xref: /openbmc/linux/arch/arm64/net/bpf_jit_comp.c (revision 7b73a9c8)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler for ARM64
4  *
5  * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
6  */
7 
8 #define pr_fmt(fmt) "bpf_jit: " fmt
9 
10 #include <linux/bpf.h>
11 #include <linux/filter.h>
12 #include <linux/printk.h>
13 #include <linux/slab.h>
14 
15 #include <asm/byteorder.h>
16 #include <asm/cacheflush.h>
17 #include <asm/debug-monitors.h>
18 #include <asm/set_memory.h>
19 
20 #include "bpf_jit.h"
21 
22 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
23 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
24 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
25 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
26 
27 /* Map BPF registers to A64 registers */
28 static const int bpf2a64[] = {
29 	/* return value from in-kernel function, and exit value from eBPF */
30 	[BPF_REG_0] = A64_R(7),
31 	/* arguments from eBPF program to in-kernel function */
32 	[BPF_REG_1] = A64_R(0),
33 	[BPF_REG_2] = A64_R(1),
34 	[BPF_REG_3] = A64_R(2),
35 	[BPF_REG_4] = A64_R(3),
36 	[BPF_REG_5] = A64_R(4),
37 	/* callee saved registers that in-kernel function will preserve */
38 	[BPF_REG_6] = A64_R(19),
39 	[BPF_REG_7] = A64_R(20),
40 	[BPF_REG_8] = A64_R(21),
41 	[BPF_REG_9] = A64_R(22),
42 	/* read-only frame pointer to access stack */
43 	[BPF_REG_FP] = A64_R(25),
44 	/* temporary registers for internal BPF JIT */
45 	[TMP_REG_1] = A64_R(10),
46 	[TMP_REG_2] = A64_R(11),
47 	[TMP_REG_3] = A64_R(12),
48 	/* tail_call_cnt */
49 	[TCALL_CNT] = A64_R(26),
50 	/* temporary register for blinding constants */
51 	[BPF_REG_AX] = A64_R(9),
52 };
53 
54 struct jit_ctx {
55 	const struct bpf_prog *prog;
56 	int idx;
57 	int epilogue_offset;
58 	int *offset;
59 	__le32 *image;
60 	u32 stack_size;
61 };
62 
63 static inline void emit(const u32 insn, struct jit_ctx *ctx)
64 {
65 	if (ctx->image != NULL)
66 		ctx->image[ctx->idx] = cpu_to_le32(insn);
67 
68 	ctx->idx++;
69 }
70 
71 static inline void emit_a64_mov_i(const int is64, const int reg,
72 				  const s32 val, struct jit_ctx *ctx)
73 {
74 	u16 hi = val >> 16;
75 	u16 lo = val & 0xffff;
76 
77 	if (hi & 0x8000) {
78 		if (hi == 0xffff) {
79 			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
80 		} else {
81 			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
82 			if (lo != 0xffff)
83 				emit(A64_MOVK(is64, reg, lo, 0), ctx);
84 		}
85 	} else {
86 		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
87 		if (hi)
88 			emit(A64_MOVK(is64, reg, hi, 16), ctx);
89 	}
90 }
91 
92 static int i64_i16_blocks(const u64 val, bool inverse)
93 {
94 	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
95 	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
96 	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
97 	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
98 }
99 
100 static inline void emit_a64_mov_i64(const int reg, const u64 val,
101 				    struct jit_ctx *ctx)
102 {
103 	u64 nrm_tmp = val, rev_tmp = ~val;
104 	bool inverse;
105 	int shift;
106 
107 	if (!(nrm_tmp >> 32))
108 		return emit_a64_mov_i(0, reg, (u32)val, ctx);
109 
110 	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
111 	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
112 					  (fls64(nrm_tmp) - 1)), 16), 0);
113 	if (inverse)
114 		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
115 	else
116 		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
117 	shift -= 16;
118 	while (shift >= 0) {
119 		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
120 			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
121 		shift -= 16;
122 	}
123 }
124 
125 /*
126  * Kernel addresses in the vmalloc space use at most 48 bits, and the
127  * remaining bits are guaranteed to be 0x1. So we can compose the address
128  * with a fixed length movn/movk/movk sequence.
129  */
130 static inline void emit_addr_mov_i64(const int reg, const u64 val,
131 				     struct jit_ctx *ctx)
132 {
133 	u64 tmp = val;
134 	int shift = 0;
135 
136 	emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
137 	while (shift < 32) {
138 		tmp >>= 16;
139 		shift += 16;
140 		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
141 	}
142 }
143 
144 static inline int bpf2a64_offset(int bpf_to, int bpf_from,
145 				 const struct jit_ctx *ctx)
146 {
147 	int to = ctx->offset[bpf_to];
148 	/* -1 to account for the Branch instruction */
149 	int from = ctx->offset[bpf_from] - 1;
150 
151 	return to - from;
152 }
153 
154 static void jit_fill_hole(void *area, unsigned int size)
155 {
156 	__le32 *ptr;
157 	/* We are guaranteed to have aligned memory. */
158 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
159 		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
160 }
161 
162 static inline int epilogue_offset(const struct jit_ctx *ctx)
163 {
164 	int to = ctx->epilogue_offset;
165 	int from = ctx->idx;
166 
167 	return to - from;
168 }
169 
170 /* Stack must be multiples of 16B */
171 #define STACK_ALIGN(sz) (((sz) + 15) & ~15)
172 
173 /* Tail call offset to jump into */
174 #define PROLOGUE_OFFSET 7
175 
176 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
177 {
178 	const struct bpf_prog *prog = ctx->prog;
179 	const u8 r6 = bpf2a64[BPF_REG_6];
180 	const u8 r7 = bpf2a64[BPF_REG_7];
181 	const u8 r8 = bpf2a64[BPF_REG_8];
182 	const u8 r9 = bpf2a64[BPF_REG_9];
183 	const u8 fp = bpf2a64[BPF_REG_FP];
184 	const u8 tcc = bpf2a64[TCALL_CNT];
185 	const int idx0 = ctx->idx;
186 	int cur_offset;
187 
188 	/*
189 	 * BPF prog stack layout
190 	 *
191 	 *                         high
192 	 * original A64_SP =>   0:+-----+ BPF prologue
193 	 *                        |FP/LR|
194 	 * current A64_FP =>  -16:+-----+
195 	 *                        | ... | callee saved registers
196 	 * BPF fp register => -64:+-----+ <= (BPF_FP)
197 	 *                        |     |
198 	 *                        | ... | BPF prog stack
199 	 *                        |     |
200 	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
201 	 *                        |RSVD | padding
202 	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
203 	 *                        |     |
204 	 *                        | ... | Function call stack
205 	 *                        |     |
206 	 *                        +-----+
207 	 *                          low
208 	 *
209 	 */
210 
211 	/* Save FP and LR registers to stay align with ARM64 AAPCS */
212 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
213 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
214 
215 	/* Save callee-saved registers */
216 	emit(A64_PUSH(r6, r7, A64_SP), ctx);
217 	emit(A64_PUSH(r8, r9, A64_SP), ctx);
218 	emit(A64_PUSH(fp, tcc, A64_SP), ctx);
219 
220 	/* Set up BPF prog stack base register */
221 	emit(A64_MOV(1, fp, A64_SP), ctx);
222 
223 	if (!ebpf_from_cbpf) {
224 		/* Initialize tail_call_cnt */
225 		emit(A64_MOVZ(1, tcc, 0, 0), ctx);
226 
227 		cur_offset = ctx->idx - idx0;
228 		if (cur_offset != PROLOGUE_OFFSET) {
229 			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
230 				    cur_offset, PROLOGUE_OFFSET);
231 			return -1;
232 		}
233 	}
234 
235 	ctx->stack_size = STACK_ALIGN(prog->aux->stack_depth);
236 
237 	/* Set up function call stack */
238 	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
239 	return 0;
240 }
241 
242 static int out_offset = -1; /* initialized on the first pass of build_body() */
243 static int emit_bpf_tail_call(struct jit_ctx *ctx)
244 {
245 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
246 	const u8 r2 = bpf2a64[BPF_REG_2];
247 	const u8 r3 = bpf2a64[BPF_REG_3];
248 
249 	const u8 tmp = bpf2a64[TMP_REG_1];
250 	const u8 prg = bpf2a64[TMP_REG_2];
251 	const u8 tcc = bpf2a64[TCALL_CNT];
252 	const int idx0 = ctx->idx;
253 #define cur_offset (ctx->idx - idx0)
254 #define jmp_offset (out_offset - (cur_offset))
255 	size_t off;
256 
257 	/* if (index >= array->map.max_entries)
258 	 *     goto out;
259 	 */
260 	off = offsetof(struct bpf_array, map.max_entries);
261 	emit_a64_mov_i64(tmp, off, ctx);
262 	emit(A64_LDR32(tmp, r2, tmp), ctx);
263 	emit(A64_MOV(0, r3, r3), ctx);
264 	emit(A64_CMP(0, r3, tmp), ctx);
265 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
266 
267 	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
268 	 *     goto out;
269 	 * tail_call_cnt++;
270 	 */
271 	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
272 	emit(A64_CMP(1, tcc, tmp), ctx);
273 	emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
274 	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
275 
276 	/* prog = array->ptrs[index];
277 	 * if (prog == NULL)
278 	 *     goto out;
279 	 */
280 	off = offsetof(struct bpf_array, ptrs);
281 	emit_a64_mov_i64(tmp, off, ctx);
282 	emit(A64_ADD(1, tmp, r2, tmp), ctx);
283 	emit(A64_LSL(1, prg, r3, 3), ctx);
284 	emit(A64_LDR64(prg, tmp, prg), ctx);
285 	emit(A64_CBZ(1, prg, jmp_offset), ctx);
286 
287 	/* goto *(prog->bpf_func + prologue_offset); */
288 	off = offsetof(struct bpf_prog, bpf_func);
289 	emit_a64_mov_i64(tmp, off, ctx);
290 	emit(A64_LDR64(tmp, prg, tmp), ctx);
291 	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
292 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
293 	emit(A64_BR(tmp), ctx);
294 
295 	/* out: */
296 	if (out_offset == -1)
297 		out_offset = cur_offset;
298 	if (cur_offset != out_offset) {
299 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
300 			    cur_offset, out_offset);
301 		return -1;
302 	}
303 	return 0;
304 #undef cur_offset
305 #undef jmp_offset
306 }
307 
308 static void build_epilogue(struct jit_ctx *ctx)
309 {
310 	const u8 r0 = bpf2a64[BPF_REG_0];
311 	const u8 r6 = bpf2a64[BPF_REG_6];
312 	const u8 r7 = bpf2a64[BPF_REG_7];
313 	const u8 r8 = bpf2a64[BPF_REG_8];
314 	const u8 r9 = bpf2a64[BPF_REG_9];
315 	const u8 fp = bpf2a64[BPF_REG_FP];
316 
317 	/* We're done with BPF stack */
318 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
319 
320 	/* Restore fs (x25) and x26 */
321 	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
322 
323 	/* Restore callee-saved register */
324 	emit(A64_POP(r8, r9, A64_SP), ctx);
325 	emit(A64_POP(r6, r7, A64_SP), ctx);
326 
327 	/* Restore FP/LR registers */
328 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
329 
330 	/* Set return value */
331 	emit(A64_MOV(1, A64_R(0), r0), ctx);
332 
333 	emit(A64_RET(A64_LR), ctx);
334 }
335 
336 /* JITs an eBPF instruction.
337  * Returns:
338  * 0  - successfully JITed an 8-byte eBPF instruction.
339  * >0 - successfully JITed a 16-byte eBPF instruction.
340  * <0 - failed to JIT.
341  */
342 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
343 		      bool extra_pass)
344 {
345 	const u8 code = insn->code;
346 	const u8 dst = bpf2a64[insn->dst_reg];
347 	const u8 src = bpf2a64[insn->src_reg];
348 	const u8 tmp = bpf2a64[TMP_REG_1];
349 	const u8 tmp2 = bpf2a64[TMP_REG_2];
350 	const u8 tmp3 = bpf2a64[TMP_REG_3];
351 	const s16 off = insn->off;
352 	const s32 imm = insn->imm;
353 	const int i = insn - ctx->prog->insnsi;
354 	const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
355 			  BPF_CLASS(code) == BPF_JMP;
356 	const bool isdw = BPF_SIZE(code) == BPF_DW;
357 	u8 jmp_cond, reg;
358 	s32 jmp_offset;
359 
360 #define check_imm(bits, imm) do {				\
361 	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
362 	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
363 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
364 			i, imm, imm);				\
365 		return -EINVAL;					\
366 	}							\
367 } while (0)
368 #define check_imm19(imm) check_imm(19, imm)
369 #define check_imm26(imm) check_imm(26, imm)
370 
371 	switch (code) {
372 	/* dst = src */
373 	case BPF_ALU | BPF_MOV | BPF_X:
374 	case BPF_ALU64 | BPF_MOV | BPF_X:
375 		emit(A64_MOV(is64, dst, src), ctx);
376 		break;
377 	/* dst = dst OP src */
378 	case BPF_ALU | BPF_ADD | BPF_X:
379 	case BPF_ALU64 | BPF_ADD | BPF_X:
380 		emit(A64_ADD(is64, dst, dst, src), ctx);
381 		break;
382 	case BPF_ALU | BPF_SUB | BPF_X:
383 	case BPF_ALU64 | BPF_SUB | BPF_X:
384 		emit(A64_SUB(is64, dst, dst, src), ctx);
385 		break;
386 	case BPF_ALU | BPF_AND | BPF_X:
387 	case BPF_ALU64 | BPF_AND | BPF_X:
388 		emit(A64_AND(is64, dst, dst, src), ctx);
389 		break;
390 	case BPF_ALU | BPF_OR | BPF_X:
391 	case BPF_ALU64 | BPF_OR | BPF_X:
392 		emit(A64_ORR(is64, dst, dst, src), ctx);
393 		break;
394 	case BPF_ALU | BPF_XOR | BPF_X:
395 	case BPF_ALU64 | BPF_XOR | BPF_X:
396 		emit(A64_EOR(is64, dst, dst, src), ctx);
397 		break;
398 	case BPF_ALU | BPF_MUL | BPF_X:
399 	case BPF_ALU64 | BPF_MUL | BPF_X:
400 		emit(A64_MUL(is64, dst, dst, src), ctx);
401 		break;
402 	case BPF_ALU | BPF_DIV | BPF_X:
403 	case BPF_ALU64 | BPF_DIV | BPF_X:
404 	case BPF_ALU | BPF_MOD | BPF_X:
405 	case BPF_ALU64 | BPF_MOD | BPF_X:
406 		switch (BPF_OP(code)) {
407 		case BPF_DIV:
408 			emit(A64_UDIV(is64, dst, dst, src), ctx);
409 			break;
410 		case BPF_MOD:
411 			emit(A64_UDIV(is64, tmp, dst, src), ctx);
412 			emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
413 			break;
414 		}
415 		break;
416 	case BPF_ALU | BPF_LSH | BPF_X:
417 	case BPF_ALU64 | BPF_LSH | BPF_X:
418 		emit(A64_LSLV(is64, dst, dst, src), ctx);
419 		break;
420 	case BPF_ALU | BPF_RSH | BPF_X:
421 	case BPF_ALU64 | BPF_RSH | BPF_X:
422 		emit(A64_LSRV(is64, dst, dst, src), ctx);
423 		break;
424 	case BPF_ALU | BPF_ARSH | BPF_X:
425 	case BPF_ALU64 | BPF_ARSH | BPF_X:
426 		emit(A64_ASRV(is64, dst, dst, src), ctx);
427 		break;
428 	/* dst = -dst */
429 	case BPF_ALU | BPF_NEG:
430 	case BPF_ALU64 | BPF_NEG:
431 		emit(A64_NEG(is64, dst, dst), ctx);
432 		break;
433 	/* dst = BSWAP##imm(dst) */
434 	case BPF_ALU | BPF_END | BPF_FROM_LE:
435 	case BPF_ALU | BPF_END | BPF_FROM_BE:
436 #ifdef CONFIG_CPU_BIG_ENDIAN
437 		if (BPF_SRC(code) == BPF_FROM_BE)
438 			goto emit_bswap_uxt;
439 #else /* !CONFIG_CPU_BIG_ENDIAN */
440 		if (BPF_SRC(code) == BPF_FROM_LE)
441 			goto emit_bswap_uxt;
442 #endif
443 		switch (imm) {
444 		case 16:
445 			emit(A64_REV16(is64, dst, dst), ctx);
446 			/* zero-extend 16 bits into 64 bits */
447 			emit(A64_UXTH(is64, dst, dst), ctx);
448 			break;
449 		case 32:
450 			emit(A64_REV32(is64, dst, dst), ctx);
451 			/* upper 32 bits already cleared */
452 			break;
453 		case 64:
454 			emit(A64_REV64(dst, dst), ctx);
455 			break;
456 		}
457 		break;
458 emit_bswap_uxt:
459 		switch (imm) {
460 		case 16:
461 			/* zero-extend 16 bits into 64 bits */
462 			emit(A64_UXTH(is64, dst, dst), ctx);
463 			break;
464 		case 32:
465 			/* zero-extend 32 bits into 64 bits */
466 			emit(A64_UXTW(is64, dst, dst), ctx);
467 			break;
468 		case 64:
469 			/* nop */
470 			break;
471 		}
472 		break;
473 	/* dst = imm */
474 	case BPF_ALU | BPF_MOV | BPF_K:
475 	case BPF_ALU64 | BPF_MOV | BPF_K:
476 		emit_a64_mov_i(is64, dst, imm, ctx);
477 		break;
478 	/* dst = dst OP imm */
479 	case BPF_ALU | BPF_ADD | BPF_K:
480 	case BPF_ALU64 | BPF_ADD | BPF_K:
481 		emit_a64_mov_i(is64, tmp, imm, ctx);
482 		emit(A64_ADD(is64, dst, dst, tmp), ctx);
483 		break;
484 	case BPF_ALU | BPF_SUB | BPF_K:
485 	case BPF_ALU64 | BPF_SUB | BPF_K:
486 		emit_a64_mov_i(is64, tmp, imm, ctx);
487 		emit(A64_SUB(is64, dst, dst, tmp), ctx);
488 		break;
489 	case BPF_ALU | BPF_AND | BPF_K:
490 	case BPF_ALU64 | BPF_AND | BPF_K:
491 		emit_a64_mov_i(is64, tmp, imm, ctx);
492 		emit(A64_AND(is64, dst, dst, tmp), ctx);
493 		break;
494 	case BPF_ALU | BPF_OR | BPF_K:
495 	case BPF_ALU64 | BPF_OR | BPF_K:
496 		emit_a64_mov_i(is64, tmp, imm, ctx);
497 		emit(A64_ORR(is64, dst, dst, tmp), ctx);
498 		break;
499 	case BPF_ALU | BPF_XOR | BPF_K:
500 	case BPF_ALU64 | BPF_XOR | BPF_K:
501 		emit_a64_mov_i(is64, tmp, imm, ctx);
502 		emit(A64_EOR(is64, dst, dst, tmp), ctx);
503 		break;
504 	case BPF_ALU | BPF_MUL | BPF_K:
505 	case BPF_ALU64 | BPF_MUL | BPF_K:
506 		emit_a64_mov_i(is64, tmp, imm, ctx);
507 		emit(A64_MUL(is64, dst, dst, tmp), ctx);
508 		break;
509 	case BPF_ALU | BPF_DIV | BPF_K:
510 	case BPF_ALU64 | BPF_DIV | BPF_K:
511 		emit_a64_mov_i(is64, tmp, imm, ctx);
512 		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
513 		break;
514 	case BPF_ALU | BPF_MOD | BPF_K:
515 	case BPF_ALU64 | BPF_MOD | BPF_K:
516 		emit_a64_mov_i(is64, tmp2, imm, ctx);
517 		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
518 		emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
519 		break;
520 	case BPF_ALU | BPF_LSH | BPF_K:
521 	case BPF_ALU64 | BPF_LSH | BPF_K:
522 		emit(A64_LSL(is64, dst, dst, imm), ctx);
523 		break;
524 	case BPF_ALU | BPF_RSH | BPF_K:
525 	case BPF_ALU64 | BPF_RSH | BPF_K:
526 		emit(A64_LSR(is64, dst, dst, imm), ctx);
527 		break;
528 	case BPF_ALU | BPF_ARSH | BPF_K:
529 	case BPF_ALU64 | BPF_ARSH | BPF_K:
530 		emit(A64_ASR(is64, dst, dst, imm), ctx);
531 		break;
532 
533 	/* JUMP off */
534 	case BPF_JMP | BPF_JA:
535 		jmp_offset = bpf2a64_offset(i + off, i, ctx);
536 		check_imm26(jmp_offset);
537 		emit(A64_B(jmp_offset), ctx);
538 		break;
539 	/* IF (dst COND src) JUMP off */
540 	case BPF_JMP | BPF_JEQ | BPF_X:
541 	case BPF_JMP | BPF_JGT | BPF_X:
542 	case BPF_JMP | BPF_JLT | BPF_X:
543 	case BPF_JMP | BPF_JGE | BPF_X:
544 	case BPF_JMP | BPF_JLE | BPF_X:
545 	case BPF_JMP | BPF_JNE | BPF_X:
546 	case BPF_JMP | BPF_JSGT | BPF_X:
547 	case BPF_JMP | BPF_JSLT | BPF_X:
548 	case BPF_JMP | BPF_JSGE | BPF_X:
549 	case BPF_JMP | BPF_JSLE | BPF_X:
550 	case BPF_JMP32 | BPF_JEQ | BPF_X:
551 	case BPF_JMP32 | BPF_JGT | BPF_X:
552 	case BPF_JMP32 | BPF_JLT | BPF_X:
553 	case BPF_JMP32 | BPF_JGE | BPF_X:
554 	case BPF_JMP32 | BPF_JLE | BPF_X:
555 	case BPF_JMP32 | BPF_JNE | BPF_X:
556 	case BPF_JMP32 | BPF_JSGT | BPF_X:
557 	case BPF_JMP32 | BPF_JSLT | BPF_X:
558 	case BPF_JMP32 | BPF_JSGE | BPF_X:
559 	case BPF_JMP32 | BPF_JSLE | BPF_X:
560 		emit(A64_CMP(is64, dst, src), ctx);
561 emit_cond_jmp:
562 		jmp_offset = bpf2a64_offset(i + off, i, ctx);
563 		check_imm19(jmp_offset);
564 		switch (BPF_OP(code)) {
565 		case BPF_JEQ:
566 			jmp_cond = A64_COND_EQ;
567 			break;
568 		case BPF_JGT:
569 			jmp_cond = A64_COND_HI;
570 			break;
571 		case BPF_JLT:
572 			jmp_cond = A64_COND_CC;
573 			break;
574 		case BPF_JGE:
575 			jmp_cond = A64_COND_CS;
576 			break;
577 		case BPF_JLE:
578 			jmp_cond = A64_COND_LS;
579 			break;
580 		case BPF_JSET:
581 		case BPF_JNE:
582 			jmp_cond = A64_COND_NE;
583 			break;
584 		case BPF_JSGT:
585 			jmp_cond = A64_COND_GT;
586 			break;
587 		case BPF_JSLT:
588 			jmp_cond = A64_COND_LT;
589 			break;
590 		case BPF_JSGE:
591 			jmp_cond = A64_COND_GE;
592 			break;
593 		case BPF_JSLE:
594 			jmp_cond = A64_COND_LE;
595 			break;
596 		default:
597 			return -EFAULT;
598 		}
599 		emit(A64_B_(jmp_cond, jmp_offset), ctx);
600 		break;
601 	case BPF_JMP | BPF_JSET | BPF_X:
602 	case BPF_JMP32 | BPF_JSET | BPF_X:
603 		emit(A64_TST(is64, dst, src), ctx);
604 		goto emit_cond_jmp;
605 	/* IF (dst COND imm) JUMP off */
606 	case BPF_JMP | BPF_JEQ | BPF_K:
607 	case BPF_JMP | BPF_JGT | BPF_K:
608 	case BPF_JMP | BPF_JLT | BPF_K:
609 	case BPF_JMP | BPF_JGE | BPF_K:
610 	case BPF_JMP | BPF_JLE | BPF_K:
611 	case BPF_JMP | BPF_JNE | BPF_K:
612 	case BPF_JMP | BPF_JSGT | BPF_K:
613 	case BPF_JMP | BPF_JSLT | BPF_K:
614 	case BPF_JMP | BPF_JSGE | BPF_K:
615 	case BPF_JMP | BPF_JSLE | BPF_K:
616 	case BPF_JMP32 | BPF_JEQ | BPF_K:
617 	case BPF_JMP32 | BPF_JGT | BPF_K:
618 	case BPF_JMP32 | BPF_JLT | BPF_K:
619 	case BPF_JMP32 | BPF_JGE | BPF_K:
620 	case BPF_JMP32 | BPF_JLE | BPF_K:
621 	case BPF_JMP32 | BPF_JNE | BPF_K:
622 	case BPF_JMP32 | BPF_JSGT | BPF_K:
623 	case BPF_JMP32 | BPF_JSLT | BPF_K:
624 	case BPF_JMP32 | BPF_JSGE | BPF_K:
625 	case BPF_JMP32 | BPF_JSLE | BPF_K:
626 		emit_a64_mov_i(is64, tmp, imm, ctx);
627 		emit(A64_CMP(is64, dst, tmp), ctx);
628 		goto emit_cond_jmp;
629 	case BPF_JMP | BPF_JSET | BPF_K:
630 	case BPF_JMP32 | BPF_JSET | BPF_K:
631 		emit_a64_mov_i(is64, tmp, imm, ctx);
632 		emit(A64_TST(is64, dst, tmp), ctx);
633 		goto emit_cond_jmp;
634 	/* function call */
635 	case BPF_JMP | BPF_CALL:
636 	{
637 		const u8 r0 = bpf2a64[BPF_REG_0];
638 		bool func_addr_fixed;
639 		u64 func_addr;
640 		int ret;
641 
642 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
643 					    &func_addr, &func_addr_fixed);
644 		if (ret < 0)
645 			return ret;
646 		emit_addr_mov_i64(tmp, func_addr, ctx);
647 		emit(A64_BLR(tmp), ctx);
648 		emit(A64_MOV(1, r0, A64_R(0)), ctx);
649 		break;
650 	}
651 	/* tail call */
652 	case BPF_JMP | BPF_TAIL_CALL:
653 		if (emit_bpf_tail_call(ctx))
654 			return -EFAULT;
655 		break;
656 	/* function return */
657 	case BPF_JMP | BPF_EXIT:
658 		/* Optimization: when last instruction is EXIT,
659 		   simply fallthrough to epilogue. */
660 		if (i == ctx->prog->len - 1)
661 			break;
662 		jmp_offset = epilogue_offset(ctx);
663 		check_imm26(jmp_offset);
664 		emit(A64_B(jmp_offset), ctx);
665 		break;
666 
667 	/* dst = imm64 */
668 	case BPF_LD | BPF_IMM | BPF_DW:
669 	{
670 		const struct bpf_insn insn1 = insn[1];
671 		u64 imm64;
672 
673 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
674 		emit_a64_mov_i64(dst, imm64, ctx);
675 
676 		return 1;
677 	}
678 
679 	/* LDX: dst = *(size *)(src + off) */
680 	case BPF_LDX | BPF_MEM | BPF_W:
681 	case BPF_LDX | BPF_MEM | BPF_H:
682 	case BPF_LDX | BPF_MEM | BPF_B:
683 	case BPF_LDX | BPF_MEM | BPF_DW:
684 		emit_a64_mov_i(1, tmp, off, ctx);
685 		switch (BPF_SIZE(code)) {
686 		case BPF_W:
687 			emit(A64_LDR32(dst, src, tmp), ctx);
688 			break;
689 		case BPF_H:
690 			emit(A64_LDRH(dst, src, tmp), ctx);
691 			break;
692 		case BPF_B:
693 			emit(A64_LDRB(dst, src, tmp), ctx);
694 			break;
695 		case BPF_DW:
696 			emit(A64_LDR64(dst, src, tmp), ctx);
697 			break;
698 		}
699 		break;
700 
701 	/* ST: *(size *)(dst + off) = imm */
702 	case BPF_ST | BPF_MEM | BPF_W:
703 	case BPF_ST | BPF_MEM | BPF_H:
704 	case BPF_ST | BPF_MEM | BPF_B:
705 	case BPF_ST | BPF_MEM | BPF_DW:
706 		/* Load imm to a register then store it */
707 		emit_a64_mov_i(1, tmp2, off, ctx);
708 		emit_a64_mov_i(1, tmp, imm, ctx);
709 		switch (BPF_SIZE(code)) {
710 		case BPF_W:
711 			emit(A64_STR32(tmp, dst, tmp2), ctx);
712 			break;
713 		case BPF_H:
714 			emit(A64_STRH(tmp, dst, tmp2), ctx);
715 			break;
716 		case BPF_B:
717 			emit(A64_STRB(tmp, dst, tmp2), ctx);
718 			break;
719 		case BPF_DW:
720 			emit(A64_STR64(tmp, dst, tmp2), ctx);
721 			break;
722 		}
723 		break;
724 
725 	/* STX: *(size *)(dst + off) = src */
726 	case BPF_STX | BPF_MEM | BPF_W:
727 	case BPF_STX | BPF_MEM | BPF_H:
728 	case BPF_STX | BPF_MEM | BPF_B:
729 	case BPF_STX | BPF_MEM | BPF_DW:
730 		emit_a64_mov_i(1, tmp, off, ctx);
731 		switch (BPF_SIZE(code)) {
732 		case BPF_W:
733 			emit(A64_STR32(src, dst, tmp), ctx);
734 			break;
735 		case BPF_H:
736 			emit(A64_STRH(src, dst, tmp), ctx);
737 			break;
738 		case BPF_B:
739 			emit(A64_STRB(src, dst, tmp), ctx);
740 			break;
741 		case BPF_DW:
742 			emit(A64_STR64(src, dst, tmp), ctx);
743 			break;
744 		}
745 		break;
746 
747 	/* STX XADD: lock *(u32 *)(dst + off) += src */
748 	case BPF_STX | BPF_XADD | BPF_W:
749 	/* STX XADD: lock *(u64 *)(dst + off) += src */
750 	case BPF_STX | BPF_XADD | BPF_DW:
751 		if (!off) {
752 			reg = dst;
753 		} else {
754 			emit_a64_mov_i(1, tmp, off, ctx);
755 			emit(A64_ADD(1, tmp, tmp, dst), ctx);
756 			reg = tmp;
757 		}
758 		if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) {
759 			emit(A64_STADD(isdw, reg, src), ctx);
760 		} else {
761 			emit(A64_LDXR(isdw, tmp2, reg), ctx);
762 			emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
763 			emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
764 			jmp_offset = -3;
765 			check_imm19(jmp_offset);
766 			emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
767 		}
768 		break;
769 
770 	default:
771 		pr_err_once("unknown opcode %02x\n", code);
772 		return -EINVAL;
773 	}
774 
775 	return 0;
776 }
777 
778 static int build_body(struct jit_ctx *ctx, bool extra_pass)
779 {
780 	const struct bpf_prog *prog = ctx->prog;
781 	int i;
782 
783 	for (i = 0; i < prog->len; i++) {
784 		const struct bpf_insn *insn = &prog->insnsi[i];
785 		int ret;
786 
787 		ret = build_insn(insn, ctx, extra_pass);
788 		if (ret > 0) {
789 			i++;
790 			if (ctx->image == NULL)
791 				ctx->offset[i] = ctx->idx;
792 			continue;
793 		}
794 		if (ctx->image == NULL)
795 			ctx->offset[i] = ctx->idx;
796 		if (ret)
797 			return ret;
798 	}
799 
800 	return 0;
801 }
802 
803 static int validate_code(struct jit_ctx *ctx)
804 {
805 	int i;
806 
807 	for (i = 0; i < ctx->idx; i++) {
808 		u32 a64_insn = le32_to_cpu(ctx->image[i]);
809 
810 		if (a64_insn == AARCH64_BREAK_FAULT)
811 			return -1;
812 	}
813 
814 	return 0;
815 }
816 
817 static inline void bpf_flush_icache(void *start, void *end)
818 {
819 	flush_icache_range((unsigned long)start, (unsigned long)end);
820 }
821 
822 struct arm64_jit_data {
823 	struct bpf_binary_header *header;
824 	u8 *image;
825 	struct jit_ctx ctx;
826 };
827 
828 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
829 {
830 	struct bpf_prog *tmp, *orig_prog = prog;
831 	struct bpf_binary_header *header;
832 	struct arm64_jit_data *jit_data;
833 	bool was_classic = bpf_prog_was_classic(prog);
834 	bool tmp_blinded = false;
835 	bool extra_pass = false;
836 	struct jit_ctx ctx;
837 	int image_size;
838 	u8 *image_ptr;
839 
840 	if (!prog->jit_requested)
841 		return orig_prog;
842 
843 	tmp = bpf_jit_blind_constants(prog);
844 	/* If blinding was requested and we failed during blinding,
845 	 * we must fall back to the interpreter.
846 	 */
847 	if (IS_ERR(tmp))
848 		return orig_prog;
849 	if (tmp != prog) {
850 		tmp_blinded = true;
851 		prog = tmp;
852 	}
853 
854 	jit_data = prog->aux->jit_data;
855 	if (!jit_data) {
856 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
857 		if (!jit_data) {
858 			prog = orig_prog;
859 			goto out;
860 		}
861 		prog->aux->jit_data = jit_data;
862 	}
863 	if (jit_data->ctx.offset) {
864 		ctx = jit_data->ctx;
865 		image_ptr = jit_data->image;
866 		header = jit_data->header;
867 		extra_pass = true;
868 		image_size = sizeof(u32) * ctx.idx;
869 		goto skip_init_ctx;
870 	}
871 	memset(&ctx, 0, sizeof(ctx));
872 	ctx.prog = prog;
873 
874 	ctx.offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
875 	if (ctx.offset == NULL) {
876 		prog = orig_prog;
877 		goto out_off;
878 	}
879 
880 	/* 1. Initial fake pass to compute ctx->idx. */
881 
882 	/* Fake pass to fill in ctx->offset. */
883 	if (build_body(&ctx, extra_pass)) {
884 		prog = orig_prog;
885 		goto out_off;
886 	}
887 
888 	if (build_prologue(&ctx, was_classic)) {
889 		prog = orig_prog;
890 		goto out_off;
891 	}
892 
893 	ctx.epilogue_offset = ctx.idx;
894 	build_epilogue(&ctx);
895 
896 	/* Now we know the actual image size. */
897 	image_size = sizeof(u32) * ctx.idx;
898 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
899 				      sizeof(u32), jit_fill_hole);
900 	if (header == NULL) {
901 		prog = orig_prog;
902 		goto out_off;
903 	}
904 
905 	/* 2. Now, the actual pass. */
906 
907 	ctx.image = (__le32 *)image_ptr;
908 skip_init_ctx:
909 	ctx.idx = 0;
910 
911 	build_prologue(&ctx, was_classic);
912 
913 	if (build_body(&ctx, extra_pass)) {
914 		bpf_jit_binary_free(header);
915 		prog = orig_prog;
916 		goto out_off;
917 	}
918 
919 	build_epilogue(&ctx);
920 
921 	/* 3. Extra pass to validate JITed code. */
922 	if (validate_code(&ctx)) {
923 		bpf_jit_binary_free(header);
924 		prog = orig_prog;
925 		goto out_off;
926 	}
927 
928 	/* And we're done. */
929 	if (bpf_jit_enable > 1)
930 		bpf_jit_dump(prog->len, image_size, 2, ctx.image);
931 
932 	bpf_flush_icache(header, ctx.image + ctx.idx);
933 
934 	if (!prog->is_func || extra_pass) {
935 		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
936 			pr_err_once("multi-func JIT bug %d != %d\n",
937 				    ctx.idx, jit_data->ctx.idx);
938 			bpf_jit_binary_free(header);
939 			prog->bpf_func = NULL;
940 			prog->jited = 0;
941 			goto out_off;
942 		}
943 		bpf_jit_binary_lock_ro(header);
944 	} else {
945 		jit_data->ctx = ctx;
946 		jit_data->image = image_ptr;
947 		jit_data->header = header;
948 	}
949 	prog->bpf_func = (void *)ctx.image;
950 	prog->jited = 1;
951 	prog->jited_len = image_size;
952 
953 	if (!prog->is_func || extra_pass) {
954 		bpf_prog_fill_jited_linfo(prog, ctx.offset);
955 out_off:
956 		kfree(ctx.offset);
957 		kfree(jit_data);
958 		prog->aux->jit_data = NULL;
959 	}
960 out:
961 	if (tmp_blinded)
962 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
963 					   tmp : orig_prog);
964 	return prog;
965 }
966 
967 void *bpf_jit_alloc_exec(unsigned long size)
968 {
969 	return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
970 				    BPF_JIT_REGION_END, GFP_KERNEL,
971 				    PAGE_KERNEL, 0, NUMA_NO_NODE,
972 				    __builtin_return_address(0));
973 }
974 
975 void bpf_jit_free_exec(void *addr)
976 {
977 	return vfree(addr);
978 }
979