xref: /openbmc/linux/arch/arm64/net/bpf_jit_comp.c (revision 53e8558837be58c1d44d50ad87247a8c56c95c13)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler for ARM64
4  *
5  * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
6  */
7 
8 #define pr_fmt(fmt) "bpf_jit: " fmt
9 
10 #include <linux/bitfield.h>
11 #include <linux/bpf.h>
12 #include <linux/filter.h>
13 #include <linux/printk.h>
14 #include <linux/slab.h>
15 
16 #include <asm/asm-extable.h>
17 #include <asm/byteorder.h>
18 #include <asm/cacheflush.h>
19 #include <asm/debug-monitors.h>
20 #include <asm/insn.h>
21 #include <asm/set_memory.h>
22 
23 #include "bpf_jit.h"
24 
25 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
26 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
27 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
28 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
29 
30 /* Map BPF registers to A64 registers */
31 static const int bpf2a64[] = {
32 	/* return value from in-kernel function, and exit value from eBPF */
33 	[BPF_REG_0] = A64_R(7),
34 	/* arguments from eBPF program to in-kernel function */
35 	[BPF_REG_1] = A64_R(0),
36 	[BPF_REG_2] = A64_R(1),
37 	[BPF_REG_3] = A64_R(2),
38 	[BPF_REG_4] = A64_R(3),
39 	[BPF_REG_5] = A64_R(4),
40 	/* callee saved registers that in-kernel function will preserve */
41 	[BPF_REG_6] = A64_R(19),
42 	[BPF_REG_7] = A64_R(20),
43 	[BPF_REG_8] = A64_R(21),
44 	[BPF_REG_9] = A64_R(22),
45 	/* read-only frame pointer to access stack */
46 	[BPF_REG_FP] = A64_R(25),
47 	/* temporary registers for internal BPF JIT */
48 	[TMP_REG_1] = A64_R(10),
49 	[TMP_REG_2] = A64_R(11),
50 	[TMP_REG_3] = A64_R(12),
51 	/* tail_call_cnt */
52 	[TCALL_CNT] = A64_R(26),
53 	/* temporary register for blinding constants */
54 	[BPF_REG_AX] = A64_R(9),
55 };
56 
57 struct jit_ctx {
58 	const struct bpf_prog *prog;
59 	int idx;
60 	int epilogue_offset;
61 	int *offset;
62 	int exentry_idx;
63 	__le32 *image;
64 	u32 stack_size;
65 };
66 
67 static inline void emit(const u32 insn, struct jit_ctx *ctx)
68 {
69 	if (ctx->image != NULL)
70 		ctx->image[ctx->idx] = cpu_to_le32(insn);
71 
72 	ctx->idx++;
73 }
74 
75 static inline void emit_a64_mov_i(const int is64, const int reg,
76 				  const s32 val, struct jit_ctx *ctx)
77 {
78 	u16 hi = val >> 16;
79 	u16 lo = val & 0xffff;
80 
81 	if (hi & 0x8000) {
82 		if (hi == 0xffff) {
83 			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
84 		} else {
85 			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
86 			if (lo != 0xffff)
87 				emit(A64_MOVK(is64, reg, lo, 0), ctx);
88 		}
89 	} else {
90 		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
91 		if (hi)
92 			emit(A64_MOVK(is64, reg, hi, 16), ctx);
93 	}
94 }
95 
96 static int i64_i16_blocks(const u64 val, bool inverse)
97 {
98 	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
99 	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
100 	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
101 	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
102 }
103 
104 static inline void emit_a64_mov_i64(const int reg, const u64 val,
105 				    struct jit_ctx *ctx)
106 {
107 	u64 nrm_tmp = val, rev_tmp = ~val;
108 	bool inverse;
109 	int shift;
110 
111 	if (!(nrm_tmp >> 32))
112 		return emit_a64_mov_i(0, reg, (u32)val, ctx);
113 
114 	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
115 	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
116 					  (fls64(nrm_tmp) - 1)), 16), 0);
117 	if (inverse)
118 		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
119 	else
120 		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
121 	shift -= 16;
122 	while (shift >= 0) {
123 		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
124 			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
125 		shift -= 16;
126 	}
127 }
128 
129 /*
130  * Kernel addresses in the vmalloc space use at most 48 bits, and the
131  * remaining bits are guaranteed to be 0x1. So we can compose the address
132  * with a fixed length movn/movk/movk sequence.
133  */
134 static inline void emit_addr_mov_i64(const int reg, const u64 val,
135 				     struct jit_ctx *ctx)
136 {
137 	u64 tmp = val;
138 	int shift = 0;
139 
140 	emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
141 	while (shift < 32) {
142 		tmp >>= 16;
143 		shift += 16;
144 		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
145 	}
146 }
147 
148 static inline int bpf2a64_offset(int bpf_insn, int off,
149 				 const struct jit_ctx *ctx)
150 {
151 	/* BPF JMP offset is relative to the next instruction */
152 	bpf_insn++;
153 	/*
154 	 * Whereas arm64 branch instructions encode the offset
155 	 * from the branch itself, so we must subtract 1 from the
156 	 * instruction offset.
157 	 */
158 	return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
159 }
160 
161 static void jit_fill_hole(void *area, unsigned int size)
162 {
163 	__le32 *ptr;
164 	/* We are guaranteed to have aligned memory. */
165 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
166 		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
167 }
168 
169 static inline int epilogue_offset(const struct jit_ctx *ctx)
170 {
171 	int to = ctx->epilogue_offset;
172 	int from = ctx->idx;
173 
174 	return to - from;
175 }
176 
177 static bool is_addsub_imm(u32 imm)
178 {
179 	/* Either imm12 or shifted imm12. */
180 	return !(imm & ~0xfff) || !(imm & ~0xfff000);
181 }
182 
183 /* Tail call offset to jump into */
184 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
185 #define PROLOGUE_OFFSET 8
186 #else
187 #define PROLOGUE_OFFSET 7
188 #endif
189 
190 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
191 {
192 	const struct bpf_prog *prog = ctx->prog;
193 	const u8 r6 = bpf2a64[BPF_REG_6];
194 	const u8 r7 = bpf2a64[BPF_REG_7];
195 	const u8 r8 = bpf2a64[BPF_REG_8];
196 	const u8 r9 = bpf2a64[BPF_REG_9];
197 	const u8 fp = bpf2a64[BPF_REG_FP];
198 	const u8 tcc = bpf2a64[TCALL_CNT];
199 	const int idx0 = ctx->idx;
200 	int cur_offset;
201 
202 	/*
203 	 * BPF prog stack layout
204 	 *
205 	 *                         high
206 	 * original A64_SP =>   0:+-----+ BPF prologue
207 	 *                        |FP/LR|
208 	 * current A64_FP =>  -16:+-----+
209 	 *                        | ... | callee saved registers
210 	 * BPF fp register => -64:+-----+ <= (BPF_FP)
211 	 *                        |     |
212 	 *                        | ... | BPF prog stack
213 	 *                        |     |
214 	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
215 	 *                        |RSVD | padding
216 	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
217 	 *                        |     |
218 	 *                        | ... | Function call stack
219 	 *                        |     |
220 	 *                        +-----+
221 	 *                          low
222 	 *
223 	 */
224 
225 	/* BTI landing pad */
226 	if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
227 		emit(A64_BTI_C, ctx);
228 
229 	/* Save FP and LR registers to stay align with ARM64 AAPCS */
230 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
231 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
232 
233 	/* Save callee-saved registers */
234 	emit(A64_PUSH(r6, r7, A64_SP), ctx);
235 	emit(A64_PUSH(r8, r9, A64_SP), ctx);
236 	emit(A64_PUSH(fp, tcc, A64_SP), ctx);
237 
238 	/* Set up BPF prog stack base register */
239 	emit(A64_MOV(1, fp, A64_SP), ctx);
240 
241 	if (!ebpf_from_cbpf) {
242 		/* Initialize tail_call_cnt */
243 		emit(A64_MOVZ(1, tcc, 0, 0), ctx);
244 
245 		cur_offset = ctx->idx - idx0;
246 		if (cur_offset != PROLOGUE_OFFSET) {
247 			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
248 				    cur_offset, PROLOGUE_OFFSET);
249 			return -1;
250 		}
251 
252 		/* BTI landing pad for the tail call, done with a BR */
253 		if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
254 			emit(A64_BTI_J, ctx);
255 	}
256 
257 	/* Stack must be multiples of 16B */
258 	ctx->stack_size = round_up(prog->aux->stack_depth, 16);
259 
260 	/* Set up function call stack */
261 	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
262 	return 0;
263 }
264 
265 static int out_offset = -1; /* initialized on the first pass of build_body() */
266 static int emit_bpf_tail_call(struct jit_ctx *ctx)
267 {
268 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
269 	const u8 r2 = bpf2a64[BPF_REG_2];
270 	const u8 r3 = bpf2a64[BPF_REG_3];
271 
272 	const u8 tmp = bpf2a64[TMP_REG_1];
273 	const u8 prg = bpf2a64[TMP_REG_2];
274 	const u8 tcc = bpf2a64[TCALL_CNT];
275 	const int idx0 = ctx->idx;
276 #define cur_offset (ctx->idx - idx0)
277 #define jmp_offset (out_offset - (cur_offset))
278 	size_t off;
279 
280 	/* if (index >= array->map.max_entries)
281 	 *     goto out;
282 	 */
283 	off = offsetof(struct bpf_array, map.max_entries);
284 	emit_a64_mov_i64(tmp, off, ctx);
285 	emit(A64_LDR32(tmp, r2, tmp), ctx);
286 	emit(A64_MOV(0, r3, r3), ctx);
287 	emit(A64_CMP(0, r3, tmp), ctx);
288 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
289 
290 	/* if (tail_call_cnt > MAX_TAIL_CALL_CNT)
291 	 *     goto out;
292 	 * tail_call_cnt++;
293 	 */
294 	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
295 	emit(A64_CMP(1, tcc, tmp), ctx);
296 	emit(A64_B_(A64_COND_HI, jmp_offset), ctx);
297 	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
298 
299 	/* prog = array->ptrs[index];
300 	 * if (prog == NULL)
301 	 *     goto out;
302 	 */
303 	off = offsetof(struct bpf_array, ptrs);
304 	emit_a64_mov_i64(tmp, off, ctx);
305 	emit(A64_ADD(1, tmp, r2, tmp), ctx);
306 	emit(A64_LSL(1, prg, r3, 3), ctx);
307 	emit(A64_LDR64(prg, tmp, prg), ctx);
308 	emit(A64_CBZ(1, prg, jmp_offset), ctx);
309 
310 	/* goto *(prog->bpf_func + prologue_offset); */
311 	off = offsetof(struct bpf_prog, bpf_func);
312 	emit_a64_mov_i64(tmp, off, ctx);
313 	emit(A64_LDR64(tmp, prg, tmp), ctx);
314 	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
315 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
316 	emit(A64_BR(tmp), ctx);
317 
318 	/* out: */
319 	if (out_offset == -1)
320 		out_offset = cur_offset;
321 	if (cur_offset != out_offset) {
322 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
323 			    cur_offset, out_offset);
324 		return -1;
325 	}
326 	return 0;
327 #undef cur_offset
328 #undef jmp_offset
329 }
330 
331 static void build_epilogue(struct jit_ctx *ctx)
332 {
333 	const u8 r0 = bpf2a64[BPF_REG_0];
334 	const u8 r6 = bpf2a64[BPF_REG_6];
335 	const u8 r7 = bpf2a64[BPF_REG_7];
336 	const u8 r8 = bpf2a64[BPF_REG_8];
337 	const u8 r9 = bpf2a64[BPF_REG_9];
338 	const u8 fp = bpf2a64[BPF_REG_FP];
339 
340 	/* We're done with BPF stack */
341 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
342 
343 	/* Restore fs (x25) and x26 */
344 	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
345 
346 	/* Restore callee-saved register */
347 	emit(A64_POP(r8, r9, A64_SP), ctx);
348 	emit(A64_POP(r6, r7, A64_SP), ctx);
349 
350 	/* Restore FP/LR registers */
351 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
352 
353 	/* Set return value */
354 	emit(A64_MOV(1, A64_R(0), r0), ctx);
355 
356 	emit(A64_RET(A64_LR), ctx);
357 }
358 
359 #define BPF_FIXUP_OFFSET_MASK	GENMASK(26, 0)
360 #define BPF_FIXUP_REG_MASK	GENMASK(31, 27)
361 
362 bool ex_handler_bpf(const struct exception_table_entry *ex,
363 		    struct pt_regs *regs)
364 {
365 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
366 	int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
367 
368 	regs->regs[dst_reg] = 0;
369 	regs->pc = (unsigned long)&ex->fixup - offset;
370 	return true;
371 }
372 
373 /* For accesses to BTF pointers, add an entry to the exception table */
374 static int add_exception_handler(const struct bpf_insn *insn,
375 				 struct jit_ctx *ctx,
376 				 int dst_reg)
377 {
378 	off_t offset;
379 	unsigned long pc;
380 	struct exception_table_entry *ex;
381 
382 	if (!ctx->image)
383 		/* First pass */
384 		return 0;
385 
386 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM)
387 		return 0;
388 
389 	if (!ctx->prog->aux->extable ||
390 	    WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
391 		return -EINVAL;
392 
393 	ex = &ctx->prog->aux->extable[ctx->exentry_idx];
394 	pc = (unsigned long)&ctx->image[ctx->idx - 1];
395 
396 	offset = pc - (long)&ex->insn;
397 	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
398 		return -ERANGE;
399 	ex->insn = offset;
400 
401 	/*
402 	 * Since the extable follows the program, the fixup offset is always
403 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
404 	 * to keep things simple, and put the destination register in the upper
405 	 * bits. We don't need to worry about buildtime or runtime sort
406 	 * modifying the upper bits because the table is already sorted, and
407 	 * isn't part of the main exception table.
408 	 */
409 	offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE);
410 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, offset))
411 		return -ERANGE;
412 
413 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, offset) |
414 		    FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
415 
416 	ex->type = EX_TYPE_BPF;
417 
418 	ctx->exentry_idx++;
419 	return 0;
420 }
421 
422 /* JITs an eBPF instruction.
423  * Returns:
424  * 0  - successfully JITed an 8-byte eBPF instruction.
425  * >0 - successfully JITed a 16-byte eBPF instruction.
426  * <0 - failed to JIT.
427  */
428 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
429 		      bool extra_pass)
430 {
431 	const u8 code = insn->code;
432 	const u8 dst = bpf2a64[insn->dst_reg];
433 	const u8 src = bpf2a64[insn->src_reg];
434 	const u8 tmp = bpf2a64[TMP_REG_1];
435 	const u8 tmp2 = bpf2a64[TMP_REG_2];
436 	const u8 tmp3 = bpf2a64[TMP_REG_3];
437 	const s16 off = insn->off;
438 	const s32 imm = insn->imm;
439 	const int i = insn - ctx->prog->insnsi;
440 	const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
441 			  BPF_CLASS(code) == BPF_JMP;
442 	const bool isdw = BPF_SIZE(code) == BPF_DW;
443 	u8 jmp_cond, reg;
444 	s32 jmp_offset;
445 	u32 a64_insn;
446 	int ret;
447 
448 #define check_imm(bits, imm) do {				\
449 	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
450 	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
451 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
452 			i, imm, imm);				\
453 		return -EINVAL;					\
454 	}							\
455 } while (0)
456 #define check_imm19(imm) check_imm(19, imm)
457 #define check_imm26(imm) check_imm(26, imm)
458 
459 	switch (code) {
460 	/* dst = src */
461 	case BPF_ALU | BPF_MOV | BPF_X:
462 	case BPF_ALU64 | BPF_MOV | BPF_X:
463 		emit(A64_MOV(is64, dst, src), ctx);
464 		break;
465 	/* dst = dst OP src */
466 	case BPF_ALU | BPF_ADD | BPF_X:
467 	case BPF_ALU64 | BPF_ADD | BPF_X:
468 		emit(A64_ADD(is64, dst, dst, src), ctx);
469 		break;
470 	case BPF_ALU | BPF_SUB | BPF_X:
471 	case BPF_ALU64 | BPF_SUB | BPF_X:
472 		emit(A64_SUB(is64, dst, dst, src), ctx);
473 		break;
474 	case BPF_ALU | BPF_AND | BPF_X:
475 	case BPF_ALU64 | BPF_AND | BPF_X:
476 		emit(A64_AND(is64, dst, dst, src), ctx);
477 		break;
478 	case BPF_ALU | BPF_OR | BPF_X:
479 	case BPF_ALU64 | BPF_OR | BPF_X:
480 		emit(A64_ORR(is64, dst, dst, src), ctx);
481 		break;
482 	case BPF_ALU | BPF_XOR | BPF_X:
483 	case BPF_ALU64 | BPF_XOR | BPF_X:
484 		emit(A64_EOR(is64, dst, dst, src), ctx);
485 		break;
486 	case BPF_ALU | BPF_MUL | BPF_X:
487 	case BPF_ALU64 | BPF_MUL | BPF_X:
488 		emit(A64_MUL(is64, dst, dst, src), ctx);
489 		break;
490 	case BPF_ALU | BPF_DIV | BPF_X:
491 	case BPF_ALU64 | BPF_DIV | BPF_X:
492 		emit(A64_UDIV(is64, dst, dst, src), ctx);
493 		break;
494 	case BPF_ALU | BPF_MOD | BPF_X:
495 	case BPF_ALU64 | BPF_MOD | BPF_X:
496 		emit(A64_UDIV(is64, tmp, dst, src), ctx);
497 		emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
498 		break;
499 	case BPF_ALU | BPF_LSH | BPF_X:
500 	case BPF_ALU64 | BPF_LSH | BPF_X:
501 		emit(A64_LSLV(is64, dst, dst, src), ctx);
502 		break;
503 	case BPF_ALU | BPF_RSH | BPF_X:
504 	case BPF_ALU64 | BPF_RSH | BPF_X:
505 		emit(A64_LSRV(is64, dst, dst, src), ctx);
506 		break;
507 	case BPF_ALU | BPF_ARSH | BPF_X:
508 	case BPF_ALU64 | BPF_ARSH | BPF_X:
509 		emit(A64_ASRV(is64, dst, dst, src), ctx);
510 		break;
511 	/* dst = -dst */
512 	case BPF_ALU | BPF_NEG:
513 	case BPF_ALU64 | BPF_NEG:
514 		emit(A64_NEG(is64, dst, dst), ctx);
515 		break;
516 	/* dst = BSWAP##imm(dst) */
517 	case BPF_ALU | BPF_END | BPF_FROM_LE:
518 	case BPF_ALU | BPF_END | BPF_FROM_BE:
519 #ifdef CONFIG_CPU_BIG_ENDIAN
520 		if (BPF_SRC(code) == BPF_FROM_BE)
521 			goto emit_bswap_uxt;
522 #else /* !CONFIG_CPU_BIG_ENDIAN */
523 		if (BPF_SRC(code) == BPF_FROM_LE)
524 			goto emit_bswap_uxt;
525 #endif
526 		switch (imm) {
527 		case 16:
528 			emit(A64_REV16(is64, dst, dst), ctx);
529 			/* zero-extend 16 bits into 64 bits */
530 			emit(A64_UXTH(is64, dst, dst), ctx);
531 			break;
532 		case 32:
533 			emit(A64_REV32(is64, dst, dst), ctx);
534 			/* upper 32 bits already cleared */
535 			break;
536 		case 64:
537 			emit(A64_REV64(dst, dst), ctx);
538 			break;
539 		}
540 		break;
541 emit_bswap_uxt:
542 		switch (imm) {
543 		case 16:
544 			/* zero-extend 16 bits into 64 bits */
545 			emit(A64_UXTH(is64, dst, dst), ctx);
546 			break;
547 		case 32:
548 			/* zero-extend 32 bits into 64 bits */
549 			emit(A64_UXTW(is64, dst, dst), ctx);
550 			break;
551 		case 64:
552 			/* nop */
553 			break;
554 		}
555 		break;
556 	/* dst = imm */
557 	case BPF_ALU | BPF_MOV | BPF_K:
558 	case BPF_ALU64 | BPF_MOV | BPF_K:
559 		emit_a64_mov_i(is64, dst, imm, ctx);
560 		break;
561 	/* dst = dst OP imm */
562 	case BPF_ALU | BPF_ADD | BPF_K:
563 	case BPF_ALU64 | BPF_ADD | BPF_K:
564 		if (is_addsub_imm(imm)) {
565 			emit(A64_ADD_I(is64, dst, dst, imm), ctx);
566 		} else if (is_addsub_imm(-imm)) {
567 			emit(A64_SUB_I(is64, dst, dst, -imm), ctx);
568 		} else {
569 			emit_a64_mov_i(is64, tmp, imm, ctx);
570 			emit(A64_ADD(is64, dst, dst, tmp), ctx);
571 		}
572 		break;
573 	case BPF_ALU | BPF_SUB | BPF_K:
574 	case BPF_ALU64 | BPF_SUB | BPF_K:
575 		if (is_addsub_imm(imm)) {
576 			emit(A64_SUB_I(is64, dst, dst, imm), ctx);
577 		} else if (is_addsub_imm(-imm)) {
578 			emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
579 		} else {
580 			emit_a64_mov_i(is64, tmp, imm, ctx);
581 			emit(A64_SUB(is64, dst, dst, tmp), ctx);
582 		}
583 		break;
584 	case BPF_ALU | BPF_AND | BPF_K:
585 	case BPF_ALU64 | BPF_AND | BPF_K:
586 		a64_insn = A64_AND_I(is64, dst, dst, imm);
587 		if (a64_insn != AARCH64_BREAK_FAULT) {
588 			emit(a64_insn, ctx);
589 		} else {
590 			emit_a64_mov_i(is64, tmp, imm, ctx);
591 			emit(A64_AND(is64, dst, dst, tmp), ctx);
592 		}
593 		break;
594 	case BPF_ALU | BPF_OR | BPF_K:
595 	case BPF_ALU64 | BPF_OR | BPF_K:
596 		a64_insn = A64_ORR_I(is64, dst, dst, imm);
597 		if (a64_insn != AARCH64_BREAK_FAULT) {
598 			emit(a64_insn, ctx);
599 		} else {
600 			emit_a64_mov_i(is64, tmp, imm, ctx);
601 			emit(A64_ORR(is64, dst, dst, tmp), ctx);
602 		}
603 		break;
604 	case BPF_ALU | BPF_XOR | BPF_K:
605 	case BPF_ALU64 | BPF_XOR | BPF_K:
606 		a64_insn = A64_EOR_I(is64, dst, dst, imm);
607 		if (a64_insn != AARCH64_BREAK_FAULT) {
608 			emit(a64_insn, ctx);
609 		} else {
610 			emit_a64_mov_i(is64, tmp, imm, ctx);
611 			emit(A64_EOR(is64, dst, dst, tmp), ctx);
612 		}
613 		break;
614 	case BPF_ALU | BPF_MUL | BPF_K:
615 	case BPF_ALU64 | BPF_MUL | BPF_K:
616 		emit_a64_mov_i(is64, tmp, imm, ctx);
617 		emit(A64_MUL(is64, dst, dst, tmp), ctx);
618 		break;
619 	case BPF_ALU | BPF_DIV | BPF_K:
620 	case BPF_ALU64 | BPF_DIV | BPF_K:
621 		emit_a64_mov_i(is64, tmp, imm, ctx);
622 		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
623 		break;
624 	case BPF_ALU | BPF_MOD | BPF_K:
625 	case BPF_ALU64 | BPF_MOD | BPF_K:
626 		emit_a64_mov_i(is64, tmp2, imm, ctx);
627 		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
628 		emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
629 		break;
630 	case BPF_ALU | BPF_LSH | BPF_K:
631 	case BPF_ALU64 | BPF_LSH | BPF_K:
632 		emit(A64_LSL(is64, dst, dst, imm), ctx);
633 		break;
634 	case BPF_ALU | BPF_RSH | BPF_K:
635 	case BPF_ALU64 | BPF_RSH | BPF_K:
636 		emit(A64_LSR(is64, dst, dst, imm), ctx);
637 		break;
638 	case BPF_ALU | BPF_ARSH | BPF_K:
639 	case BPF_ALU64 | BPF_ARSH | BPF_K:
640 		emit(A64_ASR(is64, dst, dst, imm), ctx);
641 		break;
642 
643 	/* JUMP off */
644 	case BPF_JMP | BPF_JA:
645 		jmp_offset = bpf2a64_offset(i, off, ctx);
646 		check_imm26(jmp_offset);
647 		emit(A64_B(jmp_offset), ctx);
648 		break;
649 	/* IF (dst COND src) JUMP off */
650 	case BPF_JMP | BPF_JEQ | BPF_X:
651 	case BPF_JMP | BPF_JGT | BPF_X:
652 	case BPF_JMP | BPF_JLT | BPF_X:
653 	case BPF_JMP | BPF_JGE | BPF_X:
654 	case BPF_JMP | BPF_JLE | BPF_X:
655 	case BPF_JMP | BPF_JNE | BPF_X:
656 	case BPF_JMP | BPF_JSGT | BPF_X:
657 	case BPF_JMP | BPF_JSLT | BPF_X:
658 	case BPF_JMP | BPF_JSGE | BPF_X:
659 	case BPF_JMP | BPF_JSLE | BPF_X:
660 	case BPF_JMP32 | BPF_JEQ | BPF_X:
661 	case BPF_JMP32 | BPF_JGT | BPF_X:
662 	case BPF_JMP32 | BPF_JLT | BPF_X:
663 	case BPF_JMP32 | BPF_JGE | BPF_X:
664 	case BPF_JMP32 | BPF_JLE | BPF_X:
665 	case BPF_JMP32 | BPF_JNE | BPF_X:
666 	case BPF_JMP32 | BPF_JSGT | BPF_X:
667 	case BPF_JMP32 | BPF_JSLT | BPF_X:
668 	case BPF_JMP32 | BPF_JSGE | BPF_X:
669 	case BPF_JMP32 | BPF_JSLE | BPF_X:
670 		emit(A64_CMP(is64, dst, src), ctx);
671 emit_cond_jmp:
672 		jmp_offset = bpf2a64_offset(i, off, ctx);
673 		check_imm19(jmp_offset);
674 		switch (BPF_OP(code)) {
675 		case BPF_JEQ:
676 			jmp_cond = A64_COND_EQ;
677 			break;
678 		case BPF_JGT:
679 			jmp_cond = A64_COND_HI;
680 			break;
681 		case BPF_JLT:
682 			jmp_cond = A64_COND_CC;
683 			break;
684 		case BPF_JGE:
685 			jmp_cond = A64_COND_CS;
686 			break;
687 		case BPF_JLE:
688 			jmp_cond = A64_COND_LS;
689 			break;
690 		case BPF_JSET:
691 		case BPF_JNE:
692 			jmp_cond = A64_COND_NE;
693 			break;
694 		case BPF_JSGT:
695 			jmp_cond = A64_COND_GT;
696 			break;
697 		case BPF_JSLT:
698 			jmp_cond = A64_COND_LT;
699 			break;
700 		case BPF_JSGE:
701 			jmp_cond = A64_COND_GE;
702 			break;
703 		case BPF_JSLE:
704 			jmp_cond = A64_COND_LE;
705 			break;
706 		default:
707 			return -EFAULT;
708 		}
709 		emit(A64_B_(jmp_cond, jmp_offset), ctx);
710 		break;
711 	case BPF_JMP | BPF_JSET | BPF_X:
712 	case BPF_JMP32 | BPF_JSET | BPF_X:
713 		emit(A64_TST(is64, dst, src), ctx);
714 		goto emit_cond_jmp;
715 	/* IF (dst COND imm) JUMP off */
716 	case BPF_JMP | BPF_JEQ | BPF_K:
717 	case BPF_JMP | BPF_JGT | BPF_K:
718 	case BPF_JMP | BPF_JLT | BPF_K:
719 	case BPF_JMP | BPF_JGE | BPF_K:
720 	case BPF_JMP | BPF_JLE | BPF_K:
721 	case BPF_JMP | BPF_JNE | BPF_K:
722 	case BPF_JMP | BPF_JSGT | BPF_K:
723 	case BPF_JMP | BPF_JSLT | BPF_K:
724 	case BPF_JMP | BPF_JSGE | BPF_K:
725 	case BPF_JMP | BPF_JSLE | BPF_K:
726 	case BPF_JMP32 | BPF_JEQ | BPF_K:
727 	case BPF_JMP32 | BPF_JGT | BPF_K:
728 	case BPF_JMP32 | BPF_JLT | BPF_K:
729 	case BPF_JMP32 | BPF_JGE | BPF_K:
730 	case BPF_JMP32 | BPF_JLE | BPF_K:
731 	case BPF_JMP32 | BPF_JNE | BPF_K:
732 	case BPF_JMP32 | BPF_JSGT | BPF_K:
733 	case BPF_JMP32 | BPF_JSLT | BPF_K:
734 	case BPF_JMP32 | BPF_JSGE | BPF_K:
735 	case BPF_JMP32 | BPF_JSLE | BPF_K:
736 		if (is_addsub_imm(imm)) {
737 			emit(A64_CMP_I(is64, dst, imm), ctx);
738 		} else if (is_addsub_imm(-imm)) {
739 			emit(A64_CMN_I(is64, dst, -imm), ctx);
740 		} else {
741 			emit_a64_mov_i(is64, tmp, imm, ctx);
742 			emit(A64_CMP(is64, dst, tmp), ctx);
743 		}
744 		goto emit_cond_jmp;
745 	case BPF_JMP | BPF_JSET | BPF_K:
746 	case BPF_JMP32 | BPF_JSET | BPF_K:
747 		a64_insn = A64_TST_I(is64, dst, imm);
748 		if (a64_insn != AARCH64_BREAK_FAULT) {
749 			emit(a64_insn, ctx);
750 		} else {
751 			emit_a64_mov_i(is64, tmp, imm, ctx);
752 			emit(A64_TST(is64, dst, tmp), ctx);
753 		}
754 		goto emit_cond_jmp;
755 	/* function call */
756 	case BPF_JMP | BPF_CALL:
757 	{
758 		const u8 r0 = bpf2a64[BPF_REG_0];
759 		bool func_addr_fixed;
760 		u64 func_addr;
761 
762 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
763 					    &func_addr, &func_addr_fixed);
764 		if (ret < 0)
765 			return ret;
766 		emit_addr_mov_i64(tmp, func_addr, ctx);
767 		emit(A64_BLR(tmp), ctx);
768 		emit(A64_MOV(1, r0, A64_R(0)), ctx);
769 		break;
770 	}
771 	/* tail call */
772 	case BPF_JMP | BPF_TAIL_CALL:
773 		if (emit_bpf_tail_call(ctx))
774 			return -EFAULT;
775 		break;
776 	/* function return */
777 	case BPF_JMP | BPF_EXIT:
778 		/* Optimization: when last instruction is EXIT,
779 		   simply fallthrough to epilogue. */
780 		if (i == ctx->prog->len - 1)
781 			break;
782 		jmp_offset = epilogue_offset(ctx);
783 		check_imm26(jmp_offset);
784 		emit(A64_B(jmp_offset), ctx);
785 		break;
786 
787 	/* dst = imm64 */
788 	case BPF_LD | BPF_IMM | BPF_DW:
789 	{
790 		const struct bpf_insn insn1 = insn[1];
791 		u64 imm64;
792 
793 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
794 		emit_a64_mov_i64(dst, imm64, ctx);
795 
796 		return 1;
797 	}
798 
799 	/* LDX: dst = *(size *)(src + off) */
800 	case BPF_LDX | BPF_MEM | BPF_W:
801 	case BPF_LDX | BPF_MEM | BPF_H:
802 	case BPF_LDX | BPF_MEM | BPF_B:
803 	case BPF_LDX | BPF_MEM | BPF_DW:
804 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
805 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
806 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
807 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
808 		emit_a64_mov_i(1, tmp, off, ctx);
809 		switch (BPF_SIZE(code)) {
810 		case BPF_W:
811 			emit(A64_LDR32(dst, src, tmp), ctx);
812 			break;
813 		case BPF_H:
814 			emit(A64_LDRH(dst, src, tmp), ctx);
815 			break;
816 		case BPF_B:
817 			emit(A64_LDRB(dst, src, tmp), ctx);
818 			break;
819 		case BPF_DW:
820 			emit(A64_LDR64(dst, src, tmp), ctx);
821 			break;
822 		}
823 
824 		ret = add_exception_handler(insn, ctx, dst);
825 		if (ret)
826 			return ret;
827 		break;
828 
829 	/* speculation barrier */
830 	case BPF_ST | BPF_NOSPEC:
831 		/*
832 		 * Nothing required here.
833 		 *
834 		 * In case of arm64, we rely on the firmware mitigation of
835 		 * Speculative Store Bypass as controlled via the ssbd kernel
836 		 * parameter. Whenever the mitigation is enabled, it works
837 		 * for all of the kernel code with no need to provide any
838 		 * additional instructions.
839 		 */
840 		break;
841 
842 	/* ST: *(size *)(dst + off) = imm */
843 	case BPF_ST | BPF_MEM | BPF_W:
844 	case BPF_ST | BPF_MEM | BPF_H:
845 	case BPF_ST | BPF_MEM | BPF_B:
846 	case BPF_ST | BPF_MEM | BPF_DW:
847 		/* Load imm to a register then store it */
848 		emit_a64_mov_i(1, tmp2, off, ctx);
849 		emit_a64_mov_i(1, tmp, imm, ctx);
850 		switch (BPF_SIZE(code)) {
851 		case BPF_W:
852 			emit(A64_STR32(tmp, dst, tmp2), ctx);
853 			break;
854 		case BPF_H:
855 			emit(A64_STRH(tmp, dst, tmp2), ctx);
856 			break;
857 		case BPF_B:
858 			emit(A64_STRB(tmp, dst, tmp2), ctx);
859 			break;
860 		case BPF_DW:
861 			emit(A64_STR64(tmp, dst, tmp2), ctx);
862 			break;
863 		}
864 		break;
865 
866 	/* STX: *(size *)(dst + off) = src */
867 	case BPF_STX | BPF_MEM | BPF_W:
868 	case BPF_STX | BPF_MEM | BPF_H:
869 	case BPF_STX | BPF_MEM | BPF_B:
870 	case BPF_STX | BPF_MEM | BPF_DW:
871 		emit_a64_mov_i(1, tmp, off, ctx);
872 		switch (BPF_SIZE(code)) {
873 		case BPF_W:
874 			emit(A64_STR32(src, dst, tmp), ctx);
875 			break;
876 		case BPF_H:
877 			emit(A64_STRH(src, dst, tmp), ctx);
878 			break;
879 		case BPF_B:
880 			emit(A64_STRB(src, dst, tmp), ctx);
881 			break;
882 		case BPF_DW:
883 			emit(A64_STR64(src, dst, tmp), ctx);
884 			break;
885 		}
886 		break;
887 
888 	case BPF_STX | BPF_ATOMIC | BPF_W:
889 	case BPF_STX | BPF_ATOMIC | BPF_DW:
890 		if (insn->imm != BPF_ADD) {
891 			pr_err_once("unknown atomic op code %02x\n", insn->imm);
892 			return -EINVAL;
893 		}
894 
895 		/* STX XADD: lock *(u32 *)(dst + off) += src
896 		 * and
897 		 * STX XADD: lock *(u64 *)(dst + off) += src
898 		 */
899 
900 		if (!off) {
901 			reg = dst;
902 		} else {
903 			emit_a64_mov_i(1, tmp, off, ctx);
904 			emit(A64_ADD(1, tmp, tmp, dst), ctx);
905 			reg = tmp;
906 		}
907 		if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) {
908 			emit(A64_STADD(isdw, reg, src), ctx);
909 		} else {
910 			emit(A64_LDXR(isdw, tmp2, reg), ctx);
911 			emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
912 			emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
913 			jmp_offset = -3;
914 			check_imm19(jmp_offset);
915 			emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
916 		}
917 		break;
918 
919 	default:
920 		pr_err_once("unknown opcode %02x\n", code);
921 		return -EINVAL;
922 	}
923 
924 	return 0;
925 }
926 
927 static int build_body(struct jit_ctx *ctx, bool extra_pass)
928 {
929 	const struct bpf_prog *prog = ctx->prog;
930 	int i;
931 
932 	/*
933 	 * - offset[0] offset of the end of prologue,
934 	 *   start of the 1st instruction.
935 	 * - offset[1] - offset of the end of 1st instruction,
936 	 *   start of the 2nd instruction
937 	 * [....]
938 	 * - offset[3] - offset of the end of 3rd instruction,
939 	 *   start of 4th instruction
940 	 */
941 	for (i = 0; i < prog->len; i++) {
942 		const struct bpf_insn *insn = &prog->insnsi[i];
943 		int ret;
944 
945 		if (ctx->image == NULL)
946 			ctx->offset[i] = ctx->idx;
947 		ret = build_insn(insn, ctx, extra_pass);
948 		if (ret > 0) {
949 			i++;
950 			if (ctx->image == NULL)
951 				ctx->offset[i] = ctx->idx;
952 			continue;
953 		}
954 		if (ret)
955 			return ret;
956 	}
957 	/*
958 	 * offset is allocated with prog->len + 1 so fill in
959 	 * the last element with the offset after the last
960 	 * instruction (end of program)
961 	 */
962 	if (ctx->image == NULL)
963 		ctx->offset[i] = ctx->idx;
964 
965 	return 0;
966 }
967 
968 static int validate_code(struct jit_ctx *ctx)
969 {
970 	int i;
971 
972 	for (i = 0; i < ctx->idx; i++) {
973 		u32 a64_insn = le32_to_cpu(ctx->image[i]);
974 
975 		if (a64_insn == AARCH64_BREAK_FAULT)
976 			return -1;
977 	}
978 
979 	if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
980 		return -1;
981 
982 	return 0;
983 }
984 
985 static inline void bpf_flush_icache(void *start, void *end)
986 {
987 	flush_icache_range((unsigned long)start, (unsigned long)end);
988 }
989 
990 struct arm64_jit_data {
991 	struct bpf_binary_header *header;
992 	u8 *image;
993 	struct jit_ctx ctx;
994 };
995 
996 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
997 {
998 	int image_size, prog_size, extable_size;
999 	struct bpf_prog *tmp, *orig_prog = prog;
1000 	struct bpf_binary_header *header;
1001 	struct arm64_jit_data *jit_data;
1002 	bool was_classic = bpf_prog_was_classic(prog);
1003 	bool tmp_blinded = false;
1004 	bool extra_pass = false;
1005 	struct jit_ctx ctx;
1006 	u8 *image_ptr;
1007 
1008 	if (!prog->jit_requested)
1009 		return orig_prog;
1010 
1011 	tmp = bpf_jit_blind_constants(prog);
1012 	/* If blinding was requested and we failed during blinding,
1013 	 * we must fall back to the interpreter.
1014 	 */
1015 	if (IS_ERR(tmp))
1016 		return orig_prog;
1017 	if (tmp != prog) {
1018 		tmp_blinded = true;
1019 		prog = tmp;
1020 	}
1021 
1022 	jit_data = prog->aux->jit_data;
1023 	if (!jit_data) {
1024 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1025 		if (!jit_data) {
1026 			prog = orig_prog;
1027 			goto out;
1028 		}
1029 		prog->aux->jit_data = jit_data;
1030 	}
1031 	if (jit_data->ctx.offset) {
1032 		ctx = jit_data->ctx;
1033 		image_ptr = jit_data->image;
1034 		header = jit_data->header;
1035 		extra_pass = true;
1036 		prog_size = sizeof(u32) * ctx.idx;
1037 		goto skip_init_ctx;
1038 	}
1039 	memset(&ctx, 0, sizeof(ctx));
1040 	ctx.prog = prog;
1041 
1042 	ctx.offset = kcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
1043 	if (ctx.offset == NULL) {
1044 		prog = orig_prog;
1045 		goto out_off;
1046 	}
1047 
1048 	/* 1. Initial fake pass to compute ctx->idx. */
1049 
1050 	/* Fake pass to fill in ctx->offset. */
1051 	if (build_body(&ctx, extra_pass)) {
1052 		prog = orig_prog;
1053 		goto out_off;
1054 	}
1055 
1056 	if (build_prologue(&ctx, was_classic)) {
1057 		prog = orig_prog;
1058 		goto out_off;
1059 	}
1060 
1061 	ctx.epilogue_offset = ctx.idx;
1062 	build_epilogue(&ctx);
1063 
1064 	extable_size = prog->aux->num_exentries *
1065 		sizeof(struct exception_table_entry);
1066 
1067 	/* Now we know the actual image size. */
1068 	prog_size = sizeof(u32) * ctx.idx;
1069 	image_size = prog_size + extable_size;
1070 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1071 				      sizeof(u32), jit_fill_hole);
1072 	if (header == NULL) {
1073 		prog = orig_prog;
1074 		goto out_off;
1075 	}
1076 
1077 	/* 2. Now, the actual pass. */
1078 
1079 	ctx.image = (__le32 *)image_ptr;
1080 	if (extable_size)
1081 		prog->aux->extable = (void *)image_ptr + prog_size;
1082 skip_init_ctx:
1083 	ctx.idx = 0;
1084 	ctx.exentry_idx = 0;
1085 
1086 	build_prologue(&ctx, was_classic);
1087 
1088 	if (build_body(&ctx, extra_pass)) {
1089 		bpf_jit_binary_free(header);
1090 		prog = orig_prog;
1091 		goto out_off;
1092 	}
1093 
1094 	build_epilogue(&ctx);
1095 
1096 	/* 3. Extra pass to validate JITed code. */
1097 	if (validate_code(&ctx)) {
1098 		bpf_jit_binary_free(header);
1099 		prog = orig_prog;
1100 		goto out_off;
1101 	}
1102 
1103 	/* And we're done. */
1104 	if (bpf_jit_enable > 1)
1105 		bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
1106 
1107 	bpf_flush_icache(header, ctx.image + ctx.idx);
1108 
1109 	if (!prog->is_func || extra_pass) {
1110 		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
1111 			pr_err_once("multi-func JIT bug %d != %d\n",
1112 				    ctx.idx, jit_data->ctx.idx);
1113 			bpf_jit_binary_free(header);
1114 			prog->bpf_func = NULL;
1115 			prog->jited = 0;
1116 			goto out_off;
1117 		}
1118 		bpf_jit_binary_lock_ro(header);
1119 	} else {
1120 		jit_data->ctx = ctx;
1121 		jit_data->image = image_ptr;
1122 		jit_data->header = header;
1123 	}
1124 	prog->bpf_func = (void *)ctx.image;
1125 	prog->jited = 1;
1126 	prog->jited_len = prog_size;
1127 
1128 	if (!prog->is_func || extra_pass) {
1129 		bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
1130 out_off:
1131 		kfree(ctx.offset);
1132 		kfree(jit_data);
1133 		prog->aux->jit_data = NULL;
1134 	}
1135 out:
1136 	if (tmp_blinded)
1137 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1138 					   tmp : orig_prog);
1139 	return prog;
1140 }
1141 
1142 u64 bpf_jit_alloc_exec_limit(void)
1143 {
1144 	return BPF_JIT_REGION_SIZE;
1145 }
1146 
1147 void *bpf_jit_alloc_exec(unsigned long size)
1148 {
1149 	return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
1150 				    BPF_JIT_REGION_END, GFP_KERNEL,
1151 				    PAGE_KERNEL, 0, NUMA_NO_NODE,
1152 				    __builtin_return_address(0));
1153 }
1154 
1155 void bpf_jit_free_exec(void *addr)
1156 {
1157 	return vfree(addr);
1158 }
1159