xref: /openbmc/linux/arch/arm64/net/bpf_jit_comp.c (revision 22a41e9a5044bf3519f05b4a00e99af34bfeb40c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * BPF JIT compiler for ARM64
4  *
5  * Copyright (C) 2014-2016 Zi Shen Lim <zlim.lnx@gmail.com>
6  */
7 
8 #define pr_fmt(fmt) "bpf_jit: " fmt
9 
10 #include <linux/bitfield.h>
11 #include <linux/bpf.h>
12 #include <linux/filter.h>
13 #include <linux/printk.h>
14 #include <linux/slab.h>
15 
16 #include <asm/asm-extable.h>
17 #include <asm/byteorder.h>
18 #include <asm/cacheflush.h>
19 #include <asm/debug-monitors.h>
20 #include <asm/insn.h>
21 #include <asm/set_memory.h>
22 
23 #include "bpf_jit.h"
24 
25 #define TMP_REG_1 (MAX_BPF_JIT_REG + 0)
26 #define TMP_REG_2 (MAX_BPF_JIT_REG + 1)
27 #define TCALL_CNT (MAX_BPF_JIT_REG + 2)
28 #define TMP_REG_3 (MAX_BPF_JIT_REG + 3)
29 
30 #define check_imm(bits, imm) do {				\
31 	if ((((imm) > 0) && ((imm) >> (bits))) ||		\
32 	    (((imm) < 0) && (~(imm) >> (bits)))) {		\
33 		pr_info("[%2d] imm=%d(0x%x) out of range\n",	\
34 			i, imm, imm);				\
35 		return -EINVAL;					\
36 	}							\
37 } while (0)
38 #define check_imm19(imm) check_imm(19, imm)
39 #define check_imm26(imm) check_imm(26, imm)
40 
41 /* Map BPF registers to A64 registers */
42 static const int bpf2a64[] = {
43 	/* return value from in-kernel function, and exit value from eBPF */
44 	[BPF_REG_0] = A64_R(7),
45 	/* arguments from eBPF program to in-kernel function */
46 	[BPF_REG_1] = A64_R(0),
47 	[BPF_REG_2] = A64_R(1),
48 	[BPF_REG_3] = A64_R(2),
49 	[BPF_REG_4] = A64_R(3),
50 	[BPF_REG_5] = A64_R(4),
51 	/* callee saved registers that in-kernel function will preserve */
52 	[BPF_REG_6] = A64_R(19),
53 	[BPF_REG_7] = A64_R(20),
54 	[BPF_REG_8] = A64_R(21),
55 	[BPF_REG_9] = A64_R(22),
56 	/* read-only frame pointer to access stack */
57 	[BPF_REG_FP] = A64_R(25),
58 	/* temporary registers for BPF JIT */
59 	[TMP_REG_1] = A64_R(10),
60 	[TMP_REG_2] = A64_R(11),
61 	[TMP_REG_3] = A64_R(12),
62 	/* tail_call_cnt */
63 	[TCALL_CNT] = A64_R(26),
64 	/* temporary register for blinding constants */
65 	[BPF_REG_AX] = A64_R(9),
66 };
67 
68 struct jit_ctx {
69 	const struct bpf_prog *prog;
70 	int idx;
71 	int epilogue_offset;
72 	int *offset;
73 	int exentry_idx;
74 	__le32 *image;
75 	u32 stack_size;
76 };
77 
78 static inline void emit(const u32 insn, struct jit_ctx *ctx)
79 {
80 	if (ctx->image != NULL)
81 		ctx->image[ctx->idx] = cpu_to_le32(insn);
82 
83 	ctx->idx++;
84 }
85 
86 static inline void emit_a64_mov_i(const int is64, const int reg,
87 				  const s32 val, struct jit_ctx *ctx)
88 {
89 	u16 hi = val >> 16;
90 	u16 lo = val & 0xffff;
91 
92 	if (hi & 0x8000) {
93 		if (hi == 0xffff) {
94 			emit(A64_MOVN(is64, reg, (u16)~lo, 0), ctx);
95 		} else {
96 			emit(A64_MOVN(is64, reg, (u16)~hi, 16), ctx);
97 			if (lo != 0xffff)
98 				emit(A64_MOVK(is64, reg, lo, 0), ctx);
99 		}
100 	} else {
101 		emit(A64_MOVZ(is64, reg, lo, 0), ctx);
102 		if (hi)
103 			emit(A64_MOVK(is64, reg, hi, 16), ctx);
104 	}
105 }
106 
107 static int i64_i16_blocks(const u64 val, bool inverse)
108 {
109 	return (((val >>  0) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
110 	       (((val >> 16) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
111 	       (((val >> 32) & 0xffff) != (inverse ? 0xffff : 0x0000)) +
112 	       (((val >> 48) & 0xffff) != (inverse ? 0xffff : 0x0000));
113 }
114 
115 static inline void emit_a64_mov_i64(const int reg, const u64 val,
116 				    struct jit_ctx *ctx)
117 {
118 	u64 nrm_tmp = val, rev_tmp = ~val;
119 	bool inverse;
120 	int shift;
121 
122 	if (!(nrm_tmp >> 32))
123 		return emit_a64_mov_i(0, reg, (u32)val, ctx);
124 
125 	inverse = i64_i16_blocks(nrm_tmp, true) < i64_i16_blocks(nrm_tmp, false);
126 	shift = max(round_down((inverse ? (fls64(rev_tmp) - 1) :
127 					  (fls64(nrm_tmp) - 1)), 16), 0);
128 	if (inverse)
129 		emit(A64_MOVN(1, reg, (rev_tmp >> shift) & 0xffff, shift), ctx);
130 	else
131 		emit(A64_MOVZ(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
132 	shift -= 16;
133 	while (shift >= 0) {
134 		if (((nrm_tmp >> shift) & 0xffff) != (inverse ? 0xffff : 0x0000))
135 			emit(A64_MOVK(1, reg, (nrm_tmp >> shift) & 0xffff, shift), ctx);
136 		shift -= 16;
137 	}
138 }
139 
140 /*
141  * Kernel addresses in the vmalloc space use at most 48 bits, and the
142  * remaining bits are guaranteed to be 0x1. So we can compose the address
143  * with a fixed length movn/movk/movk sequence.
144  */
145 static inline void emit_addr_mov_i64(const int reg, const u64 val,
146 				     struct jit_ctx *ctx)
147 {
148 	u64 tmp = val;
149 	int shift = 0;
150 
151 	emit(A64_MOVN(1, reg, ~tmp & 0xffff, shift), ctx);
152 	while (shift < 32) {
153 		tmp >>= 16;
154 		shift += 16;
155 		emit(A64_MOVK(1, reg, tmp & 0xffff, shift), ctx);
156 	}
157 }
158 
159 static inline int bpf2a64_offset(int bpf_insn, int off,
160 				 const struct jit_ctx *ctx)
161 {
162 	/* BPF JMP offset is relative to the next instruction */
163 	bpf_insn++;
164 	/*
165 	 * Whereas arm64 branch instructions encode the offset
166 	 * from the branch itself, so we must subtract 1 from the
167 	 * instruction offset.
168 	 */
169 	return ctx->offset[bpf_insn + off] - (ctx->offset[bpf_insn] - 1);
170 }
171 
172 static void jit_fill_hole(void *area, unsigned int size)
173 {
174 	__le32 *ptr;
175 	/* We are guaranteed to have aligned memory. */
176 	for (ptr = area; size >= sizeof(u32); size -= sizeof(u32))
177 		*ptr++ = cpu_to_le32(AARCH64_BREAK_FAULT);
178 }
179 
180 static inline int epilogue_offset(const struct jit_ctx *ctx)
181 {
182 	int to = ctx->epilogue_offset;
183 	int from = ctx->idx;
184 
185 	return to - from;
186 }
187 
188 static bool is_addsub_imm(u32 imm)
189 {
190 	/* Either imm12 or shifted imm12. */
191 	return !(imm & ~0xfff) || !(imm & ~0xfff000);
192 }
193 
194 /* Tail call offset to jump into */
195 #if IS_ENABLED(CONFIG_ARM64_BTI_KERNEL)
196 #define PROLOGUE_OFFSET 8
197 #else
198 #define PROLOGUE_OFFSET 7
199 #endif
200 
201 static int build_prologue(struct jit_ctx *ctx, bool ebpf_from_cbpf)
202 {
203 	const struct bpf_prog *prog = ctx->prog;
204 	const u8 r6 = bpf2a64[BPF_REG_6];
205 	const u8 r7 = bpf2a64[BPF_REG_7];
206 	const u8 r8 = bpf2a64[BPF_REG_8];
207 	const u8 r9 = bpf2a64[BPF_REG_9];
208 	const u8 fp = bpf2a64[BPF_REG_FP];
209 	const u8 tcc = bpf2a64[TCALL_CNT];
210 	const int idx0 = ctx->idx;
211 	int cur_offset;
212 
213 	/*
214 	 * BPF prog stack layout
215 	 *
216 	 *                         high
217 	 * original A64_SP =>   0:+-----+ BPF prologue
218 	 *                        |FP/LR|
219 	 * current A64_FP =>  -16:+-----+
220 	 *                        | ... | callee saved registers
221 	 * BPF fp register => -64:+-----+ <= (BPF_FP)
222 	 *                        |     |
223 	 *                        | ... | BPF prog stack
224 	 *                        |     |
225 	 *                        +-----+ <= (BPF_FP - prog->aux->stack_depth)
226 	 *                        |RSVD | padding
227 	 * current A64_SP =>      +-----+ <= (BPF_FP - ctx->stack_size)
228 	 *                        |     |
229 	 *                        | ... | Function call stack
230 	 *                        |     |
231 	 *                        +-----+
232 	 *                          low
233 	 *
234 	 */
235 
236 	/* BTI landing pad */
237 	if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
238 		emit(A64_BTI_C, ctx);
239 
240 	/* Save FP and LR registers to stay align with ARM64 AAPCS */
241 	emit(A64_PUSH(A64_FP, A64_LR, A64_SP), ctx);
242 	emit(A64_MOV(1, A64_FP, A64_SP), ctx);
243 
244 	/* Save callee-saved registers */
245 	emit(A64_PUSH(r6, r7, A64_SP), ctx);
246 	emit(A64_PUSH(r8, r9, A64_SP), ctx);
247 	emit(A64_PUSH(fp, tcc, A64_SP), ctx);
248 
249 	/* Set up BPF prog stack base register */
250 	emit(A64_MOV(1, fp, A64_SP), ctx);
251 
252 	if (!ebpf_from_cbpf) {
253 		/* Initialize tail_call_cnt */
254 		emit(A64_MOVZ(1, tcc, 0, 0), ctx);
255 
256 		cur_offset = ctx->idx - idx0;
257 		if (cur_offset != PROLOGUE_OFFSET) {
258 			pr_err_once("PROLOGUE_OFFSET = %d, expected %d!\n",
259 				    cur_offset, PROLOGUE_OFFSET);
260 			return -1;
261 		}
262 
263 		/* BTI landing pad for the tail call, done with a BR */
264 		if (IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
265 			emit(A64_BTI_J, ctx);
266 	}
267 
268 	/* Stack must be multiples of 16B */
269 	ctx->stack_size = round_up(prog->aux->stack_depth, 16);
270 
271 	/* Set up function call stack */
272 	emit(A64_SUB_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
273 	return 0;
274 }
275 
276 static int out_offset = -1; /* initialized on the first pass of build_body() */
277 static int emit_bpf_tail_call(struct jit_ctx *ctx)
278 {
279 	/* bpf_tail_call(void *prog_ctx, struct bpf_array *array, u64 index) */
280 	const u8 r2 = bpf2a64[BPF_REG_2];
281 	const u8 r3 = bpf2a64[BPF_REG_3];
282 
283 	const u8 tmp = bpf2a64[TMP_REG_1];
284 	const u8 prg = bpf2a64[TMP_REG_2];
285 	const u8 tcc = bpf2a64[TCALL_CNT];
286 	const int idx0 = ctx->idx;
287 #define cur_offset (ctx->idx - idx0)
288 #define jmp_offset (out_offset - (cur_offset))
289 	size_t off;
290 
291 	/* if (index >= array->map.max_entries)
292 	 *     goto out;
293 	 */
294 	off = offsetof(struct bpf_array, map.max_entries);
295 	emit_a64_mov_i64(tmp, off, ctx);
296 	emit(A64_LDR32(tmp, r2, tmp), ctx);
297 	emit(A64_MOV(0, r3, r3), ctx);
298 	emit(A64_CMP(0, r3, tmp), ctx);
299 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
300 
301 	/*
302 	 * if (tail_call_cnt >= MAX_TAIL_CALL_CNT)
303 	 *     goto out;
304 	 * tail_call_cnt++;
305 	 */
306 	emit_a64_mov_i64(tmp, MAX_TAIL_CALL_CNT, ctx);
307 	emit(A64_CMP(1, tcc, tmp), ctx);
308 	emit(A64_B_(A64_COND_CS, jmp_offset), ctx);
309 	emit(A64_ADD_I(1, tcc, tcc, 1), ctx);
310 
311 	/* prog = array->ptrs[index];
312 	 * if (prog == NULL)
313 	 *     goto out;
314 	 */
315 	off = offsetof(struct bpf_array, ptrs);
316 	emit_a64_mov_i64(tmp, off, ctx);
317 	emit(A64_ADD(1, tmp, r2, tmp), ctx);
318 	emit(A64_LSL(1, prg, r3, 3), ctx);
319 	emit(A64_LDR64(prg, tmp, prg), ctx);
320 	emit(A64_CBZ(1, prg, jmp_offset), ctx);
321 
322 	/* goto *(prog->bpf_func + prologue_offset); */
323 	off = offsetof(struct bpf_prog, bpf_func);
324 	emit_a64_mov_i64(tmp, off, ctx);
325 	emit(A64_LDR64(tmp, prg, tmp), ctx);
326 	emit(A64_ADD_I(1, tmp, tmp, sizeof(u32) * PROLOGUE_OFFSET), ctx);
327 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
328 	emit(A64_BR(tmp), ctx);
329 
330 	/* out: */
331 	if (out_offset == -1)
332 		out_offset = cur_offset;
333 	if (cur_offset != out_offset) {
334 		pr_err_once("tail_call out_offset = %d, expected %d!\n",
335 			    cur_offset, out_offset);
336 		return -1;
337 	}
338 	return 0;
339 #undef cur_offset
340 #undef jmp_offset
341 }
342 
343 #ifdef CONFIG_ARM64_LSE_ATOMICS
344 static int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
345 {
346 	const u8 code = insn->code;
347 	const u8 dst = bpf2a64[insn->dst_reg];
348 	const u8 src = bpf2a64[insn->src_reg];
349 	const u8 tmp = bpf2a64[TMP_REG_1];
350 	const u8 tmp2 = bpf2a64[TMP_REG_2];
351 	const bool isdw = BPF_SIZE(code) == BPF_DW;
352 	const s16 off = insn->off;
353 	u8 reg;
354 
355 	if (!off) {
356 		reg = dst;
357 	} else {
358 		emit_a64_mov_i(1, tmp, off, ctx);
359 		emit(A64_ADD(1, tmp, tmp, dst), ctx);
360 		reg = tmp;
361 	}
362 
363 	switch (insn->imm) {
364 	/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
365 	case BPF_ADD:
366 		emit(A64_STADD(isdw, reg, src), ctx);
367 		break;
368 	case BPF_AND:
369 		emit(A64_MVN(isdw, tmp2, src), ctx);
370 		emit(A64_STCLR(isdw, reg, tmp2), ctx);
371 		break;
372 	case BPF_OR:
373 		emit(A64_STSET(isdw, reg, src), ctx);
374 		break;
375 	case BPF_XOR:
376 		emit(A64_STEOR(isdw, reg, src), ctx);
377 		break;
378 	/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
379 	case BPF_ADD | BPF_FETCH:
380 		emit(A64_LDADDAL(isdw, src, reg, src), ctx);
381 		break;
382 	case BPF_AND | BPF_FETCH:
383 		emit(A64_MVN(isdw, tmp2, src), ctx);
384 		emit(A64_LDCLRAL(isdw, src, reg, tmp2), ctx);
385 		break;
386 	case BPF_OR | BPF_FETCH:
387 		emit(A64_LDSETAL(isdw, src, reg, src), ctx);
388 		break;
389 	case BPF_XOR | BPF_FETCH:
390 		emit(A64_LDEORAL(isdw, src, reg, src), ctx);
391 		break;
392 	/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
393 	case BPF_XCHG:
394 		emit(A64_SWPAL(isdw, src, reg, src), ctx);
395 		break;
396 	/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
397 	case BPF_CMPXCHG:
398 		emit(A64_CASAL(isdw, src, reg, bpf2a64[BPF_REG_0]), ctx);
399 		break;
400 	default:
401 		pr_err_once("unknown atomic op code %02x\n", insn->imm);
402 		return -EINVAL;
403 	}
404 
405 	return 0;
406 }
407 #else
408 static inline int emit_lse_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
409 {
410 	return -EINVAL;
411 }
412 #endif
413 
414 static int emit_ll_sc_atomic(const struct bpf_insn *insn, struct jit_ctx *ctx)
415 {
416 	const u8 code = insn->code;
417 	const u8 dst = bpf2a64[insn->dst_reg];
418 	const u8 src = bpf2a64[insn->src_reg];
419 	const u8 tmp = bpf2a64[TMP_REG_1];
420 	const u8 tmp2 = bpf2a64[TMP_REG_2];
421 	const u8 tmp3 = bpf2a64[TMP_REG_3];
422 	const int i = insn - ctx->prog->insnsi;
423 	const s32 imm = insn->imm;
424 	const s16 off = insn->off;
425 	const bool isdw = BPF_SIZE(code) == BPF_DW;
426 	u8 reg;
427 	s32 jmp_offset;
428 
429 	if (!off) {
430 		reg = dst;
431 	} else {
432 		emit_a64_mov_i(1, tmp, off, ctx);
433 		emit(A64_ADD(1, tmp, tmp, dst), ctx);
434 		reg = tmp;
435 	}
436 
437 	if (imm == BPF_ADD || imm == BPF_AND ||
438 	    imm == BPF_OR || imm == BPF_XOR) {
439 		/* lock *(u32/u64 *)(dst_reg + off) <op>= src_reg */
440 		emit(A64_LDXR(isdw, tmp2, reg), ctx);
441 		if (imm == BPF_ADD)
442 			emit(A64_ADD(isdw, tmp2, tmp2, src), ctx);
443 		else if (imm == BPF_AND)
444 			emit(A64_AND(isdw, tmp2, tmp2, src), ctx);
445 		else if (imm == BPF_OR)
446 			emit(A64_ORR(isdw, tmp2, tmp2, src), ctx);
447 		else
448 			emit(A64_EOR(isdw, tmp2, tmp2, src), ctx);
449 		emit(A64_STXR(isdw, tmp2, reg, tmp3), ctx);
450 		jmp_offset = -3;
451 		check_imm19(jmp_offset);
452 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
453 	} else if (imm == (BPF_ADD | BPF_FETCH) ||
454 		   imm == (BPF_AND | BPF_FETCH) ||
455 		   imm == (BPF_OR | BPF_FETCH) ||
456 		   imm == (BPF_XOR | BPF_FETCH)) {
457 		/* src_reg = atomic_fetch_<op>(dst_reg + off, src_reg) */
458 		const u8 ax = bpf2a64[BPF_REG_AX];
459 
460 		emit(A64_MOV(isdw, ax, src), ctx);
461 		emit(A64_LDXR(isdw, src, reg), ctx);
462 		if (imm == (BPF_ADD | BPF_FETCH))
463 			emit(A64_ADD(isdw, tmp2, src, ax), ctx);
464 		else if (imm == (BPF_AND | BPF_FETCH))
465 			emit(A64_AND(isdw, tmp2, src, ax), ctx);
466 		else if (imm == (BPF_OR | BPF_FETCH))
467 			emit(A64_ORR(isdw, tmp2, src, ax), ctx);
468 		else
469 			emit(A64_EOR(isdw, tmp2, src, ax), ctx);
470 		emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
471 		jmp_offset = -3;
472 		check_imm19(jmp_offset);
473 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
474 		emit(A64_DMB_ISH, ctx);
475 	} else if (imm == BPF_XCHG) {
476 		/* src_reg = atomic_xchg(dst_reg + off, src_reg); */
477 		emit(A64_MOV(isdw, tmp2, src), ctx);
478 		emit(A64_LDXR(isdw, src, reg), ctx);
479 		emit(A64_STLXR(isdw, tmp2, reg, tmp3), ctx);
480 		jmp_offset = -2;
481 		check_imm19(jmp_offset);
482 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
483 		emit(A64_DMB_ISH, ctx);
484 	} else if (imm == BPF_CMPXCHG) {
485 		/* r0 = atomic_cmpxchg(dst_reg + off, r0, src_reg); */
486 		const u8 r0 = bpf2a64[BPF_REG_0];
487 
488 		emit(A64_MOV(isdw, tmp2, r0), ctx);
489 		emit(A64_LDXR(isdw, r0, reg), ctx);
490 		emit(A64_EOR(isdw, tmp3, r0, tmp2), ctx);
491 		jmp_offset = 4;
492 		check_imm19(jmp_offset);
493 		emit(A64_CBNZ(isdw, tmp3, jmp_offset), ctx);
494 		emit(A64_STLXR(isdw, src, reg, tmp3), ctx);
495 		jmp_offset = -4;
496 		check_imm19(jmp_offset);
497 		emit(A64_CBNZ(0, tmp3, jmp_offset), ctx);
498 		emit(A64_DMB_ISH, ctx);
499 	} else {
500 		pr_err_once("unknown atomic op code %02x\n", imm);
501 		return -EINVAL;
502 	}
503 
504 	return 0;
505 }
506 
507 static void build_epilogue(struct jit_ctx *ctx)
508 {
509 	const u8 r0 = bpf2a64[BPF_REG_0];
510 	const u8 r6 = bpf2a64[BPF_REG_6];
511 	const u8 r7 = bpf2a64[BPF_REG_7];
512 	const u8 r8 = bpf2a64[BPF_REG_8];
513 	const u8 r9 = bpf2a64[BPF_REG_9];
514 	const u8 fp = bpf2a64[BPF_REG_FP];
515 
516 	/* We're done with BPF stack */
517 	emit(A64_ADD_I(1, A64_SP, A64_SP, ctx->stack_size), ctx);
518 
519 	/* Restore fs (x25) and x26 */
520 	emit(A64_POP(fp, A64_R(26), A64_SP), ctx);
521 
522 	/* Restore callee-saved register */
523 	emit(A64_POP(r8, r9, A64_SP), ctx);
524 	emit(A64_POP(r6, r7, A64_SP), ctx);
525 
526 	/* Restore FP/LR registers */
527 	emit(A64_POP(A64_FP, A64_LR, A64_SP), ctx);
528 
529 	/* Set return value */
530 	emit(A64_MOV(1, A64_R(0), r0), ctx);
531 
532 	emit(A64_RET(A64_LR), ctx);
533 }
534 
535 #define BPF_FIXUP_OFFSET_MASK	GENMASK(26, 0)
536 #define BPF_FIXUP_REG_MASK	GENMASK(31, 27)
537 
538 bool ex_handler_bpf(const struct exception_table_entry *ex,
539 		    struct pt_regs *regs)
540 {
541 	off_t offset = FIELD_GET(BPF_FIXUP_OFFSET_MASK, ex->fixup);
542 	int dst_reg = FIELD_GET(BPF_FIXUP_REG_MASK, ex->fixup);
543 
544 	regs->regs[dst_reg] = 0;
545 	regs->pc = (unsigned long)&ex->fixup - offset;
546 	return true;
547 }
548 
549 /* For accesses to BTF pointers, add an entry to the exception table */
550 static int add_exception_handler(const struct bpf_insn *insn,
551 				 struct jit_ctx *ctx,
552 				 int dst_reg)
553 {
554 	off_t offset;
555 	unsigned long pc;
556 	struct exception_table_entry *ex;
557 
558 	if (!ctx->image)
559 		/* First pass */
560 		return 0;
561 
562 	if (BPF_MODE(insn->code) != BPF_PROBE_MEM)
563 		return 0;
564 
565 	if (!ctx->prog->aux->extable ||
566 	    WARN_ON_ONCE(ctx->exentry_idx >= ctx->prog->aux->num_exentries))
567 		return -EINVAL;
568 
569 	ex = &ctx->prog->aux->extable[ctx->exentry_idx];
570 	pc = (unsigned long)&ctx->image[ctx->idx - 1];
571 
572 	offset = pc - (long)&ex->insn;
573 	if (WARN_ON_ONCE(offset >= 0 || offset < INT_MIN))
574 		return -ERANGE;
575 	ex->insn = offset;
576 
577 	/*
578 	 * Since the extable follows the program, the fixup offset is always
579 	 * negative and limited to BPF_JIT_REGION_SIZE. Store a positive value
580 	 * to keep things simple, and put the destination register in the upper
581 	 * bits. We don't need to worry about buildtime or runtime sort
582 	 * modifying the upper bits because the table is already sorted, and
583 	 * isn't part of the main exception table.
584 	 */
585 	offset = (long)&ex->fixup - (pc + AARCH64_INSN_SIZE);
586 	if (!FIELD_FIT(BPF_FIXUP_OFFSET_MASK, offset))
587 		return -ERANGE;
588 
589 	ex->fixup = FIELD_PREP(BPF_FIXUP_OFFSET_MASK, offset) |
590 		    FIELD_PREP(BPF_FIXUP_REG_MASK, dst_reg);
591 
592 	ex->type = EX_TYPE_BPF;
593 
594 	ctx->exentry_idx++;
595 	return 0;
596 }
597 
598 /* JITs an eBPF instruction.
599  * Returns:
600  * 0  - successfully JITed an 8-byte eBPF instruction.
601  * >0 - successfully JITed a 16-byte eBPF instruction.
602  * <0 - failed to JIT.
603  */
604 static int build_insn(const struct bpf_insn *insn, struct jit_ctx *ctx,
605 		      bool extra_pass)
606 {
607 	const u8 code = insn->code;
608 	const u8 dst = bpf2a64[insn->dst_reg];
609 	const u8 src = bpf2a64[insn->src_reg];
610 	const u8 tmp = bpf2a64[TMP_REG_1];
611 	const u8 tmp2 = bpf2a64[TMP_REG_2];
612 	const s16 off = insn->off;
613 	const s32 imm = insn->imm;
614 	const int i = insn - ctx->prog->insnsi;
615 	const bool is64 = BPF_CLASS(code) == BPF_ALU64 ||
616 			  BPF_CLASS(code) == BPF_JMP;
617 	u8 jmp_cond;
618 	s32 jmp_offset;
619 	u32 a64_insn;
620 	int ret;
621 
622 	switch (code) {
623 	/* dst = src */
624 	case BPF_ALU | BPF_MOV | BPF_X:
625 	case BPF_ALU64 | BPF_MOV | BPF_X:
626 		emit(A64_MOV(is64, dst, src), ctx);
627 		break;
628 	/* dst = dst OP src */
629 	case BPF_ALU | BPF_ADD | BPF_X:
630 	case BPF_ALU64 | BPF_ADD | BPF_X:
631 		emit(A64_ADD(is64, dst, dst, src), ctx);
632 		break;
633 	case BPF_ALU | BPF_SUB | BPF_X:
634 	case BPF_ALU64 | BPF_SUB | BPF_X:
635 		emit(A64_SUB(is64, dst, dst, src), ctx);
636 		break;
637 	case BPF_ALU | BPF_AND | BPF_X:
638 	case BPF_ALU64 | BPF_AND | BPF_X:
639 		emit(A64_AND(is64, dst, dst, src), ctx);
640 		break;
641 	case BPF_ALU | BPF_OR | BPF_X:
642 	case BPF_ALU64 | BPF_OR | BPF_X:
643 		emit(A64_ORR(is64, dst, dst, src), ctx);
644 		break;
645 	case BPF_ALU | BPF_XOR | BPF_X:
646 	case BPF_ALU64 | BPF_XOR | BPF_X:
647 		emit(A64_EOR(is64, dst, dst, src), ctx);
648 		break;
649 	case BPF_ALU | BPF_MUL | BPF_X:
650 	case BPF_ALU64 | BPF_MUL | BPF_X:
651 		emit(A64_MUL(is64, dst, dst, src), ctx);
652 		break;
653 	case BPF_ALU | BPF_DIV | BPF_X:
654 	case BPF_ALU64 | BPF_DIV | BPF_X:
655 		emit(A64_UDIV(is64, dst, dst, src), ctx);
656 		break;
657 	case BPF_ALU | BPF_MOD | BPF_X:
658 	case BPF_ALU64 | BPF_MOD | BPF_X:
659 		emit(A64_UDIV(is64, tmp, dst, src), ctx);
660 		emit(A64_MSUB(is64, dst, dst, tmp, src), ctx);
661 		break;
662 	case BPF_ALU | BPF_LSH | BPF_X:
663 	case BPF_ALU64 | BPF_LSH | BPF_X:
664 		emit(A64_LSLV(is64, dst, dst, src), ctx);
665 		break;
666 	case BPF_ALU | BPF_RSH | BPF_X:
667 	case BPF_ALU64 | BPF_RSH | BPF_X:
668 		emit(A64_LSRV(is64, dst, dst, src), ctx);
669 		break;
670 	case BPF_ALU | BPF_ARSH | BPF_X:
671 	case BPF_ALU64 | BPF_ARSH | BPF_X:
672 		emit(A64_ASRV(is64, dst, dst, src), ctx);
673 		break;
674 	/* dst = -dst */
675 	case BPF_ALU | BPF_NEG:
676 	case BPF_ALU64 | BPF_NEG:
677 		emit(A64_NEG(is64, dst, dst), ctx);
678 		break;
679 	/* dst = BSWAP##imm(dst) */
680 	case BPF_ALU | BPF_END | BPF_FROM_LE:
681 	case BPF_ALU | BPF_END | BPF_FROM_BE:
682 #ifdef CONFIG_CPU_BIG_ENDIAN
683 		if (BPF_SRC(code) == BPF_FROM_BE)
684 			goto emit_bswap_uxt;
685 #else /* !CONFIG_CPU_BIG_ENDIAN */
686 		if (BPF_SRC(code) == BPF_FROM_LE)
687 			goto emit_bswap_uxt;
688 #endif
689 		switch (imm) {
690 		case 16:
691 			emit(A64_REV16(is64, dst, dst), ctx);
692 			/* zero-extend 16 bits into 64 bits */
693 			emit(A64_UXTH(is64, dst, dst), ctx);
694 			break;
695 		case 32:
696 			emit(A64_REV32(is64, dst, dst), ctx);
697 			/* upper 32 bits already cleared */
698 			break;
699 		case 64:
700 			emit(A64_REV64(dst, dst), ctx);
701 			break;
702 		}
703 		break;
704 emit_bswap_uxt:
705 		switch (imm) {
706 		case 16:
707 			/* zero-extend 16 bits into 64 bits */
708 			emit(A64_UXTH(is64, dst, dst), ctx);
709 			break;
710 		case 32:
711 			/* zero-extend 32 bits into 64 bits */
712 			emit(A64_UXTW(is64, dst, dst), ctx);
713 			break;
714 		case 64:
715 			/* nop */
716 			break;
717 		}
718 		break;
719 	/* dst = imm */
720 	case BPF_ALU | BPF_MOV | BPF_K:
721 	case BPF_ALU64 | BPF_MOV | BPF_K:
722 		emit_a64_mov_i(is64, dst, imm, ctx);
723 		break;
724 	/* dst = dst OP imm */
725 	case BPF_ALU | BPF_ADD | BPF_K:
726 	case BPF_ALU64 | BPF_ADD | BPF_K:
727 		if (is_addsub_imm(imm)) {
728 			emit(A64_ADD_I(is64, dst, dst, imm), ctx);
729 		} else if (is_addsub_imm(-imm)) {
730 			emit(A64_SUB_I(is64, dst, dst, -imm), ctx);
731 		} else {
732 			emit_a64_mov_i(is64, tmp, imm, ctx);
733 			emit(A64_ADD(is64, dst, dst, tmp), ctx);
734 		}
735 		break;
736 	case BPF_ALU | BPF_SUB | BPF_K:
737 	case BPF_ALU64 | BPF_SUB | BPF_K:
738 		if (is_addsub_imm(imm)) {
739 			emit(A64_SUB_I(is64, dst, dst, imm), ctx);
740 		} else if (is_addsub_imm(-imm)) {
741 			emit(A64_ADD_I(is64, dst, dst, -imm), ctx);
742 		} else {
743 			emit_a64_mov_i(is64, tmp, imm, ctx);
744 			emit(A64_SUB(is64, dst, dst, tmp), ctx);
745 		}
746 		break;
747 	case BPF_ALU | BPF_AND | BPF_K:
748 	case BPF_ALU64 | BPF_AND | BPF_K:
749 		a64_insn = A64_AND_I(is64, dst, dst, imm);
750 		if (a64_insn != AARCH64_BREAK_FAULT) {
751 			emit(a64_insn, ctx);
752 		} else {
753 			emit_a64_mov_i(is64, tmp, imm, ctx);
754 			emit(A64_AND(is64, dst, dst, tmp), ctx);
755 		}
756 		break;
757 	case BPF_ALU | BPF_OR | BPF_K:
758 	case BPF_ALU64 | BPF_OR | BPF_K:
759 		a64_insn = A64_ORR_I(is64, dst, dst, imm);
760 		if (a64_insn != AARCH64_BREAK_FAULT) {
761 			emit(a64_insn, ctx);
762 		} else {
763 			emit_a64_mov_i(is64, tmp, imm, ctx);
764 			emit(A64_ORR(is64, dst, dst, tmp), ctx);
765 		}
766 		break;
767 	case BPF_ALU | BPF_XOR | BPF_K:
768 	case BPF_ALU64 | BPF_XOR | BPF_K:
769 		a64_insn = A64_EOR_I(is64, dst, dst, imm);
770 		if (a64_insn != AARCH64_BREAK_FAULT) {
771 			emit(a64_insn, ctx);
772 		} else {
773 			emit_a64_mov_i(is64, tmp, imm, ctx);
774 			emit(A64_EOR(is64, dst, dst, tmp), ctx);
775 		}
776 		break;
777 	case BPF_ALU | BPF_MUL | BPF_K:
778 	case BPF_ALU64 | BPF_MUL | BPF_K:
779 		emit_a64_mov_i(is64, tmp, imm, ctx);
780 		emit(A64_MUL(is64, dst, dst, tmp), ctx);
781 		break;
782 	case BPF_ALU | BPF_DIV | BPF_K:
783 	case BPF_ALU64 | BPF_DIV | BPF_K:
784 		emit_a64_mov_i(is64, tmp, imm, ctx);
785 		emit(A64_UDIV(is64, dst, dst, tmp), ctx);
786 		break;
787 	case BPF_ALU | BPF_MOD | BPF_K:
788 	case BPF_ALU64 | BPF_MOD | BPF_K:
789 		emit_a64_mov_i(is64, tmp2, imm, ctx);
790 		emit(A64_UDIV(is64, tmp, dst, tmp2), ctx);
791 		emit(A64_MSUB(is64, dst, dst, tmp, tmp2), ctx);
792 		break;
793 	case BPF_ALU | BPF_LSH | BPF_K:
794 	case BPF_ALU64 | BPF_LSH | BPF_K:
795 		emit(A64_LSL(is64, dst, dst, imm), ctx);
796 		break;
797 	case BPF_ALU | BPF_RSH | BPF_K:
798 	case BPF_ALU64 | BPF_RSH | BPF_K:
799 		emit(A64_LSR(is64, dst, dst, imm), ctx);
800 		break;
801 	case BPF_ALU | BPF_ARSH | BPF_K:
802 	case BPF_ALU64 | BPF_ARSH | BPF_K:
803 		emit(A64_ASR(is64, dst, dst, imm), ctx);
804 		break;
805 
806 	/* JUMP off */
807 	case BPF_JMP | BPF_JA:
808 		jmp_offset = bpf2a64_offset(i, off, ctx);
809 		check_imm26(jmp_offset);
810 		emit(A64_B(jmp_offset), ctx);
811 		break;
812 	/* IF (dst COND src) JUMP off */
813 	case BPF_JMP | BPF_JEQ | BPF_X:
814 	case BPF_JMP | BPF_JGT | BPF_X:
815 	case BPF_JMP | BPF_JLT | BPF_X:
816 	case BPF_JMP | BPF_JGE | BPF_X:
817 	case BPF_JMP | BPF_JLE | BPF_X:
818 	case BPF_JMP | BPF_JNE | BPF_X:
819 	case BPF_JMP | BPF_JSGT | BPF_X:
820 	case BPF_JMP | BPF_JSLT | BPF_X:
821 	case BPF_JMP | BPF_JSGE | BPF_X:
822 	case BPF_JMP | BPF_JSLE | BPF_X:
823 	case BPF_JMP32 | BPF_JEQ | BPF_X:
824 	case BPF_JMP32 | BPF_JGT | BPF_X:
825 	case BPF_JMP32 | BPF_JLT | BPF_X:
826 	case BPF_JMP32 | BPF_JGE | BPF_X:
827 	case BPF_JMP32 | BPF_JLE | BPF_X:
828 	case BPF_JMP32 | BPF_JNE | BPF_X:
829 	case BPF_JMP32 | BPF_JSGT | BPF_X:
830 	case BPF_JMP32 | BPF_JSLT | BPF_X:
831 	case BPF_JMP32 | BPF_JSGE | BPF_X:
832 	case BPF_JMP32 | BPF_JSLE | BPF_X:
833 		emit(A64_CMP(is64, dst, src), ctx);
834 emit_cond_jmp:
835 		jmp_offset = bpf2a64_offset(i, off, ctx);
836 		check_imm19(jmp_offset);
837 		switch (BPF_OP(code)) {
838 		case BPF_JEQ:
839 			jmp_cond = A64_COND_EQ;
840 			break;
841 		case BPF_JGT:
842 			jmp_cond = A64_COND_HI;
843 			break;
844 		case BPF_JLT:
845 			jmp_cond = A64_COND_CC;
846 			break;
847 		case BPF_JGE:
848 			jmp_cond = A64_COND_CS;
849 			break;
850 		case BPF_JLE:
851 			jmp_cond = A64_COND_LS;
852 			break;
853 		case BPF_JSET:
854 		case BPF_JNE:
855 			jmp_cond = A64_COND_NE;
856 			break;
857 		case BPF_JSGT:
858 			jmp_cond = A64_COND_GT;
859 			break;
860 		case BPF_JSLT:
861 			jmp_cond = A64_COND_LT;
862 			break;
863 		case BPF_JSGE:
864 			jmp_cond = A64_COND_GE;
865 			break;
866 		case BPF_JSLE:
867 			jmp_cond = A64_COND_LE;
868 			break;
869 		default:
870 			return -EFAULT;
871 		}
872 		emit(A64_B_(jmp_cond, jmp_offset), ctx);
873 		break;
874 	case BPF_JMP | BPF_JSET | BPF_X:
875 	case BPF_JMP32 | BPF_JSET | BPF_X:
876 		emit(A64_TST(is64, dst, src), ctx);
877 		goto emit_cond_jmp;
878 	/* IF (dst COND imm) JUMP off */
879 	case BPF_JMP | BPF_JEQ | BPF_K:
880 	case BPF_JMP | BPF_JGT | BPF_K:
881 	case BPF_JMP | BPF_JLT | BPF_K:
882 	case BPF_JMP | BPF_JGE | BPF_K:
883 	case BPF_JMP | BPF_JLE | BPF_K:
884 	case BPF_JMP | BPF_JNE | BPF_K:
885 	case BPF_JMP | BPF_JSGT | BPF_K:
886 	case BPF_JMP | BPF_JSLT | BPF_K:
887 	case BPF_JMP | BPF_JSGE | BPF_K:
888 	case BPF_JMP | BPF_JSLE | BPF_K:
889 	case BPF_JMP32 | BPF_JEQ | BPF_K:
890 	case BPF_JMP32 | BPF_JGT | BPF_K:
891 	case BPF_JMP32 | BPF_JLT | BPF_K:
892 	case BPF_JMP32 | BPF_JGE | BPF_K:
893 	case BPF_JMP32 | BPF_JLE | BPF_K:
894 	case BPF_JMP32 | BPF_JNE | BPF_K:
895 	case BPF_JMP32 | BPF_JSGT | BPF_K:
896 	case BPF_JMP32 | BPF_JSLT | BPF_K:
897 	case BPF_JMP32 | BPF_JSGE | BPF_K:
898 	case BPF_JMP32 | BPF_JSLE | BPF_K:
899 		if (is_addsub_imm(imm)) {
900 			emit(A64_CMP_I(is64, dst, imm), ctx);
901 		} else if (is_addsub_imm(-imm)) {
902 			emit(A64_CMN_I(is64, dst, -imm), ctx);
903 		} else {
904 			emit_a64_mov_i(is64, tmp, imm, ctx);
905 			emit(A64_CMP(is64, dst, tmp), ctx);
906 		}
907 		goto emit_cond_jmp;
908 	case BPF_JMP | BPF_JSET | BPF_K:
909 	case BPF_JMP32 | BPF_JSET | BPF_K:
910 		a64_insn = A64_TST_I(is64, dst, imm);
911 		if (a64_insn != AARCH64_BREAK_FAULT) {
912 			emit(a64_insn, ctx);
913 		} else {
914 			emit_a64_mov_i(is64, tmp, imm, ctx);
915 			emit(A64_TST(is64, dst, tmp), ctx);
916 		}
917 		goto emit_cond_jmp;
918 	/* function call */
919 	case BPF_JMP | BPF_CALL:
920 	{
921 		const u8 r0 = bpf2a64[BPF_REG_0];
922 		bool func_addr_fixed;
923 		u64 func_addr;
924 
925 		ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass,
926 					    &func_addr, &func_addr_fixed);
927 		if (ret < 0)
928 			return ret;
929 		emit_addr_mov_i64(tmp, func_addr, ctx);
930 		emit(A64_BLR(tmp), ctx);
931 		emit(A64_MOV(1, r0, A64_R(0)), ctx);
932 		break;
933 	}
934 	/* tail call */
935 	case BPF_JMP | BPF_TAIL_CALL:
936 		if (emit_bpf_tail_call(ctx))
937 			return -EFAULT;
938 		break;
939 	/* function return */
940 	case BPF_JMP | BPF_EXIT:
941 		/* Optimization: when last instruction is EXIT,
942 		   simply fallthrough to epilogue. */
943 		if (i == ctx->prog->len - 1)
944 			break;
945 		jmp_offset = epilogue_offset(ctx);
946 		check_imm26(jmp_offset);
947 		emit(A64_B(jmp_offset), ctx);
948 		break;
949 
950 	/* dst = imm64 */
951 	case BPF_LD | BPF_IMM | BPF_DW:
952 	{
953 		const struct bpf_insn insn1 = insn[1];
954 		u64 imm64;
955 
956 		imm64 = (u64)insn1.imm << 32 | (u32)imm;
957 		if (bpf_pseudo_func(insn))
958 			emit_addr_mov_i64(dst, imm64, ctx);
959 		else
960 			emit_a64_mov_i64(dst, imm64, ctx);
961 
962 		return 1;
963 	}
964 
965 	/* LDX: dst = *(size *)(src + off) */
966 	case BPF_LDX | BPF_MEM | BPF_W:
967 	case BPF_LDX | BPF_MEM | BPF_H:
968 	case BPF_LDX | BPF_MEM | BPF_B:
969 	case BPF_LDX | BPF_MEM | BPF_DW:
970 	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
971 	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
972 	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
973 	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
974 		emit_a64_mov_i(1, tmp, off, ctx);
975 		switch (BPF_SIZE(code)) {
976 		case BPF_W:
977 			emit(A64_LDR32(dst, src, tmp), ctx);
978 			break;
979 		case BPF_H:
980 			emit(A64_LDRH(dst, src, tmp), ctx);
981 			break;
982 		case BPF_B:
983 			emit(A64_LDRB(dst, src, tmp), ctx);
984 			break;
985 		case BPF_DW:
986 			emit(A64_LDR64(dst, src, tmp), ctx);
987 			break;
988 		}
989 
990 		ret = add_exception_handler(insn, ctx, dst);
991 		if (ret)
992 			return ret;
993 		break;
994 
995 	/* speculation barrier */
996 	case BPF_ST | BPF_NOSPEC:
997 		/*
998 		 * Nothing required here.
999 		 *
1000 		 * In case of arm64, we rely on the firmware mitigation of
1001 		 * Speculative Store Bypass as controlled via the ssbd kernel
1002 		 * parameter. Whenever the mitigation is enabled, it works
1003 		 * for all of the kernel code with no need to provide any
1004 		 * additional instructions.
1005 		 */
1006 		break;
1007 
1008 	/* ST: *(size *)(dst + off) = imm */
1009 	case BPF_ST | BPF_MEM | BPF_W:
1010 	case BPF_ST | BPF_MEM | BPF_H:
1011 	case BPF_ST | BPF_MEM | BPF_B:
1012 	case BPF_ST | BPF_MEM | BPF_DW:
1013 		/* Load imm to a register then store it */
1014 		emit_a64_mov_i(1, tmp2, off, ctx);
1015 		emit_a64_mov_i(1, tmp, imm, ctx);
1016 		switch (BPF_SIZE(code)) {
1017 		case BPF_W:
1018 			emit(A64_STR32(tmp, dst, tmp2), ctx);
1019 			break;
1020 		case BPF_H:
1021 			emit(A64_STRH(tmp, dst, tmp2), ctx);
1022 			break;
1023 		case BPF_B:
1024 			emit(A64_STRB(tmp, dst, tmp2), ctx);
1025 			break;
1026 		case BPF_DW:
1027 			emit(A64_STR64(tmp, dst, tmp2), ctx);
1028 			break;
1029 		}
1030 		break;
1031 
1032 	/* STX: *(size *)(dst + off) = src */
1033 	case BPF_STX | BPF_MEM | BPF_W:
1034 	case BPF_STX | BPF_MEM | BPF_H:
1035 	case BPF_STX | BPF_MEM | BPF_B:
1036 	case BPF_STX | BPF_MEM | BPF_DW:
1037 		emit_a64_mov_i(1, tmp, off, ctx);
1038 		switch (BPF_SIZE(code)) {
1039 		case BPF_W:
1040 			emit(A64_STR32(src, dst, tmp), ctx);
1041 			break;
1042 		case BPF_H:
1043 			emit(A64_STRH(src, dst, tmp), ctx);
1044 			break;
1045 		case BPF_B:
1046 			emit(A64_STRB(src, dst, tmp), ctx);
1047 			break;
1048 		case BPF_DW:
1049 			emit(A64_STR64(src, dst, tmp), ctx);
1050 			break;
1051 		}
1052 		break;
1053 
1054 	case BPF_STX | BPF_ATOMIC | BPF_W:
1055 	case BPF_STX | BPF_ATOMIC | BPF_DW:
1056 		if (cpus_have_cap(ARM64_HAS_LSE_ATOMICS))
1057 			ret = emit_lse_atomic(insn, ctx);
1058 		else
1059 			ret = emit_ll_sc_atomic(insn, ctx);
1060 		if (ret)
1061 			return ret;
1062 		break;
1063 
1064 	default:
1065 		pr_err_once("unknown opcode %02x\n", code);
1066 		return -EINVAL;
1067 	}
1068 
1069 	return 0;
1070 }
1071 
1072 static int build_body(struct jit_ctx *ctx, bool extra_pass)
1073 {
1074 	const struct bpf_prog *prog = ctx->prog;
1075 	int i;
1076 
1077 	/*
1078 	 * - offset[0] offset of the end of prologue,
1079 	 *   start of the 1st instruction.
1080 	 * - offset[1] - offset of the end of 1st instruction,
1081 	 *   start of the 2nd instruction
1082 	 * [....]
1083 	 * - offset[3] - offset of the end of 3rd instruction,
1084 	 *   start of 4th instruction
1085 	 */
1086 	for (i = 0; i < prog->len; i++) {
1087 		const struct bpf_insn *insn = &prog->insnsi[i];
1088 		int ret;
1089 
1090 		if (ctx->image == NULL)
1091 			ctx->offset[i] = ctx->idx;
1092 		ret = build_insn(insn, ctx, extra_pass);
1093 		if (ret > 0) {
1094 			i++;
1095 			if (ctx->image == NULL)
1096 				ctx->offset[i] = ctx->idx;
1097 			continue;
1098 		}
1099 		if (ret)
1100 			return ret;
1101 	}
1102 	/*
1103 	 * offset is allocated with prog->len + 1 so fill in
1104 	 * the last element with the offset after the last
1105 	 * instruction (end of program)
1106 	 */
1107 	if (ctx->image == NULL)
1108 		ctx->offset[i] = ctx->idx;
1109 
1110 	return 0;
1111 }
1112 
1113 static int validate_code(struct jit_ctx *ctx)
1114 {
1115 	int i;
1116 
1117 	for (i = 0; i < ctx->idx; i++) {
1118 		u32 a64_insn = le32_to_cpu(ctx->image[i]);
1119 
1120 		if (a64_insn == AARCH64_BREAK_FAULT)
1121 			return -1;
1122 	}
1123 
1124 	if (WARN_ON_ONCE(ctx->exentry_idx != ctx->prog->aux->num_exentries))
1125 		return -1;
1126 
1127 	return 0;
1128 }
1129 
1130 static inline void bpf_flush_icache(void *start, void *end)
1131 {
1132 	flush_icache_range((unsigned long)start, (unsigned long)end);
1133 }
1134 
1135 struct arm64_jit_data {
1136 	struct bpf_binary_header *header;
1137 	u8 *image;
1138 	struct jit_ctx ctx;
1139 };
1140 
1141 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1142 {
1143 	int image_size, prog_size, extable_size;
1144 	struct bpf_prog *tmp, *orig_prog = prog;
1145 	struct bpf_binary_header *header;
1146 	struct arm64_jit_data *jit_data;
1147 	bool was_classic = bpf_prog_was_classic(prog);
1148 	bool tmp_blinded = false;
1149 	bool extra_pass = false;
1150 	struct jit_ctx ctx;
1151 	u8 *image_ptr;
1152 
1153 	if (!prog->jit_requested)
1154 		return orig_prog;
1155 
1156 	tmp = bpf_jit_blind_constants(prog);
1157 	/* If blinding was requested and we failed during blinding,
1158 	 * we must fall back to the interpreter.
1159 	 */
1160 	if (IS_ERR(tmp))
1161 		return orig_prog;
1162 	if (tmp != prog) {
1163 		tmp_blinded = true;
1164 		prog = tmp;
1165 	}
1166 
1167 	jit_data = prog->aux->jit_data;
1168 	if (!jit_data) {
1169 		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1170 		if (!jit_data) {
1171 			prog = orig_prog;
1172 			goto out;
1173 		}
1174 		prog->aux->jit_data = jit_data;
1175 	}
1176 	if (jit_data->ctx.offset) {
1177 		ctx = jit_data->ctx;
1178 		image_ptr = jit_data->image;
1179 		header = jit_data->header;
1180 		extra_pass = true;
1181 		prog_size = sizeof(u32) * ctx.idx;
1182 		goto skip_init_ctx;
1183 	}
1184 	memset(&ctx, 0, sizeof(ctx));
1185 	ctx.prog = prog;
1186 
1187 	ctx.offset = kcalloc(prog->len + 1, sizeof(int), GFP_KERNEL);
1188 	if (ctx.offset == NULL) {
1189 		prog = orig_prog;
1190 		goto out_off;
1191 	}
1192 
1193 	/*
1194 	 * 1. Initial fake pass to compute ctx->idx and ctx->offset.
1195 	 *
1196 	 * BPF line info needs ctx->offset[i] to be the offset of
1197 	 * instruction[i] in jited image, so build prologue first.
1198 	 */
1199 	if (build_prologue(&ctx, was_classic)) {
1200 		prog = orig_prog;
1201 		goto out_off;
1202 	}
1203 
1204 	if (build_body(&ctx, extra_pass)) {
1205 		prog = orig_prog;
1206 		goto out_off;
1207 	}
1208 
1209 	ctx.epilogue_offset = ctx.idx;
1210 	build_epilogue(&ctx);
1211 
1212 	extable_size = prog->aux->num_exentries *
1213 		sizeof(struct exception_table_entry);
1214 
1215 	/* Now we know the actual image size. */
1216 	prog_size = sizeof(u32) * ctx.idx;
1217 	image_size = prog_size + extable_size;
1218 	header = bpf_jit_binary_alloc(image_size, &image_ptr,
1219 				      sizeof(u32), jit_fill_hole);
1220 	if (header == NULL) {
1221 		prog = orig_prog;
1222 		goto out_off;
1223 	}
1224 
1225 	/* 2. Now, the actual pass. */
1226 
1227 	ctx.image = (__le32 *)image_ptr;
1228 	if (extable_size)
1229 		prog->aux->extable = (void *)image_ptr + prog_size;
1230 skip_init_ctx:
1231 	ctx.idx = 0;
1232 	ctx.exentry_idx = 0;
1233 
1234 	build_prologue(&ctx, was_classic);
1235 
1236 	if (build_body(&ctx, extra_pass)) {
1237 		bpf_jit_binary_free(header);
1238 		prog = orig_prog;
1239 		goto out_off;
1240 	}
1241 
1242 	build_epilogue(&ctx);
1243 
1244 	/* 3. Extra pass to validate JITed code. */
1245 	if (validate_code(&ctx)) {
1246 		bpf_jit_binary_free(header);
1247 		prog = orig_prog;
1248 		goto out_off;
1249 	}
1250 
1251 	/* And we're done. */
1252 	if (bpf_jit_enable > 1)
1253 		bpf_jit_dump(prog->len, prog_size, 2, ctx.image);
1254 
1255 	bpf_flush_icache(header, ctx.image + ctx.idx);
1256 
1257 	if (!prog->is_func || extra_pass) {
1258 		if (extra_pass && ctx.idx != jit_data->ctx.idx) {
1259 			pr_err_once("multi-func JIT bug %d != %d\n",
1260 				    ctx.idx, jit_data->ctx.idx);
1261 			bpf_jit_binary_free(header);
1262 			prog->bpf_func = NULL;
1263 			prog->jited = 0;
1264 			goto out_off;
1265 		}
1266 		bpf_jit_binary_lock_ro(header);
1267 	} else {
1268 		jit_data->ctx = ctx;
1269 		jit_data->image = image_ptr;
1270 		jit_data->header = header;
1271 	}
1272 	prog->bpf_func = (void *)ctx.image;
1273 	prog->jited = 1;
1274 	prog->jited_len = prog_size;
1275 
1276 	if (!prog->is_func || extra_pass) {
1277 		int i;
1278 
1279 		/* offset[prog->len] is the size of program */
1280 		for (i = 0; i <= prog->len; i++)
1281 			ctx.offset[i] *= AARCH64_INSN_SIZE;
1282 		bpf_prog_fill_jited_linfo(prog, ctx.offset + 1);
1283 out_off:
1284 		kfree(ctx.offset);
1285 		kfree(jit_data);
1286 		prog->aux->jit_data = NULL;
1287 	}
1288 out:
1289 	if (tmp_blinded)
1290 		bpf_jit_prog_release_other(prog, prog == orig_prog ?
1291 					   tmp : orig_prog);
1292 	return prog;
1293 }
1294 
1295 bool bpf_jit_supports_kfunc_call(void)
1296 {
1297 	return true;
1298 }
1299 
1300 u64 bpf_jit_alloc_exec_limit(void)
1301 {
1302 	return VMALLOC_END - VMALLOC_START;
1303 }
1304 
1305 void *bpf_jit_alloc_exec(unsigned long size)
1306 {
1307 	/* Memory is intended to be executable, reset the pointer tag. */
1308 	return kasan_reset_tag(vmalloc(size));
1309 }
1310 
1311 void bpf_jit_free_exec(void *addr)
1312 {
1313 	return vfree(addr);
1314 }
1315