1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * BPF JIT compiler for ARM64 4 * 5 * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com> 6 */ 7 8 #define pr_fmt(fmt) "bpf_jit: " fmt 9 10 #include <linux/bitfield.h> 11 #include <linux/bpf.h> 12 #include <linux/filter.h> 13 #include <linux/printk.h> 14 #include <linux/slab.h> 15 16 #include <asm/byteorder.h> 17 #include <asm/cacheflush.h> 18 #include <asm/debug-monitors.h> 19 #include <asm/set_memory.h> 20 21 #include "bpf_jit.h" 22 23 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0) 24 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1) 25 #define TCALL_CNT (MAX_BPF_JIT_REG + 2) 26 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3) 27 28 /* Map BPF registers to A64 registers */ 29 static const int bpf2a64[] = { 30 /* return value from in-kernel function, and exit value from eBPF */ 31 [BPF_REG_0] = A64_R(7), 32 /* arguments from eBPF program to in-kernel function */ 33 [BPF_REG_1] = A64_R(0), 34 [BPF_REG_2] = A64_R(1), 35 [BPF_REG_3] = A64_R(2), 36 [BPF_REG_4] = A64_R(3), 37 [BPF_REG_5] = A64_R(4), 38 /* callee saved registers that in-kernel function will preserve */ 39 [BPF_REG_6] = A64_R(19), 40 [BPF_REG_7] = A64_R(20), 41 [BPF_REG_8] = A64_R(21), 42 [BPF_REG_9] = A64_R(22), 43 /* read-only frame pointer to access stack */ 44 [BPF_REG_FP] = A64_R(25), 45 /* temporary registers for internal BPF JIT */ 46 [TMP_REG_1] = A64_R(10), 47 [TMP_REG_2] = A64_R(11), 48 [TMP_REG_3] = A64_R(12), 49 /* tail_call_cnt */ 50 [TCALL_CNT] = A64_R(26), 51 /* temporary register for blinding constants */ 52 [BPF_REG_AX] = A64_R(9), 53 }; 54 55 struct jit_ctx { 56 const struct bpf_prog *prog; 57 int idx; 58 int epilogue_offset; 59 int *offset; 60 int exentry_idx; 61 __le32 *image; 62 u32 stack_size; 63 }; 64 65 static inline void emit(const u32 insn, struct jit_ctx *ctx) 66 { 67 if (ctx->image != NULL) 68 ctx->image[ctx->idx] = cpu_to_le32(insn); 69 70 ctx->idx++; 71 } 72 73 static inline void emit_a64_mov_i(const int is64, const int reg, 74 const s32 val, struct jit_ctx *ctx) 75 { 76 u16 hi = val >> 16; 77 u16 lo = val & 0xffff; 78 79 if (hi & 0x8000) { 80 if (hi == 0xffff) { 81 emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx); 82 } else { 83 emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx); 84 if (lo != 0xffff) 85 emit(A64_MOVK(is64, reg, lo, 0), ctx); 86 } 87 } else { 88 emit(A64_MOVZ(is64, reg, lo, 0), ctx); 89 if (hi) 90 emit(A64_MOVK(is64, reg, hi, 16), ctx); 91 } 92 } 93 94 static int i64_i16_blocks(const u64 val, bool inverse) 95 { 96 return (((val >> 0) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 97 (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 98 (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) + 99 (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000)); 100 } 101 102 static inline void emit_a64_mov_i64(const int reg, const u64 val, 103 struct jit_ctx *ctx) 104 { 105 u64 nrm_tmp = val, rev_tmp = ~val; 106 bool inverse; 107 int shift; 108 109 if (!(nrm_tmp >> 32)) 110 return emit_a64_mov_i(0, reg, (u32)val, ctx); 111 112 inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false); 113 shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) : 114 (fls64(nrm_tmp) - 1)), 16), 0); 115 if (inverse) 116 emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx); 117 else 118 emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 119 shift -= 16; 120 while (shift >= 0) { 121 if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000)) 122 emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx); 123 shift -= 16; 124 } 125 } 126 127 /* 128 * Kernel addresses in the vmalloc space use at most 48 bits, and the 129 * remaining bits are guaranteed to be 0x1. So we can compose the address 130 * with a fixed length movn/movk/movk sequence. 131 */ 132 static inline void emit_addr_mov_i64(const int reg, const u64 val, 133 struct jit_ctx *ctx) 134 { 135 u64 tmp = val; 136 int shift = 0; 137 138 emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx); 139 while (shift < 32) { 140 tmp >>= 16; 141 shift += 16; 142 emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx); 143 } 144 } 145 146 static inline int bpf2a64_offset(int bpf_insn, int off, 147 const struct jit_ctx *ctx) 148 { 149 /* BPF JMP offset is relative to the next instruction */ 150 bpf_insn++; 151 /* 152 * Whereas arm64 branch instructions encode the offset 153 * from the branch itself, so we must subtract 1 from the 154 * instruction offset. 155 */ 156 return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1); 157 } 158 159 static void jit_fill_hole(void *area, unsigned int size) 160 { 161 __le32 *ptr; 162 /* We are guaranteed to have aligned memory. */ 163 for (ptr = area; size >= sizeof(u32); size -= sizeof(u32)) 164 *ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT); 165 } 166 167 static inline int epilogue_offset(const struct jit_ctx *ctx) 168 { 169 int to = ctx->epilogue_offset; 170 int from = ctx->idx; 171 172 return to - from; 173 } 174 175 static bool is_addsub_imm(u32 imm) 176 { 177 /* Either imm12 or shifted imm12. */ 178 return !(imm & ~0xfff) || !(imm & ~0xfff000); 179 } 180 181 /* Tail call offset to jump into */ 182 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL) 183 #define PROLOGUE_OFFSET 8 184 #else 185 #define PROLOGUE_OFFSET 7 186 #endif 187 188 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf) 189 { 190 const struct bpf_prog *prog = ctx->prog; 191 const u8 r6 = bpf2a64[BPF_REG_6]; 192 const u8 r7 = bpf2a64[BPF_REG_7]; 193 const u8 r8 = bpf2a64[BPF_REG_8]; 194 const u8 r9 = bpf2a64[BPF_REG_9]; 195 const u8 fp = bpf2a64[BPF_REG_FP]; 196 const u8 tcc = bpf2a64[TCALL_CNT]; 197 const int idx0 = ctx->idx; 198 int cur_offset; 199 200 /* 201 * BPF prog stack layout 202 * 203 * high 204 * original A64_SP => 0:+-----+ BPF prologue 205 * |FP/LR| 206 * current A64_FP => -16:+-----+ 207 * | ... | callee saved registers 208 * BPF fp register => -64:+-----+ <= (BPF_FP) 209 * | | 210 * | ... | BPF prog stack 211 * | | 212 * +-----+ <= (BPF_FP - prog->aux->stack_depth) 213 * |RSVD | padding 214 * current A64_SP => +-----+ <= (BPF_FP - ctx->stack_size) 215 * | | 216 * | ... | Function call stack 217 * | | 218 * +-----+ 219 * low 220 * 221 */ 222 223 /* BTI landing pad */ 224 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)) 225 emit(A64_BTI_C, ctx); 226 227 /* Save FP and LR registers to stay align with ARM64 AAPCS */ 228 emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx); 229 emit(A64_MOV(1, A64_FP, A64_SP), ctx); 230 231 /* Save callee-saved registers */ 232 emit(A64_PUSH(r6, r7, A64_SP), ctx); 233 emit(A64_PUSH(r8, r9, A64_SP), ctx); 234 emit(A64_PUSH(fp, tcc, A64_SP), ctx); 235 236 /* Set up BPF prog stack base register */ 237 emit(A64_MOV(1, fp, A64_SP), ctx); 238 239 if (!ebpf_from_cbpf) { 240 /* Initialize tail_call_cnt */ 241 emit(A64_MOVZ(1, tcc, 0, 0), ctx); 242 243 cur_offset = ctx->idx - idx0; 244 if (cur_offset != PROLOGUE_OFFSET) { 245 pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n", 246 cur_offset, PROLOGUE_OFFSET); 247 return -1; 248 } 249 250 /* BTI landing pad for the tail call, done with a BR */ 251 if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)) 252 emit(A64_BTI_J, ctx); 253 } 254 255 /* Stack must be multiples of 16B */ 256 ctx->stack_size = round_up(prog->aux->stack_depth, 16); 257 258 /* Set up function call stack */ 259 emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 260 return 0; 261 } 262 263 static int out_offset = -1; /* initialized on the first pass of build_body() */ 264 static int emit_bpf_tail_call(struct jit_ctx *ctx) 265 { 266 /* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */ 267 const u8 r2 = bpf2a64[BPF_REG_2]; 268 const u8 r3 = bpf2a64[BPF_REG_3]; 269 270 const u8 tmp = bpf2a64[TMP_REG_1]; 271 const u8 prg = bpf2a64[TMP_REG_2]; 272 const u8 tcc = bpf2a64[TCALL_CNT]; 273 const int idx0 = ctx->idx; 274 #define cur_offset (ctx->idx - idx0) 275 #define jmp_offset (out_offset - (cur_offset)) 276 size_t off; 277 278 /* if (index >= array->map.max_entries) 279 * goto out; 280 */ 281 off = offsetof(struct bpf_array, map.max_entries); 282 emit_a64_mov_i64(tmp, off, ctx); 283 emit(A64_LDR32(tmp, r2, tmp), ctx); 284 emit(A64_MOV(0, r3, r3), ctx); 285 emit(A64_CMP(0, r3, tmp), ctx); 286 emit(A64_B_(A64_COND_CS, jmp_offset), ctx); 287 288 /* if (tail_call_cnt > MAX_TAIL_CALL_CNT) 289 * goto out; 290 * tail_call_cnt++; 291 */ 292 emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx); 293 emit(A64_CMP(1, tcc, tmp), ctx); 294 emit(A64_B_(A64_COND_HI, jmp_offset), ctx); 295 emit(A64_ADD_I(1, tcc, tcc, 1), ctx); 296 297 /* prog = array->ptrs[index]; 298 * if (prog == NULL) 299 * goto out; 300 */ 301 off = offsetof(struct bpf_array, ptrs); 302 emit_a64_mov_i64(tmp, off, ctx); 303 emit(A64_ADD(1, tmp, r2, tmp), ctx); 304 emit(A64_LSL(1, prg, r3, 3), ctx); 305 emit(A64_LDR64(prg, tmp, prg), ctx); 306 emit(A64_CBZ(1, prg, jmp_offset), ctx); 307 308 /* goto *(prog->bpf_func + prologue_offset); */ 309 off = offsetof(struct bpf_prog, bpf_func); 310 emit_a64_mov_i64(tmp, off, ctx); 311 emit(A64_LDR64(tmp, prg, tmp), ctx); 312 emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx); 313 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 314 emit(A64_BR(tmp), ctx); 315 316 /* out: */ 317 if (out_offset == -1) 318 out_offset = cur_offset; 319 if (cur_offset != out_offset) { 320 pr_err_once("tail_call out_offset = %d, expected %d!\n", 321 cur_offset, out_offset); 322 return -1; 323 } 324 return 0; 325 #undef cur_offset 326 #undef jmp_offset 327 } 328 329 static void build_epilogue(struct jit_ctx *ctx) 330 { 331 const u8 r0 = bpf2a64[BPF_REG_0]; 332 const u8 r6 = bpf2a64[BPF_REG_6]; 333 const u8 r7 = bpf2a64[BPF_REG_7]; 334 const u8 r8 = bpf2a64[BPF_REG_8]; 335 const u8 r9 = bpf2a64[BPF_REG_9]; 336 const u8 fp = bpf2a64[BPF_REG_FP]; 337 338 /* We're done with BPF stack */ 339 emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx); 340 341 /* Restore fs (x25) and x26 */ 342 emit(A64_POP(fp, A64_R(26), A64_SP), ctx); 343 344 /* Restore callee-saved register */ 345 emit(A64_POP(r8, r9, A64_SP), ctx); 346 emit(A64_POP(r6, r7, A64_SP), ctx); 347 348 /* Restore FP/LR registers */ 349 emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx); 350 351 /* Set return value */ 352 emit(A64_MOV(1, A64_R(0), r0), ctx); 353 354 emit(A64_RET(A64_LR), ctx); 355 } 356 357 #define BPF_FIXUP_OFFSET_MASK GENMASK(26, 0) 358 #define BPF_FIXUP_REG_MASK GENMASK(31, 27) 359 360 int arm64_bpf_fixup_exception(const struct exception_table_entry *ex, 361 struct pt_regs *regs) 362 { 363 off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup); 364 int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup); 365 366 regs->regs[dst_reg] = 0; 367 regs->pc = (unsigned long)&ex->fixup - offset; 368 return 1; 369 } 370 371 /* For accesses to BTF pointers, add an entry to the exception table */ 372 static int add_exception_handler(const struct bpf_insn *insn, 373 struct jit_ctx *ctx, 374 int dst_reg) 375 { 376 off_t offset; 377 unsigned long pc; 378 struct exception_table_entry *ex; 379 380 if (!ctx->image) 381 /* First pass */ 382 return 0; 383 384 if (BPF_MODE(insn->code) != BPF_PROBE_MEM) 385 return 0; 386 387 if (!ctx->prog->aux->extable || 388 WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries)) 389 return -EINVAL; 390 391 ex = &ctx->prog->aux->extable[ctx->exentry_idx]; 392 pc = (unsigned long)&ctx->image[ctx->idx - 1]; 393 394 offset = pc - (long)&ex->insn; 395 if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN)) 396 return -ERANGE; 397 ex->insn = offset; 398 399 /* 400 * Since the extable follows the program, the fixup offset is always 401 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value 402 * to keep things simple, and put the destination register in the upper 403 * bits. We don't need to worry about buildtime or runtime sort 404 * modifying the upper bits because the table is already sorted, and 405 * isn't part of the main exception table. 406 */ 407 offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE); 408 if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, offset)) 409 return -ERANGE; 410 411 ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, offset) | 412 FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg); 413 414 ctx->exentry_idx++; 415 return 0; 416 } 417 418 /* JITs an eBPF instruction. 419 * Returns: 420 * 0 - successfully JITed an 8-byte eBPF instruction. 421 * >0 - successfully JITed a 16-byte eBPF instruction. 422 * <0 - failed to JIT. 423 */ 424 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx, 425 bool extra_pass) 426 { 427 const u8 code = insn->code; 428 const u8 dst = bpf2a64[insn->dst_reg]; 429 const u8 src = bpf2a64[insn->src_reg]; 430 const u8 tmp = bpf2a64[TMP_REG_1]; 431 const u8 tmp2 = bpf2a64[TMP_REG_2]; 432 const u8 tmp3 = bpf2a64[TMP_REG_3]; 433 const s16 off = insn->off; 434 const s32 imm = insn->imm; 435 const int i = insn - ctx->prog->insnsi; 436 const bool is64 = BPF_CLASS(code) == BPF_ALU64 || 437 BPF_CLASS(code) == BPF_JMP; 438 const bool isdw = BPF_SIZE(code) == BPF_DW; 439 u8 jmp_cond, reg; 440 s32 jmp_offset; 441 u32 a64_insn; 442 int ret; 443 444 #define check_imm(bits, imm) do { \ 445 if ((((imm) > 0) && ((imm) >> (bits))) || \ 446 (((imm) < 0) && (~(imm) >> (bits)))) { \ 447 pr_info("[%2d] imm=%d(0x%x) out of range\n", \ 448 i, imm, imm); \ 449 return -EINVAL; \ 450 } \ 451 } while (0) 452 #define check_imm19(imm) check_imm(19, imm) 453 #define check_imm26(imm) check_imm(26, imm) 454 455 switch (code) { 456 /* dst = src */ 457 case BPF_ALU | BPF_MOV | BPF_X: 458 case BPF_ALU64 | BPF_MOV | BPF_X: 459 emit(A64_MOV(is64, dst, src), ctx); 460 break; 461 /* dst = dst OP src */ 462 case BPF_ALU | BPF_ADD | BPF_X: 463 case BPF_ALU64 | BPF_ADD | BPF_X: 464 emit(A64_ADD(is64, dst, dst, src), ctx); 465 break; 466 case BPF_ALU | BPF_SUB | BPF_X: 467 case BPF_ALU64 | BPF_SUB | BPF_X: 468 emit(A64_SUB(is64, dst, dst, src), ctx); 469 break; 470 case BPF_ALU | BPF_AND | BPF_X: 471 case BPF_ALU64 | BPF_AND | BPF_X: 472 emit(A64_AND(is64, dst, dst, src), ctx); 473 break; 474 case BPF_ALU | BPF_OR | BPF_X: 475 case BPF_ALU64 | BPF_OR | BPF_X: 476 emit(A64_ORR(is64, dst, dst, src), ctx); 477 break; 478 case BPF_ALU | BPF_XOR | BPF_X: 479 case BPF_ALU64 | BPF_XOR | BPF_X: 480 emit(A64_EOR(is64, dst, dst, src), ctx); 481 break; 482 case BPF_ALU | BPF_MUL | BPF_X: 483 case BPF_ALU64 | BPF_MUL | BPF_X: 484 emit(A64_MUL(is64, dst, dst, src), ctx); 485 break; 486 case BPF_ALU | BPF_DIV | BPF_X: 487 case BPF_ALU64 | BPF_DIV | BPF_X: 488 emit(A64_UDIV(is64, dst, dst, src), ctx); 489 break; 490 case BPF_ALU | BPF_MOD | BPF_X: 491 case BPF_ALU64 | BPF_MOD | BPF_X: 492 emit(A64_UDIV(is64, tmp, dst, src), ctx); 493 emit(A64_MSUB(is64, dst, dst, tmp, src), ctx); 494 break; 495 case BPF_ALU | BPF_LSH | BPF_X: 496 case BPF_ALU64 | BPF_LSH | BPF_X: 497 emit(A64_LSLV(is64, dst, dst, src), ctx); 498 break; 499 case BPF_ALU | BPF_RSH | BPF_X: 500 case BPF_ALU64 | BPF_RSH | BPF_X: 501 emit(A64_LSRV(is64, dst, dst, src), ctx); 502 break; 503 case BPF_ALU | BPF_ARSH | BPF_X: 504 case BPF_ALU64 | BPF_ARSH | BPF_X: 505 emit(A64_ASRV(is64, dst, dst, src), ctx); 506 break; 507 /* dst = -dst */ 508 case BPF_ALU | BPF_NEG: 509 case BPF_ALU64 | BPF_NEG: 510 emit(A64_NEG(is64, dst, dst), ctx); 511 break; 512 /* dst = BSWAP##imm(dst) */ 513 case BPF_ALU | BPF_END | BPF_FROM_LE: 514 case BPF_ALU | BPF_END | BPF_FROM_BE: 515 #ifdef CONFIG_CPU_BIG_ENDIAN 516 if (BPF_SRC(code) == BPF_FROM_BE) 517 goto emit_bswap_uxt; 518 #else /* !CONFIG_CPU_BIG_ENDIAN */ 519 if (BPF_SRC(code) == BPF_FROM_LE) 520 goto emit_bswap_uxt; 521 #endif 522 switch (imm) { 523 case 16: 524 emit(A64_REV16(is64, dst, dst), ctx); 525 /* zero-extend 16 bits into 64 bits */ 526 emit(A64_UXTH(is64, dst, dst), ctx); 527 break; 528 case 32: 529 emit(A64_REV32(is64, dst, dst), ctx); 530 /* upper 32 bits already cleared */ 531 break; 532 case 64: 533 emit(A64_REV64(dst, dst), ctx); 534 break; 535 } 536 break; 537 emit_bswap_uxt: 538 switch (imm) { 539 case 16: 540 /* zero-extend 16 bits into 64 bits */ 541 emit(A64_UXTH(is64, dst, dst), ctx); 542 break; 543 case 32: 544 /* zero-extend 32 bits into 64 bits */ 545 emit(A64_UXTW(is64, dst, dst), ctx); 546 break; 547 case 64: 548 /* nop */ 549 break; 550 } 551 break; 552 /* dst = imm */ 553 case BPF_ALU | BPF_MOV | BPF_K: 554 case BPF_ALU64 | BPF_MOV | BPF_K: 555 emit_a64_mov_i(is64, dst, imm, ctx); 556 break; 557 /* dst = dst OP imm */ 558 case BPF_ALU | BPF_ADD | BPF_K: 559 case BPF_ALU64 | BPF_ADD | BPF_K: 560 if (is_addsub_imm(imm)) { 561 emit(A64_ADD_I(is64, dst, dst, imm), ctx); 562 } else if (is_addsub_imm(-imm)) { 563 emit(A64_SUB_I(is64, dst, dst, -imm), ctx); 564 } else { 565 emit_a64_mov_i(is64, tmp, imm, ctx); 566 emit(A64_ADD(is64, dst, dst, tmp), ctx); 567 } 568 break; 569 case BPF_ALU | BPF_SUB | BPF_K: 570 case BPF_ALU64 | BPF_SUB | BPF_K: 571 if (is_addsub_imm(imm)) { 572 emit(A64_SUB_I(is64, dst, dst, imm), ctx); 573 } else if (is_addsub_imm(-imm)) { 574 emit(A64_ADD_I(is64, dst, dst, -imm), ctx); 575 } else { 576 emit_a64_mov_i(is64, tmp, imm, ctx); 577 emit(A64_SUB(is64, dst, dst, tmp), ctx); 578 } 579 break; 580 case BPF_ALU | BPF_AND | BPF_K: 581 case BPF_ALU64 | BPF_AND | BPF_K: 582 a64_insn = A64_AND_I(is64, dst, dst, imm); 583 if (a64_insn != AARCH64_BREAK_FAULT) { 584 emit(a64_insn, ctx); 585 } else { 586 emit_a64_mov_i(is64, tmp, imm, ctx); 587 emit(A64_AND(is64, dst, dst, tmp), ctx); 588 } 589 break; 590 case BPF_ALU | BPF_OR | BPF_K: 591 case BPF_ALU64 | BPF_OR | BPF_K: 592 a64_insn = A64_ORR_I(is64, dst, dst, imm); 593 if (a64_insn != AARCH64_BREAK_FAULT) { 594 emit(a64_insn, ctx); 595 } else { 596 emit_a64_mov_i(is64, tmp, imm, ctx); 597 emit(A64_ORR(is64, dst, dst, tmp), ctx); 598 } 599 break; 600 case BPF_ALU | BPF_XOR | BPF_K: 601 case BPF_ALU64 | BPF_XOR | BPF_K: 602 a64_insn = A64_EOR_I(is64, dst, dst, imm); 603 if (a64_insn != AARCH64_BREAK_FAULT) { 604 emit(a64_insn, ctx); 605 } else { 606 emit_a64_mov_i(is64, tmp, imm, ctx); 607 emit(A64_EOR(is64, dst, dst, tmp), ctx); 608 } 609 break; 610 case BPF_ALU | BPF_MUL | BPF_K: 611 case BPF_ALU64 | BPF_MUL | BPF_K: 612 emit_a64_mov_i(is64, tmp, imm, ctx); 613 emit(A64_MUL(is64, dst, dst, tmp), ctx); 614 break; 615 case BPF_ALU | BPF_DIV | BPF_K: 616 case BPF_ALU64 | BPF_DIV | BPF_K: 617 emit_a64_mov_i(is64, tmp, imm, ctx); 618 emit(A64_UDIV(is64, dst, dst, tmp), ctx); 619 break; 620 case BPF_ALU | BPF_MOD | BPF_K: 621 case BPF_ALU64 | BPF_MOD | BPF_K: 622 emit_a64_mov_i(is64, tmp2, imm, ctx); 623 emit(A64_UDIV(is64, tmp, dst, tmp2), ctx); 624 emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx); 625 break; 626 case BPF_ALU | BPF_LSH | BPF_K: 627 case BPF_ALU64 | BPF_LSH | BPF_K: 628 emit(A64_LSL(is64, dst, dst, imm), ctx); 629 break; 630 case BPF_ALU | BPF_RSH | BPF_K: 631 case BPF_ALU64 | BPF_RSH | BPF_K: 632 emit(A64_LSR(is64, dst, dst, imm), ctx); 633 break; 634 case BPF_ALU | BPF_ARSH | BPF_K: 635 case BPF_ALU64 | BPF_ARSH | BPF_K: 636 emit(A64_ASR(is64, dst, dst, imm), ctx); 637 break; 638 639 /* JUMP off */ 640 case BPF_JMP | BPF_JA: 641 jmp_offset = bpf2a64_offset(i, off, ctx); 642 check_imm26(jmp_offset); 643 emit(A64_B(jmp_offset), ctx); 644 break; 645 /* IF (dst COND src) JUMP off */ 646 case BPF_JMP | BPF_JEQ | BPF_X: 647 case BPF_JMP | BPF_JGT | BPF_X: 648 case BPF_JMP | BPF_JLT | BPF_X: 649 case BPF_JMP | BPF_JGE | BPF_X: 650 case BPF_JMP | BPF_JLE | BPF_X: 651 case BPF_JMP | BPF_JNE | BPF_X: 652 case BPF_JMP | BPF_JSGT | BPF_X: 653 case BPF_JMP | BPF_JSLT | BPF_X: 654 case BPF_JMP | BPF_JSGE | BPF_X: 655 case BPF_JMP | BPF_JSLE | BPF_X: 656 case BPF_JMP32 | BPF_JEQ | BPF_X: 657 case BPF_JMP32 | BPF_JGT | BPF_X: 658 case BPF_JMP32 | BPF_JLT | BPF_X: 659 case BPF_JMP32 | BPF_JGE | BPF_X: 660 case BPF_JMP32 | BPF_JLE | BPF_X: 661 case BPF_JMP32 | BPF_JNE | BPF_X: 662 case BPF_JMP32 | BPF_JSGT | BPF_X: 663 case BPF_JMP32 | BPF_JSLT | BPF_X: 664 case BPF_JMP32 | BPF_JSGE | BPF_X: 665 case BPF_JMP32 | BPF_JSLE | BPF_X: 666 emit(A64_CMP(is64, dst, src), ctx); 667 emit_cond_jmp: 668 jmp_offset = bpf2a64_offset(i, off, ctx); 669 check_imm19(jmp_offset); 670 switch (BPF_OP(code)) { 671 case BPF_JEQ: 672 jmp_cond = A64_COND_EQ; 673 break; 674 case BPF_JGT: 675 jmp_cond = A64_COND_HI; 676 break; 677 case BPF_JLT: 678 jmp_cond = A64_COND_CC; 679 break; 680 case BPF_JGE: 681 jmp_cond = A64_COND_CS; 682 break; 683 case BPF_JLE: 684 jmp_cond = A64_COND_LS; 685 break; 686 case BPF_JSET: 687 case BPF_JNE: 688 jmp_cond = A64_COND_NE; 689 break; 690 case BPF_JSGT: 691 jmp_cond = A64_COND_GT; 692 break; 693 case BPF_JSLT: 694 jmp_cond = A64_COND_LT; 695 break; 696 case BPF_JSGE: 697 jmp_cond = A64_COND_GE; 698 break; 699 case BPF_JSLE: 700 jmp_cond = A64_COND_LE; 701 break; 702 default: 703 return -EFAULT; 704 } 705 emit(A64_B_(jmp_cond, jmp_offset), ctx); 706 break; 707 case BPF_JMP | BPF_JSET | BPF_X: 708 case BPF_JMP32 | BPF_JSET | BPF_X: 709 emit(A64_TST(is64, dst, src), ctx); 710 goto emit_cond_jmp; 711 /* IF (dst COND imm) JUMP off */ 712 case BPF_JMP | BPF_JEQ | BPF_K: 713 case BPF_JMP | BPF_JGT | BPF_K: 714 case BPF_JMP | BPF_JLT | BPF_K: 715 case BPF_JMP | BPF_JGE | BPF_K: 716 case BPF_JMP | BPF_JLE | BPF_K: 717 case BPF_JMP | BPF_JNE | BPF_K: 718 case BPF_JMP | BPF_JSGT | BPF_K: 719 case BPF_JMP | BPF_JSLT | BPF_K: 720 case BPF_JMP | BPF_JSGE | BPF_K: 721 case BPF_JMP | BPF_JSLE | BPF_K: 722 case BPF_JMP32 | BPF_JEQ | BPF_K: 723 case BPF_JMP32 | BPF_JGT | BPF_K: 724 case BPF_JMP32 | BPF_JLT | BPF_K: 725 case BPF_JMP32 | BPF_JGE | BPF_K: 726 case BPF_JMP32 | BPF_JLE | BPF_K: 727 case BPF_JMP32 | BPF_JNE | BPF_K: 728 case BPF_JMP32 | BPF_JSGT | BPF_K: 729 case BPF_JMP32 | BPF_JSLT | BPF_K: 730 case BPF_JMP32 | BPF_JSGE | BPF_K: 731 case BPF_JMP32 | BPF_JSLE | BPF_K: 732 if (is_addsub_imm(imm)) { 733 emit(A64_CMP_I(is64, dst, imm), ctx); 734 } else if (is_addsub_imm(-imm)) { 735 emit(A64_CMN_I(is64, dst, -imm), ctx); 736 } else { 737 emit_a64_mov_i(is64, tmp, imm, ctx); 738 emit(A64_CMP(is64, dst, tmp), ctx); 739 } 740 goto emit_cond_jmp; 741 case BPF_JMP | BPF_JSET | BPF_K: 742 case BPF_JMP32 | BPF_JSET | BPF_K: 743 a64_insn = A64_TST_I(is64, dst, imm); 744 if (a64_insn != AARCH64_BREAK_FAULT) { 745 emit(a64_insn, ctx); 746 } else { 747 emit_a64_mov_i(is64, tmp, imm, ctx); 748 emit(A64_TST(is64, dst, tmp), ctx); 749 } 750 goto emit_cond_jmp; 751 /* function call */ 752 case BPF_JMP | BPF_CALL: 753 { 754 const u8 r0 = bpf2a64[BPF_REG_0]; 755 bool func_addr_fixed; 756 u64 func_addr; 757 758 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, 759 &func_addr, &func_addr_fixed); 760 if (ret < 0) 761 return ret; 762 emit_addr_mov_i64(tmp, func_addr, ctx); 763 emit(A64_BLR(tmp), ctx); 764 emit(A64_MOV(1, r0, A64_R(0)), ctx); 765 break; 766 } 767 /* tail call */ 768 case BPF_JMP | BPF_TAIL_CALL: 769 if (emit_bpf_tail_call(ctx)) 770 return -EFAULT; 771 break; 772 /* function return */ 773 case BPF_JMP | BPF_EXIT: 774 /* Optimization: when last instruction is EXIT, 775 simply fallthrough to epilogue. */ 776 if (i == ctx->prog->len - 1) 777 break; 778 jmp_offset = epilogue_offset(ctx); 779 check_imm26(jmp_offset); 780 emit(A64_B(jmp_offset), ctx); 781 break; 782 783 /* dst = imm64 */ 784 case BPF_LD | BPF_IMM | BPF_DW: 785 { 786 const struct bpf_insn insn1 = insn[1]; 787 u64 imm64; 788 789 imm64 = (u64)insn1.imm << 32 | (u32)imm; 790 emit_a64_mov_i64(dst, imm64, ctx); 791 792 return 1; 793 } 794 795 /* LDX: dst = *(size *)(src + off) */ 796 case BPF_LDX | BPF_MEM | BPF_W: 797 case BPF_LDX | BPF_MEM | BPF_H: 798 case BPF_LDX | BPF_MEM | BPF_B: 799 case BPF_LDX | BPF_MEM | BPF_DW: 800 case BPF_LDX | BPF_PROBE_MEM | BPF_DW: 801 case BPF_LDX | BPF_PROBE_MEM | BPF_W: 802 case BPF_LDX | BPF_PROBE_MEM | BPF_H: 803 case BPF_LDX | BPF_PROBE_MEM | BPF_B: 804 emit_a64_mov_i(1, tmp, off, ctx); 805 switch (BPF_SIZE(code)) { 806 case BPF_W: 807 emit(A64_LDR32(dst, src, tmp), ctx); 808 break; 809 case BPF_H: 810 emit(A64_LDRH(dst, src, tmp), ctx); 811 break; 812 case BPF_B: 813 emit(A64_LDRB(dst, src, tmp), ctx); 814 break; 815 case BPF_DW: 816 emit(A64_LDR64(dst, src, tmp), ctx); 817 break; 818 } 819 820 ret = add_exception_handler(insn, ctx, dst); 821 if (ret) 822 return ret; 823 break; 824 825 /* ST: *(size *)(dst + off) = imm */ 826 case BPF_ST | BPF_MEM | BPF_W: 827 case BPF_ST | BPF_MEM | BPF_H: 828 case BPF_ST | BPF_MEM | BPF_B: 829 case BPF_ST | BPF_MEM | BPF_DW: 830 /* Load imm to a register then store it */ 831 emit_a64_mov_i(1, tmp2, off, ctx); 832 emit_a64_mov_i(1, tmp, imm, ctx); 833 switch (BPF_SIZE(code)) { 834 case BPF_W: 835 emit(A64_STR32(tmp, dst, tmp2), ctx); 836 break; 837 case BPF_H: 838 emit(A64_STRH(tmp, dst, tmp2), ctx); 839 break; 840 case BPF_B: 841 emit(A64_STRB(tmp, dst, tmp2), ctx); 842 break; 843 case BPF_DW: 844 emit(A64_STR64(tmp, dst, tmp2), ctx); 845 break; 846 } 847 break; 848 849 /* STX: *(size *)(dst + off) = src */ 850 case BPF_STX | BPF_MEM | BPF_W: 851 case BPF_STX | BPF_MEM | BPF_H: 852 case BPF_STX | BPF_MEM | BPF_B: 853 case BPF_STX | BPF_MEM | BPF_DW: 854 emit_a64_mov_i(1, tmp, off, ctx); 855 switch (BPF_SIZE(code)) { 856 case BPF_W: 857 emit(A64_STR32(src, dst, tmp), ctx); 858 break; 859 case BPF_H: 860 emit(A64_STRH(src, dst, tmp), ctx); 861 break; 862 case BPF_B: 863 emit(A64_STRB(src, dst, tmp), ctx); 864 break; 865 case BPF_DW: 866 emit(A64_STR64(src, dst, tmp), ctx); 867 break; 868 } 869 break; 870 871 case BPF_STX | BPF_ATOMIC | BPF_W: 872 case BPF_STX | BPF_ATOMIC | BPF_DW: 873 if (insn->imm != BPF_ADD) { 874 pr_err_once("unknown atomic op code %02x\n", insn->imm); 875 return -EINVAL; 876 } 877 878 /* STX XADD: lock *(u32 *)(dst + off) += src 879 * and 880 * STX XADD: lock *(u64 *)(dst + off) += src 881 */ 882 883 if (!off) { 884 reg = dst; 885 } else { 886 emit_a64_mov_i(1, tmp, off, ctx); 887 emit(A64_ADD(1, tmp, tmp, dst), ctx); 888 reg = tmp; 889 } 890 if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS)) { 891 emit(A64_STADD(isdw, reg, src), ctx); 892 } else { 893 emit(A64_LDXR(isdw, tmp2, reg), ctx); 894 emit(A64_ADD(isdw, tmp2, tmp2, src), ctx); 895 emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx); 896 jmp_offset = -3; 897 check_imm19(jmp_offset); 898 emit(A64_CBNZ(0, tmp3, jmp_offset), ctx); 899 } 900 break; 901 902 default: 903 pr_err_once("unknown opcode %02x\n", code); 904 return -EINVAL; 905 } 906 907 return 0; 908 } 909 910 static int build_body(struct jit_ctx *ctx, bool extra_pass) 911 { 912 const struct bpf_prog *prog = ctx->prog; 913 int i; 914 915 /* 916 * - offset[0] offset of the end of prologue, 917 * start of the 1st instruction. 918 * - offset[1] - offset of the end of 1st instruction, 919 * start of the 2nd instruction 920 * [....] 921 * - offset[3] - offset of the end of 3rd instruction, 922 * start of 4th instruction 923 */ 924 for (i = 0; i < prog->len; i++) { 925 const struct bpf_insn *insn = &prog->insnsi[i]; 926 int ret; 927 928 if (ctx->image == NULL) 929 ctx->offset[i] = ctx->idx; 930 ret = build_insn(insn, ctx, extra_pass); 931 if (ret > 0) { 932 i++; 933 if (ctx->image == NULL) 934 ctx->offset[i] = ctx->idx; 935 continue; 936 } 937 if (ret) 938 return ret; 939 } 940 /* 941 * offset is allocated with prog->len + 1 so fill in 942 * the last element with the offset after the last 943 * instruction (end of program) 944 */ 945 if (ctx->image == NULL) 946 ctx->offset[i] = ctx->idx; 947 948 return 0; 949 } 950 951 static int validate_code(struct jit_ctx *ctx) 952 { 953 int i; 954 955 for (i = 0; i < ctx->idx; i++) { 956 u32 a64_insn = le32_to_cpu(ctx->image[i]); 957 958 if (a64_insn == AARCH64_BREAK_FAULT) 959 return -1; 960 } 961 962 if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries)) 963 return -1; 964 965 return 0; 966 } 967 968 static inline void bpf_flush_icache(void *start, void *end) 969 { 970 flush_icache_range((unsigned long)start, (unsigned long)end); 971 } 972 973 struct arm64_jit_data { 974 struct bpf_binary_header *header; 975 u8 *image; 976 struct jit_ctx ctx; 977 }; 978 979 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog) 980 { 981 int image_size, prog_size, extable_size; 982 struct bpf_prog *tmp, *orig_prog = prog; 983 struct bpf_binary_header *header; 984 struct arm64_jit_data *jit_data; 985 bool was_classic = bpf_prog_was_classic(prog); 986 bool tmp_blinded = false; 987 bool extra_pass = false; 988 struct jit_ctx ctx; 989 u8 *image_ptr; 990 991 if (!prog->jit_requested) 992 return orig_prog; 993 994 tmp = bpf_jit_blind_constants(prog); 995 /* If blinding was requested and we failed during blinding, 996 * we must fall back to the interpreter. 997 */ 998 if (IS_ERR(tmp)) 999 return orig_prog; 1000 if (tmp != prog) { 1001 tmp_blinded = true; 1002 prog = tmp; 1003 } 1004 1005 jit_data = prog->aux->jit_data; 1006 if (!jit_data) { 1007 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL); 1008 if (!jit_data) { 1009 prog = orig_prog; 1010 goto out; 1011 } 1012 prog->aux->jit_data = jit_data; 1013 } 1014 if (jit_data->ctx.offset) { 1015 ctx = jit_data->ctx; 1016 image_ptr = jit_data->image; 1017 header = jit_data->header; 1018 extra_pass = true; 1019 prog_size = sizeof(u32) * ctx.idx; 1020 goto skip_init_ctx; 1021 } 1022 memset(&ctx, 0, sizeof(ctx)); 1023 ctx.prog = prog; 1024 1025 ctx.offset = kcalloc(prog->len + 1, sizeof(int), GFP_KERNEL); 1026 if (ctx.offset == NULL) { 1027 prog = orig_prog; 1028 goto out_off; 1029 } 1030 1031 /* 1. Initial fake pass to compute ctx->idx. */ 1032 1033 /* Fake pass to fill in ctx->offset. */ 1034 if (build_body(&ctx, extra_pass)) { 1035 prog = orig_prog; 1036 goto out_off; 1037 } 1038 1039 if (build_prologue(&ctx, was_classic)) { 1040 prog = orig_prog; 1041 goto out_off; 1042 } 1043 1044 ctx.epilogue_offset = ctx.idx; 1045 build_epilogue(&ctx); 1046 1047 extable_size = prog->aux->num_exentries * 1048 sizeof(struct exception_table_entry); 1049 1050 /* Now we know the actual image size. */ 1051 prog_size = sizeof(u32) * ctx.idx; 1052 image_size = prog_size + extable_size; 1053 header = bpf_jit_binary_alloc(image_size, &image_ptr, 1054 sizeof(u32), jit_fill_hole); 1055 if (header == NULL) { 1056 prog = orig_prog; 1057 goto out_off; 1058 } 1059 1060 /* 2. Now, the actual pass. */ 1061 1062 ctx.image = (__le32 *)image_ptr; 1063 if (extable_size) 1064 prog->aux->extable = (void *)image_ptr + prog_size; 1065 skip_init_ctx: 1066 ctx.idx = 0; 1067 ctx.exentry_idx = 0; 1068 1069 build_prologue(&ctx, was_classic); 1070 1071 if (build_body(&ctx, extra_pass)) { 1072 bpf_jit_binary_free(header); 1073 prog = orig_prog; 1074 goto out_off; 1075 } 1076 1077 build_epilogue(&ctx); 1078 1079 /* 3. Extra pass to validate JITed code. */ 1080 if (validate_code(&ctx)) { 1081 bpf_jit_binary_free(header); 1082 prog = orig_prog; 1083 goto out_off; 1084 } 1085 1086 /* And we're done. */ 1087 if (bpf_jit_enable > 1) 1088 bpf_jit_dump(prog->len, prog_size, 2, ctx.image); 1089 1090 bpf_flush_icache(header, ctx.image + ctx.idx); 1091 1092 if (!prog->is_func || extra_pass) { 1093 if (extra_pass && ctx.idx != jit_data->ctx.idx) { 1094 pr_err_once("multi-func JIT bug %d != %d\n", 1095 ctx.idx, jit_data->ctx.idx); 1096 bpf_jit_binary_free(header); 1097 prog->bpf_func = NULL; 1098 prog->jited = 0; 1099 goto out_off; 1100 } 1101 bpf_jit_binary_lock_ro(header); 1102 } else { 1103 jit_data->ctx = ctx; 1104 jit_data->image = image_ptr; 1105 jit_data->header = header; 1106 } 1107 prog->bpf_func = (void *)ctx.image; 1108 prog->jited = 1; 1109 prog->jited_len = prog_size; 1110 1111 if (!prog->is_func || extra_pass) { 1112 bpf_prog_fill_jited_linfo(prog, ctx.offset + 1); 1113 out_off: 1114 kfree(ctx.offset); 1115 kfree(jit_data); 1116 prog->aux->jit_data = NULL; 1117 } 1118 out: 1119 if (tmp_blinded) 1120 bpf_jit_prog_release_other(prog, prog == orig_prog ? 1121 tmp : orig_prog); 1122 return prog; 1123 } 1124 1125 void *bpf_jit_alloc_exec(unsigned long size) 1126 { 1127 return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START, 1128 BPF_JIT_REGION_END, GFP_KERNEL, 1129 PAGE_KERNEL, 0, NUMA_NO_NODE, 1130 __builtin_return_address(0)); 1131 } 1132 1133 void bpf_jit_free_exec(void *addr) 1134 { 1135 return vfree(addr); 1136 } 1137