6]; 151 const u8 r7 = bpf2a64[BPF_REG_7]; 152 const u8 r8 = bpf2a64[BPF_REG_8]; 153 const u8 r9 = bpf2a64[BPF_REG_9]; 154 const u8 fp = bpf2a64[BPF_REG_FP]; 155 const u8 ra = bpf2a64[BPF_REG_A]; 156 const u8 rx = bpf2a64[BPF_REG_X]; 157 const u8 tmp1 = bpf2a64[TMP_REG_1]; 158 const u8 tmp2 = bpf2a64[TMP_REG_2]; 159 160 /* 161 * BPF prog stack layout 162 * 163 * high 164 * original A64_SP => 0:+-----+ BPF prologue 165 * |FP/LR| 166 * current A64_FP => -16:+-----+ 167 * | ... | callee saved registers 168 * +-----+ 169 * | | x25/x26 170 * BPF fp register => -80:+-----+ <= (BPF_FP) 171 * | | 172 * | ... | BPF prog stack 173 * | | 174 * +-----+ <= (BPF_FP - MAX_BPF_STACK) 175 * |RSVD | JIT scratchpad 176 * current A64_SP => +-----+ <= (BPF_FP - STACK_SIZE) 177 * | | 178 * | ... | Function call stack 179 * | | 180 * +-----+ 181 * low 182 * 183 */ 184 185 /* Save FP and LR registers to stay align with ARM64 AAPCS */ 186 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 187 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 188 189 /* Save callee-saved register */ 190 emit(A64_PUSH(r6, r7, A64_SP), ctx); 191 emit(A64_PUSH(r8, r9, A64_SP), ctx); 192 if (ctx->tmp_used) 193 emit(A64_PUSH(tmp1, tmp2, A64_SP), ctx); 194 195 /* Save fp (x25) and x26. SP requires 16 bytes alignment */ 196 emit(A64_PUSH(fp, A64_R(26), A64_SP), ctx); 197 198 /* Set up BPF prog stack base register (x25) */ 199 emit(A64_MOV(1, fp, A64_SP), ctx); 200 201 /* Set up function call stack */ 202 emit(A64_SUB_I(1, A64_SP, A64_SP, STACK_SIZE), ctx); 203 204 /* Clear registers A and X */ 205 emit_a64_mov_i64(ra, 0, ctx); 206 emit_a64_mov_i64(rx, 0, ctx); 207 } 208 209 static void build_epilogue(struct jit_ctx *ctx) 210 { 211 const u8 r0 = bpf2a64[BPF_REG_0]; 212 const u8 r6 = bpf2a64[BPF_REG_6]; 213 const u8 r7 = bpf2a64[BPF_REG_7]; 214 const u8 r8 = bpf2a64[BPF_REG_8]; 215 const u8 r9 = bpf2a64[BPF_REG_9]; 216 const u8 fp = bpf2a64[BPF_REG_FP]; 217 const u8 tmp1 = bpf2a64[TMP_REG_1]; 218 const u8 tmp2 = bpf2a64[TMP_REG_2]; 219 220 /* We're done with BPF stack */ 221 emit(A64_ADD_I(1, A64_SP, A64_SP, STACK_SIZE), ctx); 222 223 /* Restore fs (x25) and x26 */ 224 emit(A64_POP(fp, A64_R(26), A64_SP), ctx); 225 226 /* Restore callee-saved register */ 227 if (ctx->tmp_used) 228 emit(A64_POP(tmp1, tmp2, A64_SP), ctx); 229 emit(A64_POP(r8, r9, A64_SP), ctx); 230 emit(A64_POP(r6, r7, A64_SP), ctx); 231 232 /* Restore FP/LR registers */ 233 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 234 235 /* Set return value */ 236 emit(A64_MOV(1, A64_R(0), r0), ctx); 237 238 emit(A64_RET(A64_LR), ctx); 239 } 240 241 /* JITs an eBPF instruction. 242 * Returns: 243 * 0 - successfully JITed an 8-byte eBPF instruction. 244 * >0 - successfully JITed a 16-byte eBPF instruction. 245 * <0 - failed to JIT. 246 */ 247 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx) 248 { 249 const u8 code = insn->code; 250 const u8 dst = bpf2a64[insn->dst_reg]; 251 const u8 src = bpf2a64[insn->src_reg]; 252 const u8 tmp = bpf2a64[TMP_REG_1]; 253 const u8 tmp2 = bpf2a64[TMP_REG_2]; 254 const s16 off = insn->off; 255 const s32 imm = insn->imm; 256 const int i = insn - ctx->prog->insnsi; 257 const bool is64 = BPF_CLASS(code) == BPF_ALU64; 258 u8 jmp_cond; 259 s32 jmp_offset; 260 261 #define check_imm(bits, imm) do { \ 262 if ((((imm) > 0) && ((imm) >> (bits))) || \ 263 (((imm) < 0) && (~(imm) >> (bits)))) { \ 264 pr_info("[%2d] imm=%d(0x%x) out of range\n", \ 265 i, imm, imm); \ 266 return -EINVAL; \ 267 } \ 268 } while (0) 269 #define check_imm19(imm) check_imm(19, imm) 270 #define check_imm26(imm) check_imm(26, imm) 271 272 switch (code) { 273 /* dst = src */ 274 case BPF_ALU | BPF_MOV | BPF_X: 275 case BPF_ALU64 | BPF_MOV | BPF_X: 276 emit(A64_MOV(is64, dst, src), ctx); 277 break; 278 /* dst = dst OP src */ 279 case BPF_ALU | BPF_ADD | BPF_X: 280 case BPF_ALU64 | BPF_ADD | BPF_X: 281 emit(A64_ADD(is64, dst, dst, src), ctx); 282 break; 283 case BPF_ALU | BPF_SUB | BPF_X: 284 case BPF_ALU64 | BPF_SUB | BPF_X: 285 emit(A64_SUB(is64, dst, dst, src), ctx); 286 break; 287 case BPF_ALU | BPF_AND | BPF_X: 288 case BPF_ALU64 | BPF_AND | BPF_X: 289 emit(A64_AND(is64, dst, dst, src), ctx); 290 break; 291 case BPF_ALU | BPF_OR | BPF_X: 292 case BPF_ALU64 | BPF_OR | BPF_X: 293 emit(A64_ORR(is64, dst, dst, src), ctx); 294 break; 295 case BPF_ALU | BPF_XOR | BPF_X: 296 case BPF_ALU64 | BPF_XOR | BPF_X: 297 emit(A64_EOR(is64, dst, dst, src), ctx); 298 break; 299 case BPF_ALU | BPF_MUL | BPF_X: 300 case BPF_ALU64 | BPF_MUL | BPF_X: 301 emit(A64_MUL(is64, dst, dst, src), ctx); 302 break; 303 case BPF_ALU | BPF_DIV | BPF_X: 304 case BPF_ALU64 | BPF_DIV | BPF_X: 305 case BPF_ALU | BPF_MOD | BPF_X: 306 case BPF_ALU64 | BPF_MOD | BPF_X: 307 { 308 const u8 r0 = bpf2a64[BPF_REG_0]; 309 310 /* if (src == 0) return 0 */ 311 jmp_offset = 3; /* skip ahead to else path */ 312 check_imm19(jmp_offset); 313 emit(A64_CBNZ(is64, src, jmp_offset), ctx); 314 emit(A64_MOVZ(1, r0, 0, 0), ctx); 315 jmp_offset = epilogue_offset(ctx); 316 check_imm26(jmp_offset); 317 emit(A64_B(jmp_offset), ctx); 318 /* else */ 319 switch (BPF_OP(code)) { 320 case BPF_DIV: 321 emit(A64_UDIV(is64, dst, dst, src), ctx); 322 break; 323 case BPF_MOD: 324 ctx->tmp_used = 1; 325 emit(A64_UDIV(is64, tmp, dst, src), ctx); 326 emit(A64_MUL(is64, tmp, tmp, src), ctx); 327 emit(A64_SUB(is64, dst, dst, tmp), ctx); 328 break; 329 } 330 break; 331 } 332 case BPF_ALU | BPF_LSH | BPF_X: 333 case BPF_ALU64 | BPF_LSH | BPF_X: 334 emit(A64_LSLV(is64, dst, dst, src), ctx); 335 break; 336 case BPF_ALU | BPF_RSH | BPF_X: 337 case BPF_ALU64 | BPF_RSH | BPF_X: 338 emit(A64_LSRV(is64, dst, dst, src), ctx); 339 break; 340 case BPF_ALU | BPF_ARSH | BPF_X: 341 case BPF_ALU64 | BPF_ARSH | BPF_X: 342 emit(A64_ASRV(is64, dst, dst, src), ctx); 343 break; 344 /* dst = -dst */ 345 case BPF_ALU | BPF_NEG: 346 case BPF_ALU64 | BPF_NEG: 347 emit(A64_NEG(is64, dst, dst), ctx); 348 break; 349 /* dst = BSWAP##imm(dst) */ 350 case BPF_ALU | BPF_END | BPF_FROM_LE: 351 case BPF_ALU | BPF_END | BPF_FROM_BE: 352 #ifdef CONFIG_CPU_BIG_ENDIAN 353 if (BPF_SRC(code) == BPF_FROM_BE) 354 goto emit_bswap_uxt; 355 #else /* !CONFIG_CPU_BIG_ENDIAN */ 356 if (BPF_SRC(code) == BPF_FROM_LE) 357 goto emit_bswap_uxt; 358 #endif 359 switch (imm) { 360 case 16: 361 emit(A64_REV16(is64, dst, dst), ctx); 362 /* zero-extend 16 bits into 64 bits */ 363 emit(A64_UXTH(is64, dst, dst), ctx); 364 break; 365 case 32: 366 emit(A64_REV32(is64, dst, dst), ctx); 367 /* upper 32 bits already cleared */ 368 break; 369 case 64: 370 emit(A64_REV64(dst, dst), ctx); 371 break; 372 } 373 break; 374 emit_bswap_uxt: 375 switch (imm) { 376 case 16: 377 /* zero-extend 16 bits into 64 bits */ 378 emit(A64_UXTH(is64, dst, dst), ctx); 379 break; 380 case 32: 381 /* zero-extend 32 bits into 64 bits */ 382 emit(A64_UXTW(is64, dst, dst), ctx); 383 break; 384 case 64: 385 /* nop */ 386 break; 387 } 388 break; 389 /* dst = imm */ 390 case BPF_ALU | BPF_MOV | BPF_K: 391 case BPF_ALU64 | BPF_MOV | BPF_K: 392 emit_a64_mov_i(is64, dst, imm, ctx); 393 break; 394 /* dst = dst OP imm */ 395 case BPF_ALU | BPF_ADD | BPF_K: 396 case BPF_ALU64 | BPF_ADD | BPF_K: 397 ctx->tmp_used = 1; 398 emit_a64_mov_i(is64, tmp, imm, ctx); 399 emit(A64_ADD(is64, dst, dst, tmp), ctx); 400 break; 401 case BPF_ALU | BPF_SUB | BPF_K: 402 case BPF_ALU64 | BPF_SUB | BPF_K: 403 ctx->tmp_used = 1; 404 emit_a64_mov_i(is64, tmp, imm, ctx); 405 emit(A64_SUB(is64, dst, dst, tmp), ctx); 406 break; 407 case BPF_ALU | BPF_AND | BPF_K: 408 case BPF_ALU64 | BPF_AND | BPF_K: 409 ctx->tmp_used = 1; 410 emit_a64_mov_i(is64, tmp, imm, ctx); 411 emit(A64_AND(is64, dst, dst, tmp), ctx); 412 break; 413 case BPF_ALU | BPF_OR | BPF_K: 414 case BPF_ALU64 | BPF_OR | BPF_K: 415 ctx->tmp_used = 1; 416 emit_a64_mov_i(is64, tmp, imm, ctx); 417 emit(A64_ORR(is64, dst, dst, tmp), ctx); 418 break; 419 case BPF_ALU | BPF_XOR | BPF_K: 420 case BPF_ALU64 | BPF_XOR | BPF_K: 421 ctx->tmp_used = 1; 422 emit_a64_mov_i(is64, tmp, imm, ctx); 423 emit(A64_EOR(is64, dst, dst, tmp), ctx); 424 break; 425 case BPF_ALU | BPF_MUL | BPF_K: 426 case BPF_ALU64 | BPF_MUL | BPF_K: 427 ctx->tmp_used = 1; 428 emit_a64_mov_i(is64, tmp, imm, ctx); 429 emit(A64_MUL(is64, dst, dst, tmp), ctx); 430 break; 431 case BPF_ALU | BPF_DIV | BPF_K: 432 case BPF_ALU64 | BPF_DIV | BPF_K: 433 ctx->tmp_used = 1; 434 emit_a64_mov_i(is64, tmp, imm, ctx); 435 emit(A64_UDIV(is64, dst, dst, tmp), ctx); 436 break; 437 case BPF_ALU | BPF_MOD | BPF_K: 438 case BPF_ALU64 | BPF_MOD | BPF_K: 439 ctx->tmp_used = 1; 440 emit_a64_mov_i(is64, tmp2, imm, ctx); 441 emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); 442 emit(A64_MUL(is64, tmp, tmp, tmp2), ctx); 443 emit(A64_SUB(is64, dst, dst, tmp), ctx); 444 break; 445 case BPF_ALU | BPF_LSH | BPF_K: 446 case BPF_ALU64 | BPF_LSH | BPF_K: 447 emit(A64_LSL(is64, dst, dst, imm), ctx); 448 break; 449 case BPF_ALU | BPF_RSH | BPF_K: 450 case BPF_ALU64 | BPF_RSH | BPF_K: 451 emit(A64_LSR(is64, dst, dst, imm), ctx); 452 break; 453 case BPF_ALU | BPF_ARSH | BPF_K: 454 case BPF_ALU64 | BPF_ARSH | BPF_K: 455 emit(A64_ASR(is64, dst, dst, imm), ctx); 456 break; 457 458 /* JUMP off */ 459 case BPF_JMP | BPF_JA: 460 jmp_offset = bpf2a64_offset(i + off, i, ctx); 461 check_imm26(jmp_offset); 462 emit(A64_B(jmp_offset), ctx); 463 break; 464 /* IF (dst COND src) JUMP off */ 465 case BPF_JMP | BPF_JEQ | BPF_X: 466 case BPF_JMP | BPF_JGT | BPF_X: 467 case BPF_JMP | BPF_JGE | BPF_X: 468 case BPF_JMP | BPF_JNE | BPF_X: 469 case BPF_JMP | BPF_JSGT | BPF_X: 470 case BPF_JMP | BPF_JSGE | BPF_X: 471 emit(A64_CMP(1, dst, src), ctx); 472 emit_cond_jmp: 473 jmp_offset = bpf2a64_offset(i + off, i, ctx); 474 check_imm19(jmp_offset); 475 switch (BPF_OP(code)) { 476 case BPF_JEQ: 477 jmp_cond = A64_COND_EQ; 478 break; 479 case BPF_JGT: 480 jmp_cond = A64_COND_HI; 481 break; 482 case BPF_JGE: 483 jmp_cond = A64_COND_CS; 484 break; 485 case BPF_JNE: 486 jmp_cond = A64_COND_NE; 487 break; 488 case BPF_JSGT: 489 jmp_cond = A64_COND_GT; 490 break; 491 case BPF_JSGE: 492 jmp_cond = A64_COND_GE; 493 break; 494 default: 495 return -EFAULT; 496 } 497 emit(A64_B_(jmp_cond, jmp_offset), ctx); 498 break; 499 case BPF_JMP | BPF_JSET | BPF_X: 500 emit(A64_TST(1, dst, src), ctx); 501 goto emit_cond_jmp; 502 /* IF (dst COND imm) JUMP off */ 503 case BPF_JMP | BPF_JEQ | BPF_K: 504 case BPF_JMP | BPF_JGT | BPF_K: 505 case BPF_JMP | BPF_JGE | BPF_K: 506 case BPF_JMP | BPF_JNE | BPF_K: 507 case BPF_JMP | BPF_JSGT | BPF_K: 508 case BPF_JMP | BPF_JSGE | BPF_K: 509 ctx->tmp_used = 1; 510 emit_a64_mov_i(1, tmp, imm, ctx); 511 emit(A64_CMP(1, dst, tmp), ctx); 512 goto emit_cond_jmp; 513 case BPF_JMP | BPF_JSET | BPF_K: 514 ctx->tmp_used = 1; 515 emit_a64_mov_i(1, tmp, imm, ctx); 516 emit(A64_TST(1, dst, tmp), ctx); 517 goto emit_cond_jmp; 518 /* function call */ 519 case BPF_JMP | BPF_CALL: 520 { 521 const u8 r0 = bpf2a64[BPF_REG_0]; 522 const u64 func = (u64)__bpf_call_base + imm; 523 524 ctx->tmp_used = 1; 525 emit_a64_mov_i64(tmp, func, ctx); 526 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 527 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 528 emit(A64_BLR(tmp), ctx); 529 emit(A64_MOV(1, r0, A64_R(0)), ctx); 530 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 531 break; 532 } 533 /* function return */ 534 case BPF_JMP | BPF_EXIT: 535 /* Optimization: when last instruction is EXIT, 536 simply fallthrough to epilogue. */ 537 if (i == ctx->prog->len - 1) 538 break; 539 jmp_offset = epilogue_offset(ctx); 540 check_imm26(jmp_offset); 541 emit(A64_B(jmp_offset), ctx); 542 break; 543 544 /* dst = imm64 */ 545 case BPF_LD | BPF_IMM | BPF_DW: 546 { 547 const struct bpf_insn insn1 = insn[1]; 548 u64 imm64; 549 550 if (insn1.code != 0 || insn1.src_reg != 0 || 551 insn1.dst_reg != 0 || insn1.off != 0) { 552 /* Note: verifier in BPF core must catch invalid 553 * instructions. 554 */ 555 pr_err_once("Invalid BPF_LD_IMM64 instruction\n"); 556 return -EINVAL; 557 } 558 559 imm64 = (u64)insn1.imm << 32 | (u32)imm; 560 emit_a64_mov_i64(dst, imm64, ctx); 561 562 return 1; 563 } 564 565 /* LDX: dst = *(size *)(src + off) */ 566 case BPF_LDX | BPF_MEM | BPF_W: 567 case BPF_LDX | BPF_MEM | BPF_H: 568 case BPF_LDX | BPF_MEM | BPF_B: 569 case BPF_LDX | BPF_MEM | BPF_DW: 570 ctx->tmp_used = 1; 571 emit_a64_mov_i(1, tmp, off, ctx); 572 switch (BPF_SIZE(code)) { 573 case BPF_W: 574 emit(A64_LDR32(dst, src, tmp), ctx); 575 break; 576 case BPF_H: 577 emit(A64_LDRH(dst, src, tmp), ctx); 578 break; 579 case BPF_B: 580 emit(A64_LDRB(dst, src, tmp), ctx); 581 break; 582 case BPF_DW: 583 emit(A64_LDR64(dst, src, tmp), ctx); 584 break; 585 } 586 break; 587 588 /* ST: *(size *)(dst + off) = imm */ 589 case BPF_ST | BPF_MEM | BPF_W: 590 case BPF_ST | BPF_MEM | BPF_H: 591 case BPF_ST | BPF_MEM | BPF_B: 592 case BPF_ST | BPF_MEM | BPF_DW: 593 /* Load imm to a register then store it */ 594 ctx->tmp_used = 1; 595 emit_a64_mov_i(1, tmp2, off, ctx); 596 emit_a64_mov_i(1, tmp, imm, ctx); 597 switch (BPF_SIZE(code)) { 598 case BPF_W: 599 emit(A64_STR32(tmp, dst, tmp2), ctx); 600 break; 601 case BPF_H: 602 emit(A64_STRH(tmp, dst, tmp2), ctx); 603 break; 604 case BPF_B: 605 emit(A64_STRB(tmp, dst, tmp2), ctx); 606 break; 607 case BPF_DW: 608 emit(A64_STR64(tmp, dst, tmp2), ctx); 609 break; 610 } 611 break; 612 613 /* STX: *(size *)(dst + off) = src */ 614 case BPF_STX | BPF_MEM | BPF_W: 615 case BPF_STX | BPF_MEM | BPF_H: 616 case BPF_STX | BPF_MEM | BPF_B: 617 case BPF_STX | BPF_MEM | BPF_DW: 618 ctx->tmp_used = 1; 619 emit_a64_mov_i(1, tmp, off, ctx); 620 switch (BPF_SIZE(code)) { 621 case BPF_W: 622 emit(A64_STR32(src, dst, tmp), ctx); 623 break; 624 case BPF_H: 625 emit(A64_STRH(src, dst, tmp), ctx); 626 break; 627 case BPF_B: 628 emit(A64_STRB(src, dst, tmp), ctx); 629 break; 630 case BPF_DW: 631 emit(A64_STR64(src, dst, tmp), ctx); 632 break; 633 } 634 break; 635 /* STX XADD: lock *(u32 *)(dst + off) += src */ 636 case BPF_STX | BPF_XADD | BPF_W: 637 /* STX XADD: lock *(u64 *)(dst + off) += src */ 638 case BPF_STX | BPF_XADD | BPF_DW: 639 goto notyet; 640 641 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + imm)) */ 642 case BPF_LD | BPF_ABS | BPF_W: 643 case BPF_LD | BPF_ABS | BPF_H: 644 case BPF_LD | BPF_ABS | BPF_B: 645 /* R0 = ntohx(*(size *)(((struct sk_buff *)R6)->data + src + imm)) */ 646 case BPF_LD | BPF_IND | BPF_W: 647 case BPF_LD | BPF_IND | BPF_H: 648 case BPF_LD | BPF_IND | BPF_B: 649 { 650 const u8 r0 = bpf2a64[BPF_REG_0]; /* r0 = return value */ 651 const u8 r6 = bpf2a64[BPF_REG_6]; /* r6 = pointer to sk_buff */ 652 const u8 fp = bpf2a64[BPF_REG_FP]; 653 const u8 r1 = bpf2a64[BPF_REG_1]; /* r1: struct sk_buff *skb */ 654 const u8 r2 = bpf2a64[BPF_REG_2]; /* r2: int k */ 655 const u8 r3 = bpf2a64[BPF_REG_3]; /* r3: unsigned int size */ 656 const u8 r4 = bpf2a64[BPF_REG_4]; /* r4: void *buffer */ 657 const u8 r5 = bpf2a64[BPF_REG_5]; /* r5: void *(*func)(...) */ 658 int size; 659 660 emit(A64_MOV(1, r1, r6), ctx); 661 emit_a64_mov_i(0, r2, imm, ctx); 662 if (BPF_MODE(code) == BPF_IND) 663 emit(A64_ADD(0, r2, r2, src), ctx); 664 switch (BPF_SIZE(code)) { 665 case BPF_W: 666 size = 4; 667 break; 668 case BPF_H: 669 size = 2; 670 break; 671 case BPF_B: 672 size = 1; 673 break; 674 default: 675 return -EINVAL; 676 } 677 emit_a64_mov_i64(r3, size, ctx); 678 emit(A64_SUB_I(1, r4, fp, STACK_SIZE), ctx); 679 emit_a64_mov_i64(r5, (unsigned long)bpf_load_pointer, ctx); 680 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 681 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 682 emit(A64_BLR(r5), ctx); 683 emit(A64_MOV(1, r0, A64_R(0)), ctx); 684 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 685 686 jmp_offset = epilogue_offset(ctx); 687 check_imm19(jmp_offset); 688 emit(A64_CBZ(1, r0, jmp_offset), ctx); 689 emit(A64_MOV(1, r5, r0), ctx); 690 switch (BPF_SIZE(code)) { 691 case BPF_W: 692 emit(A64_LDR32(r0, r5, A64_ZR), ctx); 693 #ifndef CONFIG_CPU_BIG_ENDIAN 694 emit(A64_REV32(0, r0, r0), ctx); 695 #endif 696 break; 697 case BPF_H: 698 emit(A64_LDRH(r0, r5, A64_ZR), ctx); 699 #ifndef CONFIG_CPU_BIG_ENDIAN 700 emit(A64_REV16(0, r0, r0), ctx); 701 #endif 702 break; 703 case BPF_B: 704 emit(A64_LDRB(r0, r5, A64_ZR), ctx); 705 break; 706 } 707 break; 708 } 709 notyet: 710 pr_info_once("*** NOT YET: opcode %02x ***\n", code); 711 return -EFAULT; 712 713 default: 714 pr_err_once("unknown opcode %02x\n", code); 715 return -EINVAL; 716 } 717 718 return 0; 719 } 720 721 static int build_body(struct jit_ctx *ctx) 722 { 723 const struct bpf_prog *prog = ctx->prog; 724 int i; 725 726 for (i = 0; i < prog->len; i++) { 727 const struct bpf_insn *insn = &prog->insnsi[i]; 728 int ret; 729 730 ret = build_insn(insn, ctx); 731 732 if (ctx->image == NULL) 733 ctx->offset[i] = ctx->idx; 734 735 if (ret > 0) { 736 i++; 737 continue; 738 } 739 if (ret) 740 return ret; 741 } 742 743 return 0; 744 } 745 746 static inline void bpf_flush_icache(void *start, void *end) 747 { 748 flush_icache_range((unsigned long)start, (unsigned long)end); 749 } 750 751 void bpf_jit_compile(struct bpf_prog *prog) 752 { 753 /* Nothing to do here. We support Internal BPF. */ 754 } 755 756 void bpf_int_jit_compile(struct bpf_prog *prog) 757 { 758 struct bpf_binary_header *header; 759 struct jit_ctx ctx; 760 int image_size; 761 u8 *image_ptr; 762 763 if (!bpf_jit_enable) 764 return; 765 766 if (!prog || !prog->len) 767 return; 768 769 memset(&ctx, 0, sizeof(ctx)); 770 ctx.prog = prog; 771 772 ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL); 773 if (ctx.offset == NULL) 774 return; 775 776 /* 1. Initial fake pass to compute ctx->idx. */ 777 778 /* Fake pass to fill in ctx->offset and ctx->tmp_used. */ 779 if (build_body(&ctx)) 780 goto out; 781 782 build_prologue(&ctx); 783 784 ctx.epilogue_offset = ctx.idx; 785 build_epilogue(&ctx); 786 787 /* Now we know the actual image size. */ 788 image_size = sizeof(u32) * ctx.idx; 789 header = bpf_jit_binary_alloc(image_size, &image_ptr, 790 sizeof(u32), jit_fill_hole); 791 if (header == NULL) 792 goto out; 793 794 /* 2. Now, the actual pass. */ 795 796 ctx.image = (u32 *)image_ptr; 797 ctx.idx = 0; 798 799 build_prologue(&ctx); 800 801 if (build_body(&ctx)) { 802 bpf_jit_binary_free(header); 803 goto out; 804 } 805 806 build_epilogue(&ctx); 807 808 /* And we're done. */ 809 if (bpf_jit_enable > 1) 810 bpf_jit_dump(prog->len, image_size, 2, ctx.image); 811 812 bpf_flush_icache(header, ctx.image + ctx.idx); 813 814 set_memory_ro((unsigned long)header, header->pages); 815 prog->bpf_func = (void *)ctx.image; 816 prog->jited = 1; 817 out: 818 kfree(ctx.offset); 819 } 820 821 void bpf_jit_free(struct bpf_prog *prog) 822 { 823 unsigned long addr = (unsigned long)prog->bpf_func & PAGE_MASK; 824 struct bpf_binary_header *header = (void *)addr; 825 826 if (!prog->jited) 827 goto free_filter; 828 829 set_memory_rw(addr, header->pages); 830 bpf_jit_binary_free(header); 831 832 free_filter: 833 bpf_prog_unlock_free(prog); 834 } 835