xref: /openbmc/linux/arch/arm64/mm/mmu.c (revision 8dda2eac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/mmu.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 #include <linux/set_memory.h>
26 
27 #include <asm/barrier.h>
28 #include <asm/cputype.h>
29 #include <asm/fixmap.h>
30 #include <asm/kasan.h>
31 #include <asm/kernel-pgtable.h>
32 #include <asm/sections.h>
33 #include <asm/setup.h>
34 #include <linux/sizes.h>
35 #include <asm/tlb.h>
36 #include <asm/mmu_context.h>
37 #include <asm/ptdump.h>
38 #include <asm/tlbflush.h>
39 #include <asm/pgalloc.h>
40 
41 #define NO_BLOCK_MAPPINGS	BIT(0)
42 #define NO_CONT_MAPPINGS	BIT(1)
43 #define NO_EXEC_MAPPINGS	BIT(2)	/* assumes FEAT_HPDS is not used */
44 
45 u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
46 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
47 
48 u64 __section(".mmuoff.data.write") vabits_actual;
49 EXPORT_SYMBOL(vabits_actual);
50 
51 u64 kimage_voffset __ro_after_init;
52 EXPORT_SYMBOL(kimage_voffset);
53 
54 /*
55  * Empty_zero_page is a special page that is used for zero-initialized data
56  * and COW.
57  */
58 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
59 EXPORT_SYMBOL(empty_zero_page);
60 
61 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
62 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
63 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
64 
65 static DEFINE_SPINLOCK(swapper_pgdir_lock);
66 
67 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
68 {
69 	pgd_t *fixmap_pgdp;
70 
71 	spin_lock(&swapper_pgdir_lock);
72 	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
73 	WRITE_ONCE(*fixmap_pgdp, pgd);
74 	/*
75 	 * We need dsb(ishst) here to ensure the page-table-walker sees
76 	 * our new entry before set_p?d() returns. The fixmap's
77 	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
78 	 */
79 	pgd_clear_fixmap();
80 	spin_unlock(&swapper_pgdir_lock);
81 }
82 
83 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
84 			      unsigned long size, pgprot_t vma_prot)
85 {
86 	if (!pfn_is_map_memory(pfn))
87 		return pgprot_noncached(vma_prot);
88 	else if (file->f_flags & O_SYNC)
89 		return pgprot_writecombine(vma_prot);
90 	return vma_prot;
91 }
92 EXPORT_SYMBOL(phys_mem_access_prot);
93 
94 static phys_addr_t __init early_pgtable_alloc(int shift)
95 {
96 	phys_addr_t phys;
97 	void *ptr;
98 
99 	phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
100 	if (!phys)
101 		panic("Failed to allocate page table page\n");
102 
103 	/*
104 	 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
105 	 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
106 	 * any level of table.
107 	 */
108 	ptr = pte_set_fixmap(phys);
109 
110 	memset(ptr, 0, PAGE_SIZE);
111 
112 	/*
113 	 * Implicit barriers also ensure the zeroed page is visible to the page
114 	 * table walker
115 	 */
116 	pte_clear_fixmap();
117 
118 	return phys;
119 }
120 
121 static bool pgattr_change_is_safe(u64 old, u64 new)
122 {
123 	/*
124 	 * The following mapping attributes may be updated in live
125 	 * kernel mappings without the need for break-before-make.
126 	 */
127 	pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
128 
129 	/* creating or taking down mappings is always safe */
130 	if (old == 0 || new == 0)
131 		return true;
132 
133 	/* live contiguous mappings may not be manipulated at all */
134 	if ((old | new) & PTE_CONT)
135 		return false;
136 
137 	/* Transitioning from Non-Global to Global is unsafe */
138 	if (old & ~new & PTE_NG)
139 		return false;
140 
141 	/*
142 	 * Changing the memory type between Normal and Normal-Tagged is safe
143 	 * since Tagged is considered a permission attribute from the
144 	 * mismatched attribute aliases perspective.
145 	 */
146 	if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
147 	     (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
148 	    ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
149 	     (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
150 		mask |= PTE_ATTRINDX_MASK;
151 
152 	return ((old ^ new) & ~mask) == 0;
153 }
154 
155 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
156 		     phys_addr_t phys, pgprot_t prot)
157 {
158 	pte_t *ptep;
159 
160 	ptep = pte_set_fixmap_offset(pmdp, addr);
161 	do {
162 		pte_t old_pte = READ_ONCE(*ptep);
163 
164 		set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
165 
166 		/*
167 		 * After the PTE entry has been populated once, we
168 		 * only allow updates to the permission attributes.
169 		 */
170 		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
171 					      READ_ONCE(pte_val(*ptep))));
172 
173 		phys += PAGE_SIZE;
174 	} while (ptep++, addr += PAGE_SIZE, addr != end);
175 
176 	pte_clear_fixmap();
177 }
178 
179 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
180 				unsigned long end, phys_addr_t phys,
181 				pgprot_t prot,
182 				phys_addr_t (*pgtable_alloc)(int),
183 				int flags)
184 {
185 	unsigned long next;
186 	pmd_t pmd = READ_ONCE(*pmdp);
187 
188 	BUG_ON(pmd_sect(pmd));
189 	if (pmd_none(pmd)) {
190 		pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
191 		phys_addr_t pte_phys;
192 
193 		if (flags & NO_EXEC_MAPPINGS)
194 			pmdval |= PMD_TABLE_PXN;
195 		BUG_ON(!pgtable_alloc);
196 		pte_phys = pgtable_alloc(PAGE_SHIFT);
197 		__pmd_populate(pmdp, pte_phys, pmdval);
198 		pmd = READ_ONCE(*pmdp);
199 	}
200 	BUG_ON(pmd_bad(pmd));
201 
202 	do {
203 		pgprot_t __prot = prot;
204 
205 		next = pte_cont_addr_end(addr, end);
206 
207 		/* use a contiguous mapping if the range is suitably aligned */
208 		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
209 		    (flags & NO_CONT_MAPPINGS) == 0)
210 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
211 
212 		init_pte(pmdp, addr, next, phys, __prot);
213 
214 		phys += next - addr;
215 	} while (addr = next, addr != end);
216 }
217 
218 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
219 		     phys_addr_t phys, pgprot_t prot,
220 		     phys_addr_t (*pgtable_alloc)(int), int flags)
221 {
222 	unsigned long next;
223 	pmd_t *pmdp;
224 
225 	pmdp = pmd_set_fixmap_offset(pudp, addr);
226 	do {
227 		pmd_t old_pmd = READ_ONCE(*pmdp);
228 
229 		next = pmd_addr_end(addr, end);
230 
231 		/* try section mapping first */
232 		if (((addr | next | phys) & ~PMD_MASK) == 0 &&
233 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
234 			pmd_set_huge(pmdp, phys, prot);
235 
236 			/*
237 			 * After the PMD entry has been populated once, we
238 			 * only allow updates to the permission attributes.
239 			 */
240 			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
241 						      READ_ONCE(pmd_val(*pmdp))));
242 		} else {
243 			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
244 					    pgtable_alloc, flags);
245 
246 			BUG_ON(pmd_val(old_pmd) != 0 &&
247 			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
248 		}
249 		phys += next - addr;
250 	} while (pmdp++, addr = next, addr != end);
251 
252 	pmd_clear_fixmap();
253 }
254 
255 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
256 				unsigned long end, phys_addr_t phys,
257 				pgprot_t prot,
258 				phys_addr_t (*pgtable_alloc)(int), int flags)
259 {
260 	unsigned long next;
261 	pud_t pud = READ_ONCE(*pudp);
262 
263 	/*
264 	 * Check for initial section mappings in the pgd/pud.
265 	 */
266 	BUG_ON(pud_sect(pud));
267 	if (pud_none(pud)) {
268 		pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
269 		phys_addr_t pmd_phys;
270 
271 		if (flags & NO_EXEC_MAPPINGS)
272 			pudval |= PUD_TABLE_PXN;
273 		BUG_ON(!pgtable_alloc);
274 		pmd_phys = pgtable_alloc(PMD_SHIFT);
275 		__pud_populate(pudp, pmd_phys, pudval);
276 		pud = READ_ONCE(*pudp);
277 	}
278 	BUG_ON(pud_bad(pud));
279 
280 	do {
281 		pgprot_t __prot = prot;
282 
283 		next = pmd_cont_addr_end(addr, end);
284 
285 		/* use a contiguous mapping if the range is suitably aligned */
286 		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
287 		    (flags & NO_CONT_MAPPINGS) == 0)
288 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
289 
290 		init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
291 
292 		phys += next - addr;
293 	} while (addr = next, addr != end);
294 }
295 
296 static inline bool use_1G_block(unsigned long addr, unsigned long next,
297 			unsigned long phys)
298 {
299 	if (PAGE_SHIFT != 12)
300 		return false;
301 
302 	if (((addr | next | phys) & ~PUD_MASK) != 0)
303 		return false;
304 
305 	return true;
306 }
307 
308 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
309 			   phys_addr_t phys, pgprot_t prot,
310 			   phys_addr_t (*pgtable_alloc)(int),
311 			   int flags)
312 {
313 	unsigned long next;
314 	pud_t *pudp;
315 	p4d_t *p4dp = p4d_offset(pgdp, addr);
316 	p4d_t p4d = READ_ONCE(*p4dp);
317 
318 	if (p4d_none(p4d)) {
319 		p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
320 		phys_addr_t pud_phys;
321 
322 		if (flags & NO_EXEC_MAPPINGS)
323 			p4dval |= P4D_TABLE_PXN;
324 		BUG_ON(!pgtable_alloc);
325 		pud_phys = pgtable_alloc(PUD_SHIFT);
326 		__p4d_populate(p4dp, pud_phys, p4dval);
327 		p4d = READ_ONCE(*p4dp);
328 	}
329 	BUG_ON(p4d_bad(p4d));
330 
331 	pudp = pud_set_fixmap_offset(p4dp, addr);
332 	do {
333 		pud_t old_pud = READ_ONCE(*pudp);
334 
335 		next = pud_addr_end(addr, end);
336 
337 		/*
338 		 * For 4K granule only, attempt to put down a 1GB block
339 		 */
340 		if (use_1G_block(addr, next, phys) &&
341 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
342 			pud_set_huge(pudp, phys, prot);
343 
344 			/*
345 			 * After the PUD entry has been populated once, we
346 			 * only allow updates to the permission attributes.
347 			 */
348 			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
349 						      READ_ONCE(pud_val(*pudp))));
350 		} else {
351 			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
352 					    pgtable_alloc, flags);
353 
354 			BUG_ON(pud_val(old_pud) != 0 &&
355 			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
356 		}
357 		phys += next - addr;
358 	} while (pudp++, addr = next, addr != end);
359 
360 	pud_clear_fixmap();
361 }
362 
363 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
364 				 unsigned long virt, phys_addr_t size,
365 				 pgprot_t prot,
366 				 phys_addr_t (*pgtable_alloc)(int),
367 				 int flags)
368 {
369 	unsigned long addr, end, next;
370 	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
371 
372 	/*
373 	 * If the virtual and physical address don't have the same offset
374 	 * within a page, we cannot map the region as the caller expects.
375 	 */
376 	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
377 		return;
378 
379 	phys &= PAGE_MASK;
380 	addr = virt & PAGE_MASK;
381 	end = PAGE_ALIGN(virt + size);
382 
383 	do {
384 		next = pgd_addr_end(addr, end);
385 		alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
386 			       flags);
387 		phys += next - addr;
388 	} while (pgdp++, addr = next, addr != end);
389 }
390 
391 static phys_addr_t __pgd_pgtable_alloc(int shift)
392 {
393 	void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
394 	BUG_ON(!ptr);
395 
396 	/* Ensure the zeroed page is visible to the page table walker */
397 	dsb(ishst);
398 	return __pa(ptr);
399 }
400 
401 static phys_addr_t pgd_pgtable_alloc(int shift)
402 {
403 	phys_addr_t pa = __pgd_pgtable_alloc(shift);
404 
405 	/*
406 	 * Call proper page table ctor in case later we need to
407 	 * call core mm functions like apply_to_page_range() on
408 	 * this pre-allocated page table.
409 	 *
410 	 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
411 	 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
412 	 */
413 	if (shift == PAGE_SHIFT)
414 		BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
415 	else if (shift == PMD_SHIFT)
416 		BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
417 
418 	return pa;
419 }
420 
421 /*
422  * This function can only be used to modify existing table entries,
423  * without allocating new levels of table. Note that this permits the
424  * creation of new section or page entries.
425  */
426 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
427 				  phys_addr_t size, pgprot_t prot)
428 {
429 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
430 		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
431 			&phys, virt);
432 		return;
433 	}
434 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
435 			     NO_CONT_MAPPINGS);
436 }
437 
438 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
439 			       unsigned long virt, phys_addr_t size,
440 			       pgprot_t prot, bool page_mappings_only)
441 {
442 	int flags = 0;
443 
444 	BUG_ON(mm == &init_mm);
445 
446 	if (page_mappings_only)
447 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
448 
449 	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
450 			     pgd_pgtable_alloc, flags);
451 }
452 
453 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
454 				phys_addr_t size, pgprot_t prot)
455 {
456 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
457 		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
458 			&phys, virt);
459 		return;
460 	}
461 
462 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
463 			     NO_CONT_MAPPINGS);
464 
465 	/* flush the TLBs after updating live kernel mappings */
466 	flush_tlb_kernel_range(virt, virt + size);
467 }
468 
469 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
470 				  phys_addr_t end, pgprot_t prot, int flags)
471 {
472 	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
473 			     prot, early_pgtable_alloc, flags);
474 }
475 
476 void __init mark_linear_text_alias_ro(void)
477 {
478 	/*
479 	 * Remove the write permissions from the linear alias of .text/.rodata
480 	 */
481 	update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
482 			    (unsigned long)__init_begin - (unsigned long)_stext,
483 			    PAGE_KERNEL_RO);
484 }
485 
486 static bool crash_mem_map __initdata;
487 
488 static int __init enable_crash_mem_map(char *arg)
489 {
490 	/*
491 	 * Proper parameter parsing is done by reserve_crashkernel(). We only
492 	 * need to know if the linear map has to avoid block mappings so that
493 	 * the crashkernel reservations can be unmapped later.
494 	 */
495 	crash_mem_map = true;
496 
497 	return 0;
498 }
499 early_param("crashkernel", enable_crash_mem_map);
500 
501 static void __init map_mem(pgd_t *pgdp)
502 {
503 	static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
504 	phys_addr_t kernel_start = __pa_symbol(_stext);
505 	phys_addr_t kernel_end = __pa_symbol(__init_begin);
506 	phys_addr_t start, end;
507 	int flags = NO_EXEC_MAPPINGS;
508 	u64 i;
509 
510 	/*
511 	 * Setting hierarchical PXNTable attributes on table entries covering
512 	 * the linear region is only possible if it is guaranteed that no table
513 	 * entries at any level are being shared between the linear region and
514 	 * the vmalloc region. Check whether this is true for the PGD level, in
515 	 * which case it is guaranteed to be true for all other levels as well.
516 	 */
517 	BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
518 
519 	if (can_set_direct_map() || crash_mem_map || IS_ENABLED(CONFIG_KFENCE))
520 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
521 
522 	/*
523 	 * Take care not to create a writable alias for the
524 	 * read-only text and rodata sections of the kernel image.
525 	 * So temporarily mark them as NOMAP to skip mappings in
526 	 * the following for-loop
527 	 */
528 	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
529 
530 	/* map all the memory banks */
531 	for_each_mem_range(i, &start, &end) {
532 		if (start >= end)
533 			break;
534 		/*
535 		 * The linear map must allow allocation tags reading/writing
536 		 * if MTE is present. Otherwise, it has the same attributes as
537 		 * PAGE_KERNEL.
538 		 */
539 		__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
540 			       flags);
541 	}
542 
543 	/*
544 	 * Map the linear alias of the [_stext, __init_begin) interval
545 	 * as non-executable now, and remove the write permission in
546 	 * mark_linear_text_alias_ro() below (which will be called after
547 	 * alternative patching has completed). This makes the contents
548 	 * of the region accessible to subsystems such as hibernate,
549 	 * but protects it from inadvertent modification or execution.
550 	 * Note that contiguous mappings cannot be remapped in this way,
551 	 * so we should avoid them here.
552 	 */
553 	__map_memblock(pgdp, kernel_start, kernel_end,
554 		       PAGE_KERNEL, NO_CONT_MAPPINGS);
555 	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
556 }
557 
558 void mark_rodata_ro(void)
559 {
560 	unsigned long section_size;
561 
562 	/*
563 	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
564 	 * to cover NOTES and EXCEPTION_TABLE.
565 	 */
566 	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
567 	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
568 			    section_size, PAGE_KERNEL_RO);
569 
570 	debug_checkwx();
571 }
572 
573 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
574 				      pgprot_t prot, struct vm_struct *vma,
575 				      int flags, unsigned long vm_flags)
576 {
577 	phys_addr_t pa_start = __pa_symbol(va_start);
578 	unsigned long size = va_end - va_start;
579 
580 	BUG_ON(!PAGE_ALIGNED(pa_start));
581 	BUG_ON(!PAGE_ALIGNED(size));
582 
583 	__create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
584 			     early_pgtable_alloc, flags);
585 
586 	if (!(vm_flags & VM_NO_GUARD))
587 		size += PAGE_SIZE;
588 
589 	vma->addr	= va_start;
590 	vma->phys_addr	= pa_start;
591 	vma->size	= size;
592 	vma->flags	= VM_MAP | vm_flags;
593 	vma->caller	= __builtin_return_address(0);
594 
595 	vm_area_add_early(vma);
596 }
597 
598 static int __init parse_rodata(char *arg)
599 {
600 	int ret = strtobool(arg, &rodata_enabled);
601 	if (!ret) {
602 		rodata_full = false;
603 		return 0;
604 	}
605 
606 	/* permit 'full' in addition to boolean options */
607 	if (strcmp(arg, "full"))
608 		return -EINVAL;
609 
610 	rodata_enabled = true;
611 	rodata_full = true;
612 	return 0;
613 }
614 early_param("rodata", parse_rodata);
615 
616 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
617 static int __init map_entry_trampoline(void)
618 {
619 	pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
620 	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
621 
622 	/* The trampoline is always mapped and can therefore be global */
623 	pgprot_val(prot) &= ~PTE_NG;
624 
625 	/* Map only the text into the trampoline page table */
626 	memset(tramp_pg_dir, 0, PGD_SIZE);
627 	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
628 			     prot, __pgd_pgtable_alloc, 0);
629 
630 	/* Map both the text and data into the kernel page table */
631 	__set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
632 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
633 		extern char __entry_tramp_data_start[];
634 
635 		__set_fixmap(FIX_ENTRY_TRAMP_DATA,
636 			     __pa_symbol(__entry_tramp_data_start),
637 			     PAGE_KERNEL_RO);
638 	}
639 
640 	return 0;
641 }
642 core_initcall(map_entry_trampoline);
643 #endif
644 
645 /*
646  * Open coded check for BTI, only for use to determine configuration
647  * for early mappings for before the cpufeature code has run.
648  */
649 static bool arm64_early_this_cpu_has_bti(void)
650 {
651 	u64 pfr1;
652 
653 	if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
654 		return false;
655 
656 	pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
657 	return cpuid_feature_extract_unsigned_field(pfr1,
658 						    ID_AA64PFR1_BT_SHIFT);
659 }
660 
661 /*
662  * Create fine-grained mappings for the kernel.
663  */
664 static void __init map_kernel(pgd_t *pgdp)
665 {
666 	static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
667 				vmlinux_initdata, vmlinux_data;
668 
669 	/*
670 	 * External debuggers may need to write directly to the text
671 	 * mapping to install SW breakpoints. Allow this (only) when
672 	 * explicitly requested with rodata=off.
673 	 */
674 	pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
675 
676 	/*
677 	 * If we have a CPU that supports BTI and a kernel built for
678 	 * BTI then mark the kernel executable text as guarded pages
679 	 * now so we don't have to rewrite the page tables later.
680 	 */
681 	if (arm64_early_this_cpu_has_bti())
682 		text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
683 
684 	/*
685 	 * Only rodata will be remapped with different permissions later on,
686 	 * all other segments are allowed to use contiguous mappings.
687 	 */
688 	map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
689 			   VM_NO_GUARD);
690 	map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
691 			   &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
692 	map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
693 			   &vmlinux_inittext, 0, VM_NO_GUARD);
694 	map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
695 			   &vmlinux_initdata, 0, VM_NO_GUARD);
696 	map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
697 
698 	if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
699 		/*
700 		 * The fixmap falls in a separate pgd to the kernel, and doesn't
701 		 * live in the carveout for the swapper_pg_dir. We can simply
702 		 * re-use the existing dir for the fixmap.
703 		 */
704 		set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
705 			READ_ONCE(*pgd_offset_k(FIXADDR_START)));
706 	} else if (CONFIG_PGTABLE_LEVELS > 3) {
707 		pgd_t *bm_pgdp;
708 		p4d_t *bm_p4dp;
709 		pud_t *bm_pudp;
710 		/*
711 		 * The fixmap shares its top level pgd entry with the kernel
712 		 * mapping. This can really only occur when we are running
713 		 * with 16k/4 levels, so we can simply reuse the pud level
714 		 * entry instead.
715 		 */
716 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
717 		bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
718 		bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
719 		bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
720 		pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
721 		pud_clear_fixmap();
722 	} else {
723 		BUG();
724 	}
725 
726 	kasan_copy_shadow(pgdp);
727 }
728 
729 void __init paging_init(void)
730 {
731 	pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
732 
733 	map_kernel(pgdp);
734 	map_mem(pgdp);
735 
736 	pgd_clear_fixmap();
737 
738 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
739 	init_mm.pgd = swapper_pg_dir;
740 
741 	memblock_free(__pa_symbol(init_pg_dir),
742 		      __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
743 
744 	memblock_allow_resize();
745 }
746 
747 /*
748  * Check whether a kernel address is valid (derived from arch/x86/).
749  */
750 int kern_addr_valid(unsigned long addr)
751 {
752 	pgd_t *pgdp;
753 	p4d_t *p4dp;
754 	pud_t *pudp, pud;
755 	pmd_t *pmdp, pmd;
756 	pte_t *ptep, pte;
757 
758 	addr = arch_kasan_reset_tag(addr);
759 	if ((((long)addr) >> VA_BITS) != -1UL)
760 		return 0;
761 
762 	pgdp = pgd_offset_k(addr);
763 	if (pgd_none(READ_ONCE(*pgdp)))
764 		return 0;
765 
766 	p4dp = p4d_offset(pgdp, addr);
767 	if (p4d_none(READ_ONCE(*p4dp)))
768 		return 0;
769 
770 	pudp = pud_offset(p4dp, addr);
771 	pud = READ_ONCE(*pudp);
772 	if (pud_none(pud))
773 		return 0;
774 
775 	if (pud_sect(pud))
776 		return pfn_valid(pud_pfn(pud));
777 
778 	pmdp = pmd_offset(pudp, addr);
779 	pmd = READ_ONCE(*pmdp);
780 	if (pmd_none(pmd))
781 		return 0;
782 
783 	if (pmd_sect(pmd))
784 		return pfn_valid(pmd_pfn(pmd));
785 
786 	ptep = pte_offset_kernel(pmdp, addr);
787 	pte = READ_ONCE(*ptep);
788 	if (pte_none(pte))
789 		return 0;
790 
791 	return pfn_valid(pte_pfn(pte));
792 }
793 
794 #ifdef CONFIG_MEMORY_HOTPLUG
795 static void free_hotplug_page_range(struct page *page, size_t size,
796 				    struct vmem_altmap *altmap)
797 {
798 	if (altmap) {
799 		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
800 	} else {
801 		WARN_ON(PageReserved(page));
802 		free_pages((unsigned long)page_address(page), get_order(size));
803 	}
804 }
805 
806 static void free_hotplug_pgtable_page(struct page *page)
807 {
808 	free_hotplug_page_range(page, PAGE_SIZE, NULL);
809 }
810 
811 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
812 				  unsigned long floor, unsigned long ceiling,
813 				  unsigned long mask)
814 {
815 	start &= mask;
816 	if (start < floor)
817 		return false;
818 
819 	if (ceiling) {
820 		ceiling &= mask;
821 		if (!ceiling)
822 			return false;
823 	}
824 
825 	if (end - 1 > ceiling - 1)
826 		return false;
827 	return true;
828 }
829 
830 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
831 				    unsigned long end, bool free_mapped,
832 				    struct vmem_altmap *altmap)
833 {
834 	pte_t *ptep, pte;
835 
836 	do {
837 		ptep = pte_offset_kernel(pmdp, addr);
838 		pte = READ_ONCE(*ptep);
839 		if (pte_none(pte))
840 			continue;
841 
842 		WARN_ON(!pte_present(pte));
843 		pte_clear(&init_mm, addr, ptep);
844 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
845 		if (free_mapped)
846 			free_hotplug_page_range(pte_page(pte),
847 						PAGE_SIZE, altmap);
848 	} while (addr += PAGE_SIZE, addr < end);
849 }
850 
851 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
852 				    unsigned long end, bool free_mapped,
853 				    struct vmem_altmap *altmap)
854 {
855 	unsigned long next;
856 	pmd_t *pmdp, pmd;
857 
858 	do {
859 		next = pmd_addr_end(addr, end);
860 		pmdp = pmd_offset(pudp, addr);
861 		pmd = READ_ONCE(*pmdp);
862 		if (pmd_none(pmd))
863 			continue;
864 
865 		WARN_ON(!pmd_present(pmd));
866 		if (pmd_sect(pmd)) {
867 			pmd_clear(pmdp);
868 
869 			/*
870 			 * One TLBI should be sufficient here as the PMD_SIZE
871 			 * range is mapped with a single block entry.
872 			 */
873 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
874 			if (free_mapped)
875 				free_hotplug_page_range(pmd_page(pmd),
876 							PMD_SIZE, altmap);
877 			continue;
878 		}
879 		WARN_ON(!pmd_table(pmd));
880 		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
881 	} while (addr = next, addr < end);
882 }
883 
884 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
885 				    unsigned long end, bool free_mapped,
886 				    struct vmem_altmap *altmap)
887 {
888 	unsigned long next;
889 	pud_t *pudp, pud;
890 
891 	do {
892 		next = pud_addr_end(addr, end);
893 		pudp = pud_offset(p4dp, addr);
894 		pud = READ_ONCE(*pudp);
895 		if (pud_none(pud))
896 			continue;
897 
898 		WARN_ON(!pud_present(pud));
899 		if (pud_sect(pud)) {
900 			pud_clear(pudp);
901 
902 			/*
903 			 * One TLBI should be sufficient here as the PUD_SIZE
904 			 * range is mapped with a single block entry.
905 			 */
906 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
907 			if (free_mapped)
908 				free_hotplug_page_range(pud_page(pud),
909 							PUD_SIZE, altmap);
910 			continue;
911 		}
912 		WARN_ON(!pud_table(pud));
913 		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
914 	} while (addr = next, addr < end);
915 }
916 
917 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
918 				    unsigned long end, bool free_mapped,
919 				    struct vmem_altmap *altmap)
920 {
921 	unsigned long next;
922 	p4d_t *p4dp, p4d;
923 
924 	do {
925 		next = p4d_addr_end(addr, end);
926 		p4dp = p4d_offset(pgdp, addr);
927 		p4d = READ_ONCE(*p4dp);
928 		if (p4d_none(p4d))
929 			continue;
930 
931 		WARN_ON(!p4d_present(p4d));
932 		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
933 	} while (addr = next, addr < end);
934 }
935 
936 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
937 				bool free_mapped, struct vmem_altmap *altmap)
938 {
939 	unsigned long next;
940 	pgd_t *pgdp, pgd;
941 
942 	/*
943 	 * altmap can only be used as vmemmap mapping backing memory.
944 	 * In case the backing memory itself is not being freed, then
945 	 * altmap is irrelevant. Warn about this inconsistency when
946 	 * encountered.
947 	 */
948 	WARN_ON(!free_mapped && altmap);
949 
950 	do {
951 		next = pgd_addr_end(addr, end);
952 		pgdp = pgd_offset_k(addr);
953 		pgd = READ_ONCE(*pgdp);
954 		if (pgd_none(pgd))
955 			continue;
956 
957 		WARN_ON(!pgd_present(pgd));
958 		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
959 	} while (addr = next, addr < end);
960 }
961 
962 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
963 				 unsigned long end, unsigned long floor,
964 				 unsigned long ceiling)
965 {
966 	pte_t *ptep, pte;
967 	unsigned long i, start = addr;
968 
969 	do {
970 		ptep = pte_offset_kernel(pmdp, addr);
971 		pte = READ_ONCE(*ptep);
972 
973 		/*
974 		 * This is just a sanity check here which verifies that
975 		 * pte clearing has been done by earlier unmap loops.
976 		 */
977 		WARN_ON(!pte_none(pte));
978 	} while (addr += PAGE_SIZE, addr < end);
979 
980 	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
981 		return;
982 
983 	/*
984 	 * Check whether we can free the pte page if the rest of the
985 	 * entries are empty. Overlap with other regions have been
986 	 * handled by the floor/ceiling check.
987 	 */
988 	ptep = pte_offset_kernel(pmdp, 0UL);
989 	for (i = 0; i < PTRS_PER_PTE; i++) {
990 		if (!pte_none(READ_ONCE(ptep[i])))
991 			return;
992 	}
993 
994 	pmd_clear(pmdp);
995 	__flush_tlb_kernel_pgtable(start);
996 	free_hotplug_pgtable_page(virt_to_page(ptep));
997 }
998 
999 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
1000 				 unsigned long end, unsigned long floor,
1001 				 unsigned long ceiling)
1002 {
1003 	pmd_t *pmdp, pmd;
1004 	unsigned long i, next, start = addr;
1005 
1006 	do {
1007 		next = pmd_addr_end(addr, end);
1008 		pmdp = pmd_offset(pudp, addr);
1009 		pmd = READ_ONCE(*pmdp);
1010 		if (pmd_none(pmd))
1011 			continue;
1012 
1013 		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1014 		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1015 	} while (addr = next, addr < end);
1016 
1017 	if (CONFIG_PGTABLE_LEVELS <= 2)
1018 		return;
1019 
1020 	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1021 		return;
1022 
1023 	/*
1024 	 * Check whether we can free the pmd page if the rest of the
1025 	 * entries are empty. Overlap with other regions have been
1026 	 * handled by the floor/ceiling check.
1027 	 */
1028 	pmdp = pmd_offset(pudp, 0UL);
1029 	for (i = 0; i < PTRS_PER_PMD; i++) {
1030 		if (!pmd_none(READ_ONCE(pmdp[i])))
1031 			return;
1032 	}
1033 
1034 	pud_clear(pudp);
1035 	__flush_tlb_kernel_pgtable(start);
1036 	free_hotplug_pgtable_page(virt_to_page(pmdp));
1037 }
1038 
1039 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1040 				 unsigned long end, unsigned long floor,
1041 				 unsigned long ceiling)
1042 {
1043 	pud_t *pudp, pud;
1044 	unsigned long i, next, start = addr;
1045 
1046 	do {
1047 		next = pud_addr_end(addr, end);
1048 		pudp = pud_offset(p4dp, addr);
1049 		pud = READ_ONCE(*pudp);
1050 		if (pud_none(pud))
1051 			continue;
1052 
1053 		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1054 		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1055 	} while (addr = next, addr < end);
1056 
1057 	if (CONFIG_PGTABLE_LEVELS <= 3)
1058 		return;
1059 
1060 	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1061 		return;
1062 
1063 	/*
1064 	 * Check whether we can free the pud page if the rest of the
1065 	 * entries are empty. Overlap with other regions have been
1066 	 * handled by the floor/ceiling check.
1067 	 */
1068 	pudp = pud_offset(p4dp, 0UL);
1069 	for (i = 0; i < PTRS_PER_PUD; i++) {
1070 		if (!pud_none(READ_ONCE(pudp[i])))
1071 			return;
1072 	}
1073 
1074 	p4d_clear(p4dp);
1075 	__flush_tlb_kernel_pgtable(start);
1076 	free_hotplug_pgtable_page(virt_to_page(pudp));
1077 }
1078 
1079 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1080 				 unsigned long end, unsigned long floor,
1081 				 unsigned long ceiling)
1082 {
1083 	unsigned long next;
1084 	p4d_t *p4dp, p4d;
1085 
1086 	do {
1087 		next = p4d_addr_end(addr, end);
1088 		p4dp = p4d_offset(pgdp, addr);
1089 		p4d = READ_ONCE(*p4dp);
1090 		if (p4d_none(p4d))
1091 			continue;
1092 
1093 		WARN_ON(!p4d_present(p4d));
1094 		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1095 	} while (addr = next, addr < end);
1096 }
1097 
1098 static void free_empty_tables(unsigned long addr, unsigned long end,
1099 			      unsigned long floor, unsigned long ceiling)
1100 {
1101 	unsigned long next;
1102 	pgd_t *pgdp, pgd;
1103 
1104 	do {
1105 		next = pgd_addr_end(addr, end);
1106 		pgdp = pgd_offset_k(addr);
1107 		pgd = READ_ONCE(*pgdp);
1108 		if (pgd_none(pgd))
1109 			continue;
1110 
1111 		WARN_ON(!pgd_present(pgd));
1112 		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1113 	} while (addr = next, addr < end);
1114 }
1115 #endif
1116 
1117 #if !ARM64_KERNEL_USES_PMD_MAPS
1118 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1119 		struct vmem_altmap *altmap)
1120 {
1121 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1122 	return vmemmap_populate_basepages(start, end, node, altmap);
1123 }
1124 #else	/* !ARM64_KERNEL_USES_PMD_MAPS */
1125 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1126 		struct vmem_altmap *altmap)
1127 {
1128 	unsigned long addr = start;
1129 	unsigned long next;
1130 	pgd_t *pgdp;
1131 	p4d_t *p4dp;
1132 	pud_t *pudp;
1133 	pmd_t *pmdp;
1134 
1135 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1136 	do {
1137 		next = pmd_addr_end(addr, end);
1138 
1139 		pgdp = vmemmap_pgd_populate(addr, node);
1140 		if (!pgdp)
1141 			return -ENOMEM;
1142 
1143 		p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1144 		if (!p4dp)
1145 			return -ENOMEM;
1146 
1147 		pudp = vmemmap_pud_populate(p4dp, addr, node);
1148 		if (!pudp)
1149 			return -ENOMEM;
1150 
1151 		pmdp = pmd_offset(pudp, addr);
1152 		if (pmd_none(READ_ONCE(*pmdp))) {
1153 			void *p = NULL;
1154 
1155 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1156 			if (!p) {
1157 				if (vmemmap_populate_basepages(addr, next, node, altmap))
1158 					return -ENOMEM;
1159 				continue;
1160 			}
1161 
1162 			pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1163 		} else
1164 			vmemmap_verify((pte_t *)pmdp, node, addr, next);
1165 	} while (addr = next, addr != end);
1166 
1167 	return 0;
1168 }
1169 #endif	/* !ARM64_KERNEL_USES_PMD_MAPS */
1170 
1171 #ifdef CONFIG_MEMORY_HOTPLUG
1172 void vmemmap_free(unsigned long start, unsigned long end,
1173 		struct vmem_altmap *altmap)
1174 {
1175 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1176 
1177 	unmap_hotplug_range(start, end, true, altmap);
1178 	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1179 }
1180 #endif /* CONFIG_MEMORY_HOTPLUG */
1181 
1182 static inline pud_t *fixmap_pud(unsigned long addr)
1183 {
1184 	pgd_t *pgdp = pgd_offset_k(addr);
1185 	p4d_t *p4dp = p4d_offset(pgdp, addr);
1186 	p4d_t p4d = READ_ONCE(*p4dp);
1187 
1188 	BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1189 
1190 	return pud_offset_kimg(p4dp, addr);
1191 }
1192 
1193 static inline pmd_t *fixmap_pmd(unsigned long addr)
1194 {
1195 	pud_t *pudp = fixmap_pud(addr);
1196 	pud_t pud = READ_ONCE(*pudp);
1197 
1198 	BUG_ON(pud_none(pud) || pud_bad(pud));
1199 
1200 	return pmd_offset_kimg(pudp, addr);
1201 }
1202 
1203 static inline pte_t *fixmap_pte(unsigned long addr)
1204 {
1205 	return &bm_pte[pte_index(addr)];
1206 }
1207 
1208 /*
1209  * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1210  * directly on kernel symbols (bm_p*d). This function is called too early to use
1211  * lm_alias so __p*d_populate functions must be used to populate with the
1212  * physical address from __pa_symbol.
1213  */
1214 void __init early_fixmap_init(void)
1215 {
1216 	pgd_t *pgdp;
1217 	p4d_t *p4dp, p4d;
1218 	pud_t *pudp;
1219 	pmd_t *pmdp;
1220 	unsigned long addr = FIXADDR_START;
1221 
1222 	pgdp = pgd_offset_k(addr);
1223 	p4dp = p4d_offset(pgdp, addr);
1224 	p4d = READ_ONCE(*p4dp);
1225 	if (CONFIG_PGTABLE_LEVELS > 3 &&
1226 	    !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1227 		/*
1228 		 * We only end up here if the kernel mapping and the fixmap
1229 		 * share the top level pgd entry, which should only happen on
1230 		 * 16k/4 levels configurations.
1231 		 */
1232 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1233 		pudp = pud_offset_kimg(p4dp, addr);
1234 	} else {
1235 		if (p4d_none(p4d))
1236 			__p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
1237 		pudp = fixmap_pud(addr);
1238 	}
1239 	if (pud_none(READ_ONCE(*pudp)))
1240 		__pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
1241 	pmdp = fixmap_pmd(addr);
1242 	__pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1243 
1244 	/*
1245 	 * The boot-ioremap range spans multiple pmds, for which
1246 	 * we are not prepared:
1247 	 */
1248 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1249 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1250 
1251 	if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1252 	     || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1253 		WARN_ON(1);
1254 		pr_warn("pmdp %p != %p, %p\n",
1255 			pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1256 			fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1257 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1258 			fix_to_virt(FIX_BTMAP_BEGIN));
1259 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1260 			fix_to_virt(FIX_BTMAP_END));
1261 
1262 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1263 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1264 	}
1265 }
1266 
1267 /*
1268  * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1269  * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1270  */
1271 void __set_fixmap(enum fixed_addresses idx,
1272 			       phys_addr_t phys, pgprot_t flags)
1273 {
1274 	unsigned long addr = __fix_to_virt(idx);
1275 	pte_t *ptep;
1276 
1277 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1278 
1279 	ptep = fixmap_pte(addr);
1280 
1281 	if (pgprot_val(flags)) {
1282 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1283 	} else {
1284 		pte_clear(&init_mm, addr, ptep);
1285 		flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1286 	}
1287 }
1288 
1289 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1290 {
1291 	const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1292 	int offset;
1293 	void *dt_virt;
1294 
1295 	/*
1296 	 * Check whether the physical FDT address is set and meets the minimum
1297 	 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1298 	 * at least 8 bytes so that we can always access the magic and size
1299 	 * fields of the FDT header after mapping the first chunk, double check
1300 	 * here if that is indeed the case.
1301 	 */
1302 	BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1303 	if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1304 		return NULL;
1305 
1306 	/*
1307 	 * Make sure that the FDT region can be mapped without the need to
1308 	 * allocate additional translation table pages, so that it is safe
1309 	 * to call create_mapping_noalloc() this early.
1310 	 *
1311 	 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1312 	 * be in the same PMD as the rest of the fixmap.
1313 	 * On 4k pages, we'll use section mappings for the FDT so we only
1314 	 * have to be in the same PUD.
1315 	 */
1316 	BUILD_BUG_ON(dt_virt_base % SZ_2M);
1317 
1318 	BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1319 		     __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1320 
1321 	offset = dt_phys % SWAPPER_BLOCK_SIZE;
1322 	dt_virt = (void *)dt_virt_base + offset;
1323 
1324 	/* map the first chunk so we can read the size from the header */
1325 	create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1326 			dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1327 
1328 	if (fdt_magic(dt_virt) != FDT_MAGIC)
1329 		return NULL;
1330 
1331 	*size = fdt_totalsize(dt_virt);
1332 	if (*size > MAX_FDT_SIZE)
1333 		return NULL;
1334 
1335 	if (offset + *size > SWAPPER_BLOCK_SIZE)
1336 		create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1337 			       round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1338 
1339 	return dt_virt;
1340 }
1341 
1342 #if CONFIG_PGTABLE_LEVELS > 3
1343 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1344 {
1345 	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1346 
1347 	/* Only allow permission changes for now */
1348 	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1349 				   pud_val(new_pud)))
1350 		return 0;
1351 
1352 	VM_BUG_ON(phys & ~PUD_MASK);
1353 	set_pud(pudp, new_pud);
1354 	return 1;
1355 }
1356 
1357 int pud_clear_huge(pud_t *pudp)
1358 {
1359 	if (!pud_sect(READ_ONCE(*pudp)))
1360 		return 0;
1361 	pud_clear(pudp);
1362 	return 1;
1363 }
1364 #endif
1365 
1366 #if CONFIG_PGTABLE_LEVELS > 2
1367 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1368 {
1369 	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1370 
1371 	/* Only allow permission changes for now */
1372 	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1373 				   pmd_val(new_pmd)))
1374 		return 0;
1375 
1376 	VM_BUG_ON(phys & ~PMD_MASK);
1377 	set_pmd(pmdp, new_pmd);
1378 	return 1;
1379 }
1380 
1381 int pmd_clear_huge(pmd_t *pmdp)
1382 {
1383 	if (!pmd_sect(READ_ONCE(*pmdp)))
1384 		return 0;
1385 	pmd_clear(pmdp);
1386 	return 1;
1387 }
1388 #endif
1389 
1390 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1391 {
1392 	pte_t *table;
1393 	pmd_t pmd;
1394 
1395 	pmd = READ_ONCE(*pmdp);
1396 
1397 	if (!pmd_table(pmd)) {
1398 		VM_WARN_ON(1);
1399 		return 1;
1400 	}
1401 
1402 	table = pte_offset_kernel(pmdp, addr);
1403 	pmd_clear(pmdp);
1404 	__flush_tlb_kernel_pgtable(addr);
1405 	pte_free_kernel(NULL, table);
1406 	return 1;
1407 }
1408 
1409 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1410 {
1411 	pmd_t *table;
1412 	pmd_t *pmdp;
1413 	pud_t pud;
1414 	unsigned long next, end;
1415 
1416 	pud = READ_ONCE(*pudp);
1417 
1418 	if (!pud_table(pud)) {
1419 		VM_WARN_ON(1);
1420 		return 1;
1421 	}
1422 
1423 	table = pmd_offset(pudp, addr);
1424 	pmdp = table;
1425 	next = addr;
1426 	end = addr + PUD_SIZE;
1427 	do {
1428 		pmd_free_pte_page(pmdp, next);
1429 	} while (pmdp++, next += PMD_SIZE, next != end);
1430 
1431 	pud_clear(pudp);
1432 	__flush_tlb_kernel_pgtable(addr);
1433 	pmd_free(NULL, table);
1434 	return 1;
1435 }
1436 
1437 #ifdef CONFIG_MEMORY_HOTPLUG
1438 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1439 {
1440 	unsigned long end = start + size;
1441 
1442 	WARN_ON(pgdir != init_mm.pgd);
1443 	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1444 
1445 	unmap_hotplug_range(start, end, false, NULL);
1446 	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1447 }
1448 
1449 struct range arch_get_mappable_range(void)
1450 {
1451 	struct range mhp_range;
1452 	u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1453 	u64 end_linear_pa = __pa(PAGE_END - 1);
1454 
1455 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1456 		/*
1457 		 * Check for a wrap, it is possible because of randomized linear
1458 		 * mapping the start physical address is actually bigger than
1459 		 * the end physical address. In this case set start to zero
1460 		 * because [0, end_linear_pa] range must still be able to cover
1461 		 * all addressable physical addresses.
1462 		 */
1463 		if (start_linear_pa > end_linear_pa)
1464 			start_linear_pa = 0;
1465 	}
1466 
1467 	WARN_ON(start_linear_pa > end_linear_pa);
1468 
1469 	/*
1470 	 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1471 	 * accommodating both its ends but excluding PAGE_END. Max physical
1472 	 * range which can be mapped inside this linear mapping range, must
1473 	 * also be derived from its end points.
1474 	 */
1475 	mhp_range.start = start_linear_pa;
1476 	mhp_range.end =  end_linear_pa;
1477 
1478 	return mhp_range;
1479 }
1480 
1481 int arch_add_memory(int nid, u64 start, u64 size,
1482 		    struct mhp_params *params)
1483 {
1484 	int ret, flags = NO_EXEC_MAPPINGS;
1485 
1486 	VM_BUG_ON(!mhp_range_allowed(start, size, true));
1487 
1488 	/*
1489 	 * KFENCE requires linear map to be mapped at page granularity, so that
1490 	 * it is possible to protect/unprotect single pages in the KFENCE pool.
1491 	 */
1492 	if (can_set_direct_map() || IS_ENABLED(CONFIG_KFENCE))
1493 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1494 
1495 	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1496 			     size, params->pgprot, __pgd_pgtable_alloc,
1497 			     flags);
1498 
1499 	memblock_clear_nomap(start, size);
1500 
1501 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1502 			   params);
1503 	if (ret)
1504 		__remove_pgd_mapping(swapper_pg_dir,
1505 				     __phys_to_virt(start), size);
1506 	return ret;
1507 }
1508 
1509 void arch_remove_memory(int nid, u64 start, u64 size,
1510 			struct vmem_altmap *altmap)
1511 {
1512 	unsigned long start_pfn = start >> PAGE_SHIFT;
1513 	unsigned long nr_pages = size >> PAGE_SHIFT;
1514 
1515 	__remove_pages(start_pfn, nr_pages, altmap);
1516 	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1517 }
1518 
1519 /*
1520  * This memory hotplug notifier helps prevent boot memory from being
1521  * inadvertently removed as it blocks pfn range offlining process in
1522  * __offline_pages(). Hence this prevents both offlining as well as
1523  * removal process for boot memory which is initially always online.
1524  * In future if and when boot memory could be removed, this notifier
1525  * should be dropped and free_hotplug_page_range() should handle any
1526  * reserved pages allocated during boot.
1527  */
1528 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1529 					   unsigned long action, void *data)
1530 {
1531 	struct mem_section *ms;
1532 	struct memory_notify *arg = data;
1533 	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1534 	unsigned long pfn = arg->start_pfn;
1535 
1536 	if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1537 		return NOTIFY_OK;
1538 
1539 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1540 		unsigned long start = PFN_PHYS(pfn);
1541 		unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1542 
1543 		ms = __pfn_to_section(pfn);
1544 		if (!early_section(ms))
1545 			continue;
1546 
1547 		if (action == MEM_GOING_OFFLINE) {
1548 			/*
1549 			 * Boot memory removal is not supported. Prevent
1550 			 * it via blocking any attempted offline request
1551 			 * for the boot memory and just report it.
1552 			 */
1553 			pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1554 			return NOTIFY_BAD;
1555 		} else if (action == MEM_OFFLINE) {
1556 			/*
1557 			 * This should have never happened. Boot memory
1558 			 * offlining should have been prevented by this
1559 			 * very notifier. Probably some memory removal
1560 			 * procedure might have changed which would then
1561 			 * require further debug.
1562 			 */
1563 			pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1564 
1565 			/*
1566 			 * Core memory hotplug does not process a return
1567 			 * code from the notifier for MEM_OFFLINE events.
1568 			 * The error condition has been reported. Return
1569 			 * from here as if ignored.
1570 			 */
1571 			return NOTIFY_DONE;
1572 		}
1573 	}
1574 	return NOTIFY_OK;
1575 }
1576 
1577 static struct notifier_block prevent_bootmem_remove_nb = {
1578 	.notifier_call = prevent_bootmem_remove_notifier,
1579 };
1580 
1581 /*
1582  * This ensures that boot memory sections on the platform are online
1583  * from early boot. Memory sections could not be prevented from being
1584  * offlined, unless for some reason they are not online to begin with.
1585  * This helps validate the basic assumption on which the above memory
1586  * event notifier works to prevent boot memory section offlining and
1587  * its possible removal.
1588  */
1589 static void validate_bootmem_online(void)
1590 {
1591 	phys_addr_t start, end, addr;
1592 	struct mem_section *ms;
1593 	u64 i;
1594 
1595 	/*
1596 	 * Scanning across all memblock might be expensive
1597 	 * on some big memory systems. Hence enable this
1598 	 * validation only with DEBUG_VM.
1599 	 */
1600 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
1601 		return;
1602 
1603 	for_each_mem_range(i, &start, &end) {
1604 		for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1605 			ms = __pfn_to_section(PHYS_PFN(addr));
1606 
1607 			/*
1608 			 * All memory ranges in the system at this point
1609 			 * should have been marked as early sections.
1610 			 */
1611 			WARN_ON(!early_section(ms));
1612 
1613 			/*
1614 			 * Memory notifier mechanism here to prevent boot
1615 			 * memory offlining depends on the fact that each
1616 			 * early section memory on the system is initially
1617 			 * online. Otherwise a given memory section which
1618 			 * is already offline will be overlooked and can
1619 			 * be removed completely. Call out such sections.
1620 			 */
1621 			if (!online_section(ms))
1622 				pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1623 					addr, addr + (1UL << PA_SECTION_SHIFT));
1624 		}
1625 	}
1626 }
1627 
1628 static int __init prevent_bootmem_remove_init(void)
1629 {
1630 	int ret = 0;
1631 
1632 	if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1633 		return ret;
1634 
1635 	validate_bootmem_online();
1636 	ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1637 	if (ret)
1638 		pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1639 
1640 	return ret;
1641 }
1642 early_initcall(prevent_bootmem_remove_init);
1643 #endif
1644