xref: /openbmc/linux/arch/arm64/mm/mmu.c (revision 28dce2c4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/mmu.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/cache.h>
10 #include <linux/export.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/ioport.h>
15 #include <linux/kexec.h>
16 #include <linux/libfdt.h>
17 #include <linux/mman.h>
18 #include <linux/nodemask.h>
19 #include <linux/memblock.h>
20 #include <linux/memory.h>
21 #include <linux/fs.h>
22 #include <linux/io.h>
23 #include <linux/mm.h>
24 #include <linux/vmalloc.h>
25 
26 #include <asm/barrier.h>
27 #include <asm/cputype.h>
28 #include <asm/fixmap.h>
29 #include <asm/kasan.h>
30 #include <asm/kernel-pgtable.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <linux/sizes.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 #include <asm/ptdump.h>
37 #include <asm/tlbflush.h>
38 #include <asm/pgalloc.h>
39 
40 #define NO_BLOCK_MAPPINGS	BIT(0)
41 #define NO_CONT_MAPPINGS	BIT(1)
42 #define NO_EXEC_MAPPINGS	BIT(2)	/* assumes FEAT_HPDS is not used */
43 
44 u64 idmap_t0sz = TCR_T0SZ(VA_BITS_MIN);
45 u64 idmap_ptrs_per_pgd = PTRS_PER_PGD;
46 
47 u64 __section(".mmuoff.data.write") vabits_actual;
48 EXPORT_SYMBOL(vabits_actual);
49 
50 u64 kimage_voffset __ro_after_init;
51 EXPORT_SYMBOL(kimage_voffset);
52 
53 /*
54  * Empty_zero_page is a special page that is used for zero-initialized data
55  * and COW.
56  */
57 unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)] __page_aligned_bss;
58 EXPORT_SYMBOL(empty_zero_page);
59 
60 static pte_t bm_pte[PTRS_PER_PTE] __page_aligned_bss;
61 static pmd_t bm_pmd[PTRS_PER_PMD] __page_aligned_bss __maybe_unused;
62 static pud_t bm_pud[PTRS_PER_PUD] __page_aligned_bss __maybe_unused;
63 
64 static DEFINE_SPINLOCK(swapper_pgdir_lock);
65 
66 void set_swapper_pgd(pgd_t *pgdp, pgd_t pgd)
67 {
68 	pgd_t *fixmap_pgdp;
69 
70 	spin_lock(&swapper_pgdir_lock);
71 	fixmap_pgdp = pgd_set_fixmap(__pa_symbol(pgdp));
72 	WRITE_ONCE(*fixmap_pgdp, pgd);
73 	/*
74 	 * We need dsb(ishst) here to ensure the page-table-walker sees
75 	 * our new entry before set_p?d() returns. The fixmap's
76 	 * flush_tlb_kernel_range() via clear_fixmap() does this for us.
77 	 */
78 	pgd_clear_fixmap();
79 	spin_unlock(&swapper_pgdir_lock);
80 }
81 
82 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
83 			      unsigned long size, pgprot_t vma_prot)
84 {
85 	if (!pfn_valid(pfn))
86 		return pgprot_noncached(vma_prot);
87 	else if (file->f_flags & O_SYNC)
88 		return pgprot_writecombine(vma_prot);
89 	return vma_prot;
90 }
91 EXPORT_SYMBOL(phys_mem_access_prot);
92 
93 static phys_addr_t __init early_pgtable_alloc(int shift)
94 {
95 	phys_addr_t phys;
96 	void *ptr;
97 
98 	phys = memblock_phys_alloc(PAGE_SIZE, PAGE_SIZE);
99 	if (!phys)
100 		panic("Failed to allocate page table page\n");
101 
102 	/*
103 	 * The FIX_{PGD,PUD,PMD} slots may be in active use, but the FIX_PTE
104 	 * slot will be free, so we can (ab)use the FIX_PTE slot to initialise
105 	 * any level of table.
106 	 */
107 	ptr = pte_set_fixmap(phys);
108 
109 	memset(ptr, 0, PAGE_SIZE);
110 
111 	/*
112 	 * Implicit barriers also ensure the zeroed page is visible to the page
113 	 * table walker
114 	 */
115 	pte_clear_fixmap();
116 
117 	return phys;
118 }
119 
120 static bool pgattr_change_is_safe(u64 old, u64 new)
121 {
122 	/*
123 	 * The following mapping attributes may be updated in live
124 	 * kernel mappings without the need for break-before-make.
125 	 */
126 	pteval_t mask = PTE_PXN | PTE_RDONLY | PTE_WRITE | PTE_NG;
127 
128 	/* creating or taking down mappings is always safe */
129 	if (old == 0 || new == 0)
130 		return true;
131 
132 	/* live contiguous mappings may not be manipulated at all */
133 	if ((old | new) & PTE_CONT)
134 		return false;
135 
136 	/* Transitioning from Non-Global to Global is unsafe */
137 	if (old & ~new & PTE_NG)
138 		return false;
139 
140 	/*
141 	 * Changing the memory type between Normal and Normal-Tagged is safe
142 	 * since Tagged is considered a permission attribute from the
143 	 * mismatched attribute aliases perspective.
144 	 */
145 	if (((old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
146 	     (old & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)) &&
147 	    ((new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL) ||
148 	     (new & PTE_ATTRINDX_MASK) == PTE_ATTRINDX(MT_NORMAL_TAGGED)))
149 		mask |= PTE_ATTRINDX_MASK;
150 
151 	return ((old ^ new) & ~mask) == 0;
152 }
153 
154 static void init_pte(pmd_t *pmdp, unsigned long addr, unsigned long end,
155 		     phys_addr_t phys, pgprot_t prot)
156 {
157 	pte_t *ptep;
158 
159 	ptep = pte_set_fixmap_offset(pmdp, addr);
160 	do {
161 		pte_t old_pte = READ_ONCE(*ptep);
162 
163 		set_pte(ptep, pfn_pte(__phys_to_pfn(phys), prot));
164 
165 		/*
166 		 * After the PTE entry has been populated once, we
167 		 * only allow updates to the permission attributes.
168 		 */
169 		BUG_ON(!pgattr_change_is_safe(pte_val(old_pte),
170 					      READ_ONCE(pte_val(*ptep))));
171 
172 		phys += PAGE_SIZE;
173 	} while (ptep++, addr += PAGE_SIZE, addr != end);
174 
175 	pte_clear_fixmap();
176 }
177 
178 static void alloc_init_cont_pte(pmd_t *pmdp, unsigned long addr,
179 				unsigned long end, phys_addr_t phys,
180 				pgprot_t prot,
181 				phys_addr_t (*pgtable_alloc)(int),
182 				int flags)
183 {
184 	unsigned long next;
185 	pmd_t pmd = READ_ONCE(*pmdp);
186 
187 	BUG_ON(pmd_sect(pmd));
188 	if (pmd_none(pmd)) {
189 		pmdval_t pmdval = PMD_TYPE_TABLE | PMD_TABLE_UXN;
190 		phys_addr_t pte_phys;
191 
192 		if (flags & NO_EXEC_MAPPINGS)
193 			pmdval |= PMD_TABLE_PXN;
194 		BUG_ON(!pgtable_alloc);
195 		pte_phys = pgtable_alloc(PAGE_SHIFT);
196 		__pmd_populate(pmdp, pte_phys, pmdval);
197 		pmd = READ_ONCE(*pmdp);
198 	}
199 	BUG_ON(pmd_bad(pmd));
200 
201 	do {
202 		pgprot_t __prot = prot;
203 
204 		next = pte_cont_addr_end(addr, end);
205 
206 		/* use a contiguous mapping if the range is suitably aligned */
207 		if ((((addr | next | phys) & ~CONT_PTE_MASK) == 0) &&
208 		    (flags & NO_CONT_MAPPINGS) == 0)
209 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
210 
211 		init_pte(pmdp, addr, next, phys, __prot);
212 
213 		phys += next - addr;
214 	} while (addr = next, addr != end);
215 }
216 
217 static void init_pmd(pud_t *pudp, unsigned long addr, unsigned long end,
218 		     phys_addr_t phys, pgprot_t prot,
219 		     phys_addr_t (*pgtable_alloc)(int), int flags)
220 {
221 	unsigned long next;
222 	pmd_t *pmdp;
223 
224 	pmdp = pmd_set_fixmap_offset(pudp, addr);
225 	do {
226 		pmd_t old_pmd = READ_ONCE(*pmdp);
227 
228 		next = pmd_addr_end(addr, end);
229 
230 		/* try section mapping first */
231 		if (((addr | next | phys) & ~SECTION_MASK) == 0 &&
232 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
233 			pmd_set_huge(pmdp, phys, prot);
234 
235 			/*
236 			 * After the PMD entry has been populated once, we
237 			 * only allow updates to the permission attributes.
238 			 */
239 			BUG_ON(!pgattr_change_is_safe(pmd_val(old_pmd),
240 						      READ_ONCE(pmd_val(*pmdp))));
241 		} else {
242 			alloc_init_cont_pte(pmdp, addr, next, phys, prot,
243 					    pgtable_alloc, flags);
244 
245 			BUG_ON(pmd_val(old_pmd) != 0 &&
246 			       pmd_val(old_pmd) != READ_ONCE(pmd_val(*pmdp)));
247 		}
248 		phys += next - addr;
249 	} while (pmdp++, addr = next, addr != end);
250 
251 	pmd_clear_fixmap();
252 }
253 
254 static void alloc_init_cont_pmd(pud_t *pudp, unsigned long addr,
255 				unsigned long end, phys_addr_t phys,
256 				pgprot_t prot,
257 				phys_addr_t (*pgtable_alloc)(int), int flags)
258 {
259 	unsigned long next;
260 	pud_t pud = READ_ONCE(*pudp);
261 
262 	/*
263 	 * Check for initial section mappings in the pgd/pud.
264 	 */
265 	BUG_ON(pud_sect(pud));
266 	if (pud_none(pud)) {
267 		pudval_t pudval = PUD_TYPE_TABLE | PUD_TABLE_UXN;
268 		phys_addr_t pmd_phys;
269 
270 		if (flags & NO_EXEC_MAPPINGS)
271 			pudval |= PUD_TABLE_PXN;
272 		BUG_ON(!pgtable_alloc);
273 		pmd_phys = pgtable_alloc(PMD_SHIFT);
274 		__pud_populate(pudp, pmd_phys, pudval);
275 		pud = READ_ONCE(*pudp);
276 	}
277 	BUG_ON(pud_bad(pud));
278 
279 	do {
280 		pgprot_t __prot = prot;
281 
282 		next = pmd_cont_addr_end(addr, end);
283 
284 		/* use a contiguous mapping if the range is suitably aligned */
285 		if ((((addr | next | phys) & ~CONT_PMD_MASK) == 0) &&
286 		    (flags & NO_CONT_MAPPINGS) == 0)
287 			__prot = __pgprot(pgprot_val(prot) | PTE_CONT);
288 
289 		init_pmd(pudp, addr, next, phys, __prot, pgtable_alloc, flags);
290 
291 		phys += next - addr;
292 	} while (addr = next, addr != end);
293 }
294 
295 static inline bool use_1G_block(unsigned long addr, unsigned long next,
296 			unsigned long phys)
297 {
298 	if (PAGE_SHIFT != 12)
299 		return false;
300 
301 	if (((addr | next | phys) & ~PUD_MASK) != 0)
302 		return false;
303 
304 	return true;
305 }
306 
307 static void alloc_init_pud(pgd_t *pgdp, unsigned long addr, unsigned long end,
308 			   phys_addr_t phys, pgprot_t prot,
309 			   phys_addr_t (*pgtable_alloc)(int),
310 			   int flags)
311 {
312 	unsigned long next;
313 	pud_t *pudp;
314 	p4d_t *p4dp = p4d_offset(pgdp, addr);
315 	p4d_t p4d = READ_ONCE(*p4dp);
316 
317 	if (p4d_none(p4d)) {
318 		p4dval_t p4dval = P4D_TYPE_TABLE | P4D_TABLE_UXN;
319 		phys_addr_t pud_phys;
320 
321 		if (flags & NO_EXEC_MAPPINGS)
322 			p4dval |= P4D_TABLE_PXN;
323 		BUG_ON(!pgtable_alloc);
324 		pud_phys = pgtable_alloc(PUD_SHIFT);
325 		__p4d_populate(p4dp, pud_phys, p4dval);
326 		p4d = READ_ONCE(*p4dp);
327 	}
328 	BUG_ON(p4d_bad(p4d));
329 
330 	pudp = pud_set_fixmap_offset(p4dp, addr);
331 	do {
332 		pud_t old_pud = READ_ONCE(*pudp);
333 
334 		next = pud_addr_end(addr, end);
335 
336 		/*
337 		 * For 4K granule only, attempt to put down a 1GB block
338 		 */
339 		if (use_1G_block(addr, next, phys) &&
340 		    (flags & NO_BLOCK_MAPPINGS) == 0) {
341 			pud_set_huge(pudp, phys, prot);
342 
343 			/*
344 			 * After the PUD entry has been populated once, we
345 			 * only allow updates to the permission attributes.
346 			 */
347 			BUG_ON(!pgattr_change_is_safe(pud_val(old_pud),
348 						      READ_ONCE(pud_val(*pudp))));
349 		} else {
350 			alloc_init_cont_pmd(pudp, addr, next, phys, prot,
351 					    pgtable_alloc, flags);
352 
353 			BUG_ON(pud_val(old_pud) != 0 &&
354 			       pud_val(old_pud) != READ_ONCE(pud_val(*pudp)));
355 		}
356 		phys += next - addr;
357 	} while (pudp++, addr = next, addr != end);
358 
359 	pud_clear_fixmap();
360 }
361 
362 static void __create_pgd_mapping(pgd_t *pgdir, phys_addr_t phys,
363 				 unsigned long virt, phys_addr_t size,
364 				 pgprot_t prot,
365 				 phys_addr_t (*pgtable_alloc)(int),
366 				 int flags)
367 {
368 	unsigned long addr, end, next;
369 	pgd_t *pgdp = pgd_offset_pgd(pgdir, virt);
370 
371 	/*
372 	 * If the virtual and physical address don't have the same offset
373 	 * within a page, we cannot map the region as the caller expects.
374 	 */
375 	if (WARN_ON((phys ^ virt) & ~PAGE_MASK))
376 		return;
377 
378 	phys &= PAGE_MASK;
379 	addr = virt & PAGE_MASK;
380 	end = PAGE_ALIGN(virt + size);
381 
382 	do {
383 		next = pgd_addr_end(addr, end);
384 		alloc_init_pud(pgdp, addr, next, phys, prot, pgtable_alloc,
385 			       flags);
386 		phys += next - addr;
387 	} while (pgdp++, addr = next, addr != end);
388 }
389 
390 static phys_addr_t __pgd_pgtable_alloc(int shift)
391 {
392 	void *ptr = (void *)__get_free_page(GFP_PGTABLE_KERNEL);
393 	BUG_ON(!ptr);
394 
395 	/* Ensure the zeroed page is visible to the page table walker */
396 	dsb(ishst);
397 	return __pa(ptr);
398 }
399 
400 static phys_addr_t pgd_pgtable_alloc(int shift)
401 {
402 	phys_addr_t pa = __pgd_pgtable_alloc(shift);
403 
404 	/*
405 	 * Call proper page table ctor in case later we need to
406 	 * call core mm functions like apply_to_page_range() on
407 	 * this pre-allocated page table.
408 	 *
409 	 * We don't select ARCH_ENABLE_SPLIT_PMD_PTLOCK if pmd is
410 	 * folded, and if so pgtable_pmd_page_ctor() becomes nop.
411 	 */
412 	if (shift == PAGE_SHIFT)
413 		BUG_ON(!pgtable_pte_page_ctor(phys_to_page(pa)));
414 	else if (shift == PMD_SHIFT)
415 		BUG_ON(!pgtable_pmd_page_ctor(phys_to_page(pa)));
416 
417 	return pa;
418 }
419 
420 /*
421  * This function can only be used to modify existing table entries,
422  * without allocating new levels of table. Note that this permits the
423  * creation of new section or page entries.
424  */
425 static void __init create_mapping_noalloc(phys_addr_t phys, unsigned long virt,
426 				  phys_addr_t size, pgprot_t prot)
427 {
428 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
429 		pr_warn("BUG: not creating mapping for %pa at 0x%016lx - outside kernel range\n",
430 			&phys, virt);
431 		return;
432 	}
433 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
434 			     NO_CONT_MAPPINGS);
435 }
436 
437 void __init create_pgd_mapping(struct mm_struct *mm, phys_addr_t phys,
438 			       unsigned long virt, phys_addr_t size,
439 			       pgprot_t prot, bool page_mappings_only)
440 {
441 	int flags = 0;
442 
443 	BUG_ON(mm == &init_mm);
444 
445 	if (page_mappings_only)
446 		flags = NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
447 
448 	__create_pgd_mapping(mm->pgd, phys, virt, size, prot,
449 			     pgd_pgtable_alloc, flags);
450 }
451 
452 static void update_mapping_prot(phys_addr_t phys, unsigned long virt,
453 				phys_addr_t size, pgprot_t prot)
454 {
455 	if ((virt >= PAGE_END) && (virt < VMALLOC_START)) {
456 		pr_warn("BUG: not updating mapping for %pa at 0x%016lx - outside kernel range\n",
457 			&phys, virt);
458 		return;
459 	}
460 
461 	__create_pgd_mapping(init_mm.pgd, phys, virt, size, prot, NULL,
462 			     NO_CONT_MAPPINGS);
463 
464 	/* flush the TLBs after updating live kernel mappings */
465 	flush_tlb_kernel_range(virt, virt + size);
466 }
467 
468 static void __init __map_memblock(pgd_t *pgdp, phys_addr_t start,
469 				  phys_addr_t end, pgprot_t prot, int flags)
470 {
471 	__create_pgd_mapping(pgdp, start, __phys_to_virt(start), end - start,
472 			     prot, early_pgtable_alloc, flags);
473 }
474 
475 void __init mark_linear_text_alias_ro(void)
476 {
477 	/*
478 	 * Remove the write permissions from the linear alias of .text/.rodata
479 	 */
480 	update_mapping_prot(__pa_symbol(_stext), (unsigned long)lm_alias(_stext),
481 			    (unsigned long)__init_begin - (unsigned long)_stext,
482 			    PAGE_KERNEL_RO);
483 }
484 
485 static bool crash_mem_map __initdata;
486 
487 static int __init enable_crash_mem_map(char *arg)
488 {
489 	/*
490 	 * Proper parameter parsing is done by reserve_crashkernel(). We only
491 	 * need to know if the linear map has to avoid block mappings so that
492 	 * the crashkernel reservations can be unmapped later.
493 	 */
494 	crash_mem_map = true;
495 
496 	return 0;
497 }
498 early_param("crashkernel", enable_crash_mem_map);
499 
500 static void __init map_mem(pgd_t *pgdp)
501 {
502 	static const u64 direct_map_end = _PAGE_END(VA_BITS_MIN);
503 	phys_addr_t kernel_start = __pa_symbol(_stext);
504 	phys_addr_t kernel_end = __pa_symbol(__init_begin);
505 	phys_addr_t start, end;
506 	int flags = NO_EXEC_MAPPINGS;
507 	u64 i;
508 
509 	/*
510 	 * Setting hierarchical PXNTable attributes on table entries covering
511 	 * the linear region is only possible if it is guaranteed that no table
512 	 * entries at any level are being shared between the linear region and
513 	 * the vmalloc region. Check whether this is true for the PGD level, in
514 	 * which case it is guaranteed to be true for all other levels as well.
515 	 */
516 	BUILD_BUG_ON(pgd_index(direct_map_end - 1) == pgd_index(direct_map_end));
517 
518 	if (rodata_full || crash_mem_map || debug_pagealloc_enabled())
519 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
520 
521 	/*
522 	 * Take care not to create a writable alias for the
523 	 * read-only text and rodata sections of the kernel image.
524 	 * So temporarily mark them as NOMAP to skip mappings in
525 	 * the following for-loop
526 	 */
527 	memblock_mark_nomap(kernel_start, kernel_end - kernel_start);
528 
529 	/* map all the memory banks */
530 	for_each_mem_range(i, &start, &end) {
531 		if (start >= end)
532 			break;
533 		/*
534 		 * The linear map must allow allocation tags reading/writing
535 		 * if MTE is present. Otherwise, it has the same attributes as
536 		 * PAGE_KERNEL.
537 		 */
538 		__map_memblock(pgdp, start, end, pgprot_tagged(PAGE_KERNEL),
539 			       flags);
540 	}
541 
542 	/*
543 	 * Map the linear alias of the [_stext, __init_begin) interval
544 	 * as non-executable now, and remove the write permission in
545 	 * mark_linear_text_alias_ro() below (which will be called after
546 	 * alternative patching has completed). This makes the contents
547 	 * of the region accessible to subsystems such as hibernate,
548 	 * but protects it from inadvertent modification or execution.
549 	 * Note that contiguous mappings cannot be remapped in this way,
550 	 * so we should avoid them here.
551 	 */
552 	__map_memblock(pgdp, kernel_start, kernel_end,
553 		       PAGE_KERNEL, NO_CONT_MAPPINGS);
554 	memblock_clear_nomap(kernel_start, kernel_end - kernel_start);
555 }
556 
557 void mark_rodata_ro(void)
558 {
559 	unsigned long section_size;
560 
561 	/*
562 	 * mark .rodata as read only. Use __init_begin rather than __end_rodata
563 	 * to cover NOTES and EXCEPTION_TABLE.
564 	 */
565 	section_size = (unsigned long)__init_begin - (unsigned long)__start_rodata;
566 	update_mapping_prot(__pa_symbol(__start_rodata), (unsigned long)__start_rodata,
567 			    section_size, PAGE_KERNEL_RO);
568 
569 	debug_checkwx();
570 }
571 
572 static void __init map_kernel_segment(pgd_t *pgdp, void *va_start, void *va_end,
573 				      pgprot_t prot, struct vm_struct *vma,
574 				      int flags, unsigned long vm_flags)
575 {
576 	phys_addr_t pa_start = __pa_symbol(va_start);
577 	unsigned long size = va_end - va_start;
578 
579 	BUG_ON(!PAGE_ALIGNED(pa_start));
580 	BUG_ON(!PAGE_ALIGNED(size));
581 
582 	__create_pgd_mapping(pgdp, pa_start, (unsigned long)va_start, size, prot,
583 			     early_pgtable_alloc, flags);
584 
585 	if (!(vm_flags & VM_NO_GUARD))
586 		size += PAGE_SIZE;
587 
588 	vma->addr	= va_start;
589 	vma->phys_addr	= pa_start;
590 	vma->size	= size;
591 	vma->flags	= VM_MAP | vm_flags;
592 	vma->caller	= __builtin_return_address(0);
593 
594 	vm_area_add_early(vma);
595 }
596 
597 static int __init parse_rodata(char *arg)
598 {
599 	int ret = strtobool(arg, &rodata_enabled);
600 	if (!ret) {
601 		rodata_full = false;
602 		return 0;
603 	}
604 
605 	/* permit 'full' in addition to boolean options */
606 	if (strcmp(arg, "full"))
607 		return -EINVAL;
608 
609 	rodata_enabled = true;
610 	rodata_full = true;
611 	return 0;
612 }
613 early_param("rodata", parse_rodata);
614 
615 #ifdef CONFIG_UNMAP_KERNEL_AT_EL0
616 static int __init map_entry_trampoline(void)
617 {
618 	pgprot_t prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
619 	phys_addr_t pa_start = __pa_symbol(__entry_tramp_text_start);
620 
621 	/* The trampoline is always mapped and can therefore be global */
622 	pgprot_val(prot) &= ~PTE_NG;
623 
624 	/* Map only the text into the trampoline page table */
625 	memset(tramp_pg_dir, 0, PGD_SIZE);
626 	__create_pgd_mapping(tramp_pg_dir, pa_start, TRAMP_VALIAS, PAGE_SIZE,
627 			     prot, __pgd_pgtable_alloc, 0);
628 
629 	/* Map both the text and data into the kernel page table */
630 	__set_fixmap(FIX_ENTRY_TRAMP_TEXT, pa_start, prot);
631 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
632 		extern char __entry_tramp_data_start[];
633 
634 		__set_fixmap(FIX_ENTRY_TRAMP_DATA,
635 			     __pa_symbol(__entry_tramp_data_start),
636 			     PAGE_KERNEL_RO);
637 	}
638 
639 	return 0;
640 }
641 core_initcall(map_entry_trampoline);
642 #endif
643 
644 /*
645  * Open coded check for BTI, only for use to determine configuration
646  * for early mappings for before the cpufeature code has run.
647  */
648 static bool arm64_early_this_cpu_has_bti(void)
649 {
650 	u64 pfr1;
651 
652 	if (!IS_ENABLED(CONFIG_ARM64_BTI_KERNEL))
653 		return false;
654 
655 	pfr1 = __read_sysreg_by_encoding(SYS_ID_AA64PFR1_EL1);
656 	return cpuid_feature_extract_unsigned_field(pfr1,
657 						    ID_AA64PFR1_BT_SHIFT);
658 }
659 
660 /*
661  * Create fine-grained mappings for the kernel.
662  */
663 static void __init map_kernel(pgd_t *pgdp)
664 {
665 	static struct vm_struct vmlinux_text, vmlinux_rodata, vmlinux_inittext,
666 				vmlinux_initdata, vmlinux_data;
667 
668 	/*
669 	 * External debuggers may need to write directly to the text
670 	 * mapping to install SW breakpoints. Allow this (only) when
671 	 * explicitly requested with rodata=off.
672 	 */
673 	pgprot_t text_prot = rodata_enabled ? PAGE_KERNEL_ROX : PAGE_KERNEL_EXEC;
674 
675 	/*
676 	 * If we have a CPU that supports BTI and a kernel built for
677 	 * BTI then mark the kernel executable text as guarded pages
678 	 * now so we don't have to rewrite the page tables later.
679 	 */
680 	if (arm64_early_this_cpu_has_bti())
681 		text_prot = __pgprot_modify(text_prot, PTE_GP, PTE_GP);
682 
683 	/*
684 	 * Only rodata will be remapped with different permissions later on,
685 	 * all other segments are allowed to use contiguous mappings.
686 	 */
687 	map_kernel_segment(pgdp, _stext, _etext, text_prot, &vmlinux_text, 0,
688 			   VM_NO_GUARD);
689 	map_kernel_segment(pgdp, __start_rodata, __inittext_begin, PAGE_KERNEL,
690 			   &vmlinux_rodata, NO_CONT_MAPPINGS, VM_NO_GUARD);
691 	map_kernel_segment(pgdp, __inittext_begin, __inittext_end, text_prot,
692 			   &vmlinux_inittext, 0, VM_NO_GUARD);
693 	map_kernel_segment(pgdp, __initdata_begin, __initdata_end, PAGE_KERNEL,
694 			   &vmlinux_initdata, 0, VM_NO_GUARD);
695 	map_kernel_segment(pgdp, _data, _end, PAGE_KERNEL, &vmlinux_data, 0, 0);
696 
697 	if (!READ_ONCE(pgd_val(*pgd_offset_pgd(pgdp, FIXADDR_START)))) {
698 		/*
699 		 * The fixmap falls in a separate pgd to the kernel, and doesn't
700 		 * live in the carveout for the swapper_pg_dir. We can simply
701 		 * re-use the existing dir for the fixmap.
702 		 */
703 		set_pgd(pgd_offset_pgd(pgdp, FIXADDR_START),
704 			READ_ONCE(*pgd_offset_k(FIXADDR_START)));
705 	} else if (CONFIG_PGTABLE_LEVELS > 3) {
706 		pgd_t *bm_pgdp;
707 		p4d_t *bm_p4dp;
708 		pud_t *bm_pudp;
709 		/*
710 		 * The fixmap shares its top level pgd entry with the kernel
711 		 * mapping. This can really only occur when we are running
712 		 * with 16k/4 levels, so we can simply reuse the pud level
713 		 * entry instead.
714 		 */
715 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
716 		bm_pgdp = pgd_offset_pgd(pgdp, FIXADDR_START);
717 		bm_p4dp = p4d_offset(bm_pgdp, FIXADDR_START);
718 		bm_pudp = pud_set_fixmap_offset(bm_p4dp, FIXADDR_START);
719 		pud_populate(&init_mm, bm_pudp, lm_alias(bm_pmd));
720 		pud_clear_fixmap();
721 	} else {
722 		BUG();
723 	}
724 
725 	kasan_copy_shadow(pgdp);
726 }
727 
728 void __init paging_init(void)
729 {
730 	pgd_t *pgdp = pgd_set_fixmap(__pa_symbol(swapper_pg_dir));
731 
732 	map_kernel(pgdp);
733 	map_mem(pgdp);
734 
735 	pgd_clear_fixmap();
736 
737 	cpu_replace_ttbr1(lm_alias(swapper_pg_dir));
738 	init_mm.pgd = swapper_pg_dir;
739 
740 	memblock_free(__pa_symbol(init_pg_dir),
741 		      __pa_symbol(init_pg_end) - __pa_symbol(init_pg_dir));
742 
743 	memblock_allow_resize();
744 }
745 
746 /*
747  * Check whether a kernel address is valid (derived from arch/x86/).
748  */
749 int kern_addr_valid(unsigned long addr)
750 {
751 	pgd_t *pgdp;
752 	p4d_t *p4dp;
753 	pud_t *pudp, pud;
754 	pmd_t *pmdp, pmd;
755 	pte_t *ptep, pte;
756 
757 	addr = arch_kasan_reset_tag(addr);
758 	if ((((long)addr) >> VA_BITS) != -1UL)
759 		return 0;
760 
761 	pgdp = pgd_offset_k(addr);
762 	if (pgd_none(READ_ONCE(*pgdp)))
763 		return 0;
764 
765 	p4dp = p4d_offset(pgdp, addr);
766 	if (p4d_none(READ_ONCE(*p4dp)))
767 		return 0;
768 
769 	pudp = pud_offset(p4dp, addr);
770 	pud = READ_ONCE(*pudp);
771 	if (pud_none(pud))
772 		return 0;
773 
774 	if (pud_sect(pud))
775 		return pfn_valid(pud_pfn(pud));
776 
777 	pmdp = pmd_offset(pudp, addr);
778 	pmd = READ_ONCE(*pmdp);
779 	if (pmd_none(pmd))
780 		return 0;
781 
782 	if (pmd_sect(pmd))
783 		return pfn_valid(pmd_pfn(pmd));
784 
785 	ptep = pte_offset_kernel(pmdp, addr);
786 	pte = READ_ONCE(*ptep);
787 	if (pte_none(pte))
788 		return 0;
789 
790 	return pfn_valid(pte_pfn(pte));
791 }
792 
793 #ifdef CONFIG_MEMORY_HOTPLUG
794 static void free_hotplug_page_range(struct page *page, size_t size,
795 				    struct vmem_altmap *altmap)
796 {
797 	if (altmap) {
798 		vmem_altmap_free(altmap, size >> PAGE_SHIFT);
799 	} else {
800 		WARN_ON(PageReserved(page));
801 		free_pages((unsigned long)page_address(page), get_order(size));
802 	}
803 }
804 
805 static void free_hotplug_pgtable_page(struct page *page)
806 {
807 	free_hotplug_page_range(page, PAGE_SIZE, NULL);
808 }
809 
810 static bool pgtable_range_aligned(unsigned long start, unsigned long end,
811 				  unsigned long floor, unsigned long ceiling,
812 				  unsigned long mask)
813 {
814 	start &= mask;
815 	if (start < floor)
816 		return false;
817 
818 	if (ceiling) {
819 		ceiling &= mask;
820 		if (!ceiling)
821 			return false;
822 	}
823 
824 	if (end - 1 > ceiling - 1)
825 		return false;
826 	return true;
827 }
828 
829 static void unmap_hotplug_pte_range(pmd_t *pmdp, unsigned long addr,
830 				    unsigned long end, bool free_mapped,
831 				    struct vmem_altmap *altmap)
832 {
833 	pte_t *ptep, pte;
834 
835 	do {
836 		ptep = pte_offset_kernel(pmdp, addr);
837 		pte = READ_ONCE(*ptep);
838 		if (pte_none(pte))
839 			continue;
840 
841 		WARN_ON(!pte_present(pte));
842 		pte_clear(&init_mm, addr, ptep);
843 		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
844 		if (free_mapped)
845 			free_hotplug_page_range(pte_page(pte),
846 						PAGE_SIZE, altmap);
847 	} while (addr += PAGE_SIZE, addr < end);
848 }
849 
850 static void unmap_hotplug_pmd_range(pud_t *pudp, unsigned long addr,
851 				    unsigned long end, bool free_mapped,
852 				    struct vmem_altmap *altmap)
853 {
854 	unsigned long next;
855 	pmd_t *pmdp, pmd;
856 
857 	do {
858 		next = pmd_addr_end(addr, end);
859 		pmdp = pmd_offset(pudp, addr);
860 		pmd = READ_ONCE(*pmdp);
861 		if (pmd_none(pmd))
862 			continue;
863 
864 		WARN_ON(!pmd_present(pmd));
865 		if (pmd_sect(pmd)) {
866 			pmd_clear(pmdp);
867 
868 			/*
869 			 * One TLBI should be sufficient here as the PMD_SIZE
870 			 * range is mapped with a single block entry.
871 			 */
872 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
873 			if (free_mapped)
874 				free_hotplug_page_range(pmd_page(pmd),
875 							PMD_SIZE, altmap);
876 			continue;
877 		}
878 		WARN_ON(!pmd_table(pmd));
879 		unmap_hotplug_pte_range(pmdp, addr, next, free_mapped, altmap);
880 	} while (addr = next, addr < end);
881 }
882 
883 static void unmap_hotplug_pud_range(p4d_t *p4dp, unsigned long addr,
884 				    unsigned long end, bool free_mapped,
885 				    struct vmem_altmap *altmap)
886 {
887 	unsigned long next;
888 	pud_t *pudp, pud;
889 
890 	do {
891 		next = pud_addr_end(addr, end);
892 		pudp = pud_offset(p4dp, addr);
893 		pud = READ_ONCE(*pudp);
894 		if (pud_none(pud))
895 			continue;
896 
897 		WARN_ON(!pud_present(pud));
898 		if (pud_sect(pud)) {
899 			pud_clear(pudp);
900 
901 			/*
902 			 * One TLBI should be sufficient here as the PUD_SIZE
903 			 * range is mapped with a single block entry.
904 			 */
905 			flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
906 			if (free_mapped)
907 				free_hotplug_page_range(pud_page(pud),
908 							PUD_SIZE, altmap);
909 			continue;
910 		}
911 		WARN_ON(!pud_table(pud));
912 		unmap_hotplug_pmd_range(pudp, addr, next, free_mapped, altmap);
913 	} while (addr = next, addr < end);
914 }
915 
916 static void unmap_hotplug_p4d_range(pgd_t *pgdp, unsigned long addr,
917 				    unsigned long end, bool free_mapped,
918 				    struct vmem_altmap *altmap)
919 {
920 	unsigned long next;
921 	p4d_t *p4dp, p4d;
922 
923 	do {
924 		next = p4d_addr_end(addr, end);
925 		p4dp = p4d_offset(pgdp, addr);
926 		p4d = READ_ONCE(*p4dp);
927 		if (p4d_none(p4d))
928 			continue;
929 
930 		WARN_ON(!p4d_present(p4d));
931 		unmap_hotplug_pud_range(p4dp, addr, next, free_mapped, altmap);
932 	} while (addr = next, addr < end);
933 }
934 
935 static void unmap_hotplug_range(unsigned long addr, unsigned long end,
936 				bool free_mapped, struct vmem_altmap *altmap)
937 {
938 	unsigned long next;
939 	pgd_t *pgdp, pgd;
940 
941 	/*
942 	 * altmap can only be used as vmemmap mapping backing memory.
943 	 * In case the backing memory itself is not being freed, then
944 	 * altmap is irrelevant. Warn about this inconsistency when
945 	 * encountered.
946 	 */
947 	WARN_ON(!free_mapped && altmap);
948 
949 	do {
950 		next = pgd_addr_end(addr, end);
951 		pgdp = pgd_offset_k(addr);
952 		pgd = READ_ONCE(*pgdp);
953 		if (pgd_none(pgd))
954 			continue;
955 
956 		WARN_ON(!pgd_present(pgd));
957 		unmap_hotplug_p4d_range(pgdp, addr, next, free_mapped, altmap);
958 	} while (addr = next, addr < end);
959 }
960 
961 static void free_empty_pte_table(pmd_t *pmdp, unsigned long addr,
962 				 unsigned long end, unsigned long floor,
963 				 unsigned long ceiling)
964 {
965 	pte_t *ptep, pte;
966 	unsigned long i, start = addr;
967 
968 	do {
969 		ptep = pte_offset_kernel(pmdp, addr);
970 		pte = READ_ONCE(*ptep);
971 
972 		/*
973 		 * This is just a sanity check here which verifies that
974 		 * pte clearing has been done by earlier unmap loops.
975 		 */
976 		WARN_ON(!pte_none(pte));
977 	} while (addr += PAGE_SIZE, addr < end);
978 
979 	if (!pgtable_range_aligned(start, end, floor, ceiling, PMD_MASK))
980 		return;
981 
982 	/*
983 	 * Check whether we can free the pte page if the rest of the
984 	 * entries are empty. Overlap with other regions have been
985 	 * handled by the floor/ceiling check.
986 	 */
987 	ptep = pte_offset_kernel(pmdp, 0UL);
988 	for (i = 0; i < PTRS_PER_PTE; i++) {
989 		if (!pte_none(READ_ONCE(ptep[i])))
990 			return;
991 	}
992 
993 	pmd_clear(pmdp);
994 	__flush_tlb_kernel_pgtable(start);
995 	free_hotplug_pgtable_page(virt_to_page(ptep));
996 }
997 
998 static void free_empty_pmd_table(pud_t *pudp, unsigned long addr,
999 				 unsigned long end, unsigned long floor,
1000 				 unsigned long ceiling)
1001 {
1002 	pmd_t *pmdp, pmd;
1003 	unsigned long i, next, start = addr;
1004 
1005 	do {
1006 		next = pmd_addr_end(addr, end);
1007 		pmdp = pmd_offset(pudp, addr);
1008 		pmd = READ_ONCE(*pmdp);
1009 		if (pmd_none(pmd))
1010 			continue;
1011 
1012 		WARN_ON(!pmd_present(pmd) || !pmd_table(pmd) || pmd_sect(pmd));
1013 		free_empty_pte_table(pmdp, addr, next, floor, ceiling);
1014 	} while (addr = next, addr < end);
1015 
1016 	if (CONFIG_PGTABLE_LEVELS <= 2)
1017 		return;
1018 
1019 	if (!pgtable_range_aligned(start, end, floor, ceiling, PUD_MASK))
1020 		return;
1021 
1022 	/*
1023 	 * Check whether we can free the pmd page if the rest of the
1024 	 * entries are empty. Overlap with other regions have been
1025 	 * handled by the floor/ceiling check.
1026 	 */
1027 	pmdp = pmd_offset(pudp, 0UL);
1028 	for (i = 0; i < PTRS_PER_PMD; i++) {
1029 		if (!pmd_none(READ_ONCE(pmdp[i])))
1030 			return;
1031 	}
1032 
1033 	pud_clear(pudp);
1034 	__flush_tlb_kernel_pgtable(start);
1035 	free_hotplug_pgtable_page(virt_to_page(pmdp));
1036 }
1037 
1038 static void free_empty_pud_table(p4d_t *p4dp, unsigned long addr,
1039 				 unsigned long end, unsigned long floor,
1040 				 unsigned long ceiling)
1041 {
1042 	pud_t *pudp, pud;
1043 	unsigned long i, next, start = addr;
1044 
1045 	do {
1046 		next = pud_addr_end(addr, end);
1047 		pudp = pud_offset(p4dp, addr);
1048 		pud = READ_ONCE(*pudp);
1049 		if (pud_none(pud))
1050 			continue;
1051 
1052 		WARN_ON(!pud_present(pud) || !pud_table(pud) || pud_sect(pud));
1053 		free_empty_pmd_table(pudp, addr, next, floor, ceiling);
1054 	} while (addr = next, addr < end);
1055 
1056 	if (CONFIG_PGTABLE_LEVELS <= 3)
1057 		return;
1058 
1059 	if (!pgtable_range_aligned(start, end, floor, ceiling, PGDIR_MASK))
1060 		return;
1061 
1062 	/*
1063 	 * Check whether we can free the pud page if the rest of the
1064 	 * entries are empty. Overlap with other regions have been
1065 	 * handled by the floor/ceiling check.
1066 	 */
1067 	pudp = pud_offset(p4dp, 0UL);
1068 	for (i = 0; i < PTRS_PER_PUD; i++) {
1069 		if (!pud_none(READ_ONCE(pudp[i])))
1070 			return;
1071 	}
1072 
1073 	p4d_clear(p4dp);
1074 	__flush_tlb_kernel_pgtable(start);
1075 	free_hotplug_pgtable_page(virt_to_page(pudp));
1076 }
1077 
1078 static void free_empty_p4d_table(pgd_t *pgdp, unsigned long addr,
1079 				 unsigned long end, unsigned long floor,
1080 				 unsigned long ceiling)
1081 {
1082 	unsigned long next;
1083 	p4d_t *p4dp, p4d;
1084 
1085 	do {
1086 		next = p4d_addr_end(addr, end);
1087 		p4dp = p4d_offset(pgdp, addr);
1088 		p4d = READ_ONCE(*p4dp);
1089 		if (p4d_none(p4d))
1090 			continue;
1091 
1092 		WARN_ON(!p4d_present(p4d));
1093 		free_empty_pud_table(p4dp, addr, next, floor, ceiling);
1094 	} while (addr = next, addr < end);
1095 }
1096 
1097 static void free_empty_tables(unsigned long addr, unsigned long end,
1098 			      unsigned long floor, unsigned long ceiling)
1099 {
1100 	unsigned long next;
1101 	pgd_t *pgdp, pgd;
1102 
1103 	do {
1104 		next = pgd_addr_end(addr, end);
1105 		pgdp = pgd_offset_k(addr);
1106 		pgd = READ_ONCE(*pgdp);
1107 		if (pgd_none(pgd))
1108 			continue;
1109 
1110 		WARN_ON(!pgd_present(pgd));
1111 		free_empty_p4d_table(pgdp, addr, next, floor, ceiling);
1112 	} while (addr = next, addr < end);
1113 }
1114 #endif
1115 
1116 #if !ARM64_SWAPPER_USES_SECTION_MAPS
1117 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1118 		struct vmem_altmap *altmap)
1119 {
1120 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1121 	return vmemmap_populate_basepages(start, end, node, altmap);
1122 }
1123 #else	/* !ARM64_SWAPPER_USES_SECTION_MAPS */
1124 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
1125 		struct vmem_altmap *altmap)
1126 {
1127 	unsigned long addr = start;
1128 	unsigned long next;
1129 	pgd_t *pgdp;
1130 	p4d_t *p4dp;
1131 	pud_t *pudp;
1132 	pmd_t *pmdp;
1133 
1134 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1135 	do {
1136 		next = pmd_addr_end(addr, end);
1137 
1138 		pgdp = vmemmap_pgd_populate(addr, node);
1139 		if (!pgdp)
1140 			return -ENOMEM;
1141 
1142 		p4dp = vmemmap_p4d_populate(pgdp, addr, node);
1143 		if (!p4dp)
1144 			return -ENOMEM;
1145 
1146 		pudp = vmemmap_pud_populate(p4dp, addr, node);
1147 		if (!pudp)
1148 			return -ENOMEM;
1149 
1150 		pmdp = pmd_offset(pudp, addr);
1151 		if (pmd_none(READ_ONCE(*pmdp))) {
1152 			void *p = NULL;
1153 
1154 			p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
1155 			if (!p) {
1156 				if (vmemmap_populate_basepages(addr, next, node, altmap))
1157 					return -ENOMEM;
1158 				continue;
1159 			}
1160 
1161 			pmd_set_huge(pmdp, __pa(p), __pgprot(PROT_SECT_NORMAL));
1162 		} else
1163 			vmemmap_verify((pte_t *)pmdp, node, addr, next);
1164 	} while (addr = next, addr != end);
1165 
1166 	return 0;
1167 }
1168 #endif	/* !ARM64_SWAPPER_USES_SECTION_MAPS */
1169 void vmemmap_free(unsigned long start, unsigned long end,
1170 		struct vmem_altmap *altmap)
1171 {
1172 #ifdef CONFIG_MEMORY_HOTPLUG
1173 	WARN_ON((start < VMEMMAP_START) || (end > VMEMMAP_END));
1174 
1175 	unmap_hotplug_range(start, end, true, altmap);
1176 	free_empty_tables(start, end, VMEMMAP_START, VMEMMAP_END);
1177 #endif
1178 }
1179 
1180 static inline pud_t *fixmap_pud(unsigned long addr)
1181 {
1182 	pgd_t *pgdp = pgd_offset_k(addr);
1183 	p4d_t *p4dp = p4d_offset(pgdp, addr);
1184 	p4d_t p4d = READ_ONCE(*p4dp);
1185 
1186 	BUG_ON(p4d_none(p4d) || p4d_bad(p4d));
1187 
1188 	return pud_offset_kimg(p4dp, addr);
1189 }
1190 
1191 static inline pmd_t *fixmap_pmd(unsigned long addr)
1192 {
1193 	pud_t *pudp = fixmap_pud(addr);
1194 	pud_t pud = READ_ONCE(*pudp);
1195 
1196 	BUG_ON(pud_none(pud) || pud_bad(pud));
1197 
1198 	return pmd_offset_kimg(pudp, addr);
1199 }
1200 
1201 static inline pte_t *fixmap_pte(unsigned long addr)
1202 {
1203 	return &bm_pte[pte_index(addr)];
1204 }
1205 
1206 /*
1207  * The p*d_populate functions call virt_to_phys implicitly so they can't be used
1208  * directly on kernel symbols (bm_p*d). This function is called too early to use
1209  * lm_alias so __p*d_populate functions must be used to populate with the
1210  * physical address from __pa_symbol.
1211  */
1212 void __init early_fixmap_init(void)
1213 {
1214 	pgd_t *pgdp;
1215 	p4d_t *p4dp, p4d;
1216 	pud_t *pudp;
1217 	pmd_t *pmdp;
1218 	unsigned long addr = FIXADDR_START;
1219 
1220 	pgdp = pgd_offset_k(addr);
1221 	p4dp = p4d_offset(pgdp, addr);
1222 	p4d = READ_ONCE(*p4dp);
1223 	if (CONFIG_PGTABLE_LEVELS > 3 &&
1224 	    !(p4d_none(p4d) || p4d_page_paddr(p4d) == __pa_symbol(bm_pud))) {
1225 		/*
1226 		 * We only end up here if the kernel mapping and the fixmap
1227 		 * share the top level pgd entry, which should only happen on
1228 		 * 16k/4 levels configurations.
1229 		 */
1230 		BUG_ON(!IS_ENABLED(CONFIG_ARM64_16K_PAGES));
1231 		pudp = pud_offset_kimg(p4dp, addr);
1232 	} else {
1233 		if (p4d_none(p4d))
1234 			__p4d_populate(p4dp, __pa_symbol(bm_pud), P4D_TYPE_TABLE);
1235 		pudp = fixmap_pud(addr);
1236 	}
1237 	if (pud_none(READ_ONCE(*pudp)))
1238 		__pud_populate(pudp, __pa_symbol(bm_pmd), PUD_TYPE_TABLE);
1239 	pmdp = fixmap_pmd(addr);
1240 	__pmd_populate(pmdp, __pa_symbol(bm_pte), PMD_TYPE_TABLE);
1241 
1242 	/*
1243 	 * The boot-ioremap range spans multiple pmds, for which
1244 	 * we are not prepared:
1245 	 */
1246 	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
1247 		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
1248 
1249 	if ((pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)))
1250 	     || pmdp != fixmap_pmd(fix_to_virt(FIX_BTMAP_END))) {
1251 		WARN_ON(1);
1252 		pr_warn("pmdp %p != %p, %p\n",
1253 			pmdp, fixmap_pmd(fix_to_virt(FIX_BTMAP_BEGIN)),
1254 			fixmap_pmd(fix_to_virt(FIX_BTMAP_END)));
1255 		pr_warn("fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
1256 			fix_to_virt(FIX_BTMAP_BEGIN));
1257 		pr_warn("fix_to_virt(FIX_BTMAP_END):   %08lx\n",
1258 			fix_to_virt(FIX_BTMAP_END));
1259 
1260 		pr_warn("FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
1261 		pr_warn("FIX_BTMAP_BEGIN:     %d\n", FIX_BTMAP_BEGIN);
1262 	}
1263 }
1264 
1265 /*
1266  * Unusually, this is also called in IRQ context (ghes_iounmap_irq) so if we
1267  * ever need to use IPIs for TLB broadcasting, then we're in trouble here.
1268  */
1269 void __set_fixmap(enum fixed_addresses idx,
1270 			       phys_addr_t phys, pgprot_t flags)
1271 {
1272 	unsigned long addr = __fix_to_virt(idx);
1273 	pte_t *ptep;
1274 
1275 	BUG_ON(idx <= FIX_HOLE || idx >= __end_of_fixed_addresses);
1276 
1277 	ptep = fixmap_pte(addr);
1278 
1279 	if (pgprot_val(flags)) {
1280 		set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, flags));
1281 	} else {
1282 		pte_clear(&init_mm, addr, ptep);
1283 		flush_tlb_kernel_range(addr, addr+PAGE_SIZE);
1284 	}
1285 }
1286 
1287 void *__init fixmap_remap_fdt(phys_addr_t dt_phys, int *size, pgprot_t prot)
1288 {
1289 	const u64 dt_virt_base = __fix_to_virt(FIX_FDT);
1290 	int offset;
1291 	void *dt_virt;
1292 
1293 	/*
1294 	 * Check whether the physical FDT address is set and meets the minimum
1295 	 * alignment requirement. Since we are relying on MIN_FDT_ALIGN to be
1296 	 * at least 8 bytes so that we can always access the magic and size
1297 	 * fields of the FDT header after mapping the first chunk, double check
1298 	 * here if that is indeed the case.
1299 	 */
1300 	BUILD_BUG_ON(MIN_FDT_ALIGN < 8);
1301 	if (!dt_phys || dt_phys % MIN_FDT_ALIGN)
1302 		return NULL;
1303 
1304 	/*
1305 	 * Make sure that the FDT region can be mapped without the need to
1306 	 * allocate additional translation table pages, so that it is safe
1307 	 * to call create_mapping_noalloc() this early.
1308 	 *
1309 	 * On 64k pages, the FDT will be mapped using PTEs, so we need to
1310 	 * be in the same PMD as the rest of the fixmap.
1311 	 * On 4k pages, we'll use section mappings for the FDT so we only
1312 	 * have to be in the same PUD.
1313 	 */
1314 	BUILD_BUG_ON(dt_virt_base % SZ_2M);
1315 
1316 	BUILD_BUG_ON(__fix_to_virt(FIX_FDT_END) >> SWAPPER_TABLE_SHIFT !=
1317 		     __fix_to_virt(FIX_BTMAP_BEGIN) >> SWAPPER_TABLE_SHIFT);
1318 
1319 	offset = dt_phys % SWAPPER_BLOCK_SIZE;
1320 	dt_virt = (void *)dt_virt_base + offset;
1321 
1322 	/* map the first chunk so we can read the size from the header */
1323 	create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE),
1324 			dt_virt_base, SWAPPER_BLOCK_SIZE, prot);
1325 
1326 	if (fdt_magic(dt_virt) != FDT_MAGIC)
1327 		return NULL;
1328 
1329 	*size = fdt_totalsize(dt_virt);
1330 	if (*size > MAX_FDT_SIZE)
1331 		return NULL;
1332 
1333 	if (offset + *size > SWAPPER_BLOCK_SIZE)
1334 		create_mapping_noalloc(round_down(dt_phys, SWAPPER_BLOCK_SIZE), dt_virt_base,
1335 			       round_up(offset + *size, SWAPPER_BLOCK_SIZE), prot);
1336 
1337 	return dt_virt;
1338 }
1339 
1340 int pud_set_huge(pud_t *pudp, phys_addr_t phys, pgprot_t prot)
1341 {
1342 	pud_t new_pud = pfn_pud(__phys_to_pfn(phys), mk_pud_sect_prot(prot));
1343 
1344 	/* Only allow permission changes for now */
1345 	if (!pgattr_change_is_safe(READ_ONCE(pud_val(*pudp)),
1346 				   pud_val(new_pud)))
1347 		return 0;
1348 
1349 	VM_BUG_ON(phys & ~PUD_MASK);
1350 	set_pud(pudp, new_pud);
1351 	return 1;
1352 }
1353 
1354 int pmd_set_huge(pmd_t *pmdp, phys_addr_t phys, pgprot_t prot)
1355 {
1356 	pmd_t new_pmd = pfn_pmd(__phys_to_pfn(phys), mk_pmd_sect_prot(prot));
1357 
1358 	/* Only allow permission changes for now */
1359 	if (!pgattr_change_is_safe(READ_ONCE(pmd_val(*pmdp)),
1360 				   pmd_val(new_pmd)))
1361 		return 0;
1362 
1363 	VM_BUG_ON(phys & ~PMD_MASK);
1364 	set_pmd(pmdp, new_pmd);
1365 	return 1;
1366 }
1367 
1368 int pud_clear_huge(pud_t *pudp)
1369 {
1370 	if (!pud_sect(READ_ONCE(*pudp)))
1371 		return 0;
1372 	pud_clear(pudp);
1373 	return 1;
1374 }
1375 
1376 int pmd_clear_huge(pmd_t *pmdp)
1377 {
1378 	if (!pmd_sect(READ_ONCE(*pmdp)))
1379 		return 0;
1380 	pmd_clear(pmdp);
1381 	return 1;
1382 }
1383 
1384 int pmd_free_pte_page(pmd_t *pmdp, unsigned long addr)
1385 {
1386 	pte_t *table;
1387 	pmd_t pmd;
1388 
1389 	pmd = READ_ONCE(*pmdp);
1390 
1391 	if (!pmd_table(pmd)) {
1392 		VM_WARN_ON(1);
1393 		return 1;
1394 	}
1395 
1396 	table = pte_offset_kernel(pmdp, addr);
1397 	pmd_clear(pmdp);
1398 	__flush_tlb_kernel_pgtable(addr);
1399 	pte_free_kernel(NULL, table);
1400 	return 1;
1401 }
1402 
1403 int pud_free_pmd_page(pud_t *pudp, unsigned long addr)
1404 {
1405 	pmd_t *table;
1406 	pmd_t *pmdp;
1407 	pud_t pud;
1408 	unsigned long next, end;
1409 
1410 	pud = READ_ONCE(*pudp);
1411 
1412 	if (!pud_table(pud)) {
1413 		VM_WARN_ON(1);
1414 		return 1;
1415 	}
1416 
1417 	table = pmd_offset(pudp, addr);
1418 	pmdp = table;
1419 	next = addr;
1420 	end = addr + PUD_SIZE;
1421 	do {
1422 		pmd_free_pte_page(pmdp, next);
1423 	} while (pmdp++, next += PMD_SIZE, next != end);
1424 
1425 	pud_clear(pudp);
1426 	__flush_tlb_kernel_pgtable(addr);
1427 	pmd_free(NULL, table);
1428 	return 1;
1429 }
1430 
1431 #ifdef CONFIG_MEMORY_HOTPLUG
1432 static void __remove_pgd_mapping(pgd_t *pgdir, unsigned long start, u64 size)
1433 {
1434 	unsigned long end = start + size;
1435 
1436 	WARN_ON(pgdir != init_mm.pgd);
1437 	WARN_ON((start < PAGE_OFFSET) || (end > PAGE_END));
1438 
1439 	unmap_hotplug_range(start, end, false, NULL);
1440 	free_empty_tables(start, end, PAGE_OFFSET, PAGE_END);
1441 }
1442 
1443 struct range arch_get_mappable_range(void)
1444 {
1445 	struct range mhp_range;
1446 	u64 start_linear_pa = __pa(_PAGE_OFFSET(vabits_actual));
1447 	u64 end_linear_pa = __pa(PAGE_END - 1);
1448 
1449 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
1450 		/*
1451 		 * Check for a wrap, it is possible because of randomized linear
1452 		 * mapping the start physical address is actually bigger than
1453 		 * the end physical address. In this case set start to zero
1454 		 * because [0, end_linear_pa] range must still be able to cover
1455 		 * all addressable physical addresses.
1456 		 */
1457 		if (start_linear_pa > end_linear_pa)
1458 			start_linear_pa = 0;
1459 	}
1460 
1461 	WARN_ON(start_linear_pa > end_linear_pa);
1462 
1463 	/*
1464 	 * Linear mapping region is the range [PAGE_OFFSET..(PAGE_END - 1)]
1465 	 * accommodating both its ends but excluding PAGE_END. Max physical
1466 	 * range which can be mapped inside this linear mapping range, must
1467 	 * also be derived from its end points.
1468 	 */
1469 	mhp_range.start = start_linear_pa;
1470 	mhp_range.end =  end_linear_pa;
1471 
1472 	return mhp_range;
1473 }
1474 
1475 int arch_add_memory(int nid, u64 start, u64 size,
1476 		    struct mhp_params *params)
1477 {
1478 	int ret, flags = NO_EXEC_MAPPINGS;
1479 
1480 	VM_BUG_ON(!mhp_range_allowed(start, size, true));
1481 
1482 	/*
1483 	 * KFENCE requires linear map to be mapped at page granularity, so that
1484 	 * it is possible to protect/unprotect single pages in the KFENCE pool.
1485 	 */
1486 	if (rodata_full || debug_pagealloc_enabled() ||
1487 	    IS_ENABLED(CONFIG_KFENCE))
1488 		flags |= NO_BLOCK_MAPPINGS | NO_CONT_MAPPINGS;
1489 
1490 	__create_pgd_mapping(swapper_pg_dir, start, __phys_to_virt(start),
1491 			     size, params->pgprot, __pgd_pgtable_alloc,
1492 			     flags);
1493 
1494 	memblock_clear_nomap(start, size);
1495 
1496 	ret = __add_pages(nid, start >> PAGE_SHIFT, size >> PAGE_SHIFT,
1497 			   params);
1498 	if (ret)
1499 		__remove_pgd_mapping(swapper_pg_dir,
1500 				     __phys_to_virt(start), size);
1501 	return ret;
1502 }
1503 
1504 void arch_remove_memory(int nid, u64 start, u64 size,
1505 			struct vmem_altmap *altmap)
1506 {
1507 	unsigned long start_pfn = start >> PAGE_SHIFT;
1508 	unsigned long nr_pages = size >> PAGE_SHIFT;
1509 
1510 	__remove_pages(start_pfn, nr_pages, altmap);
1511 	__remove_pgd_mapping(swapper_pg_dir, __phys_to_virt(start), size);
1512 }
1513 
1514 /*
1515  * This memory hotplug notifier helps prevent boot memory from being
1516  * inadvertently removed as it blocks pfn range offlining process in
1517  * __offline_pages(). Hence this prevents both offlining as well as
1518  * removal process for boot memory which is initially always online.
1519  * In future if and when boot memory could be removed, this notifier
1520  * should be dropped and free_hotplug_page_range() should handle any
1521  * reserved pages allocated during boot.
1522  */
1523 static int prevent_bootmem_remove_notifier(struct notifier_block *nb,
1524 					   unsigned long action, void *data)
1525 {
1526 	struct mem_section *ms;
1527 	struct memory_notify *arg = data;
1528 	unsigned long end_pfn = arg->start_pfn + arg->nr_pages;
1529 	unsigned long pfn = arg->start_pfn;
1530 
1531 	if ((action != MEM_GOING_OFFLINE) && (action != MEM_OFFLINE))
1532 		return NOTIFY_OK;
1533 
1534 	for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1535 		unsigned long start = PFN_PHYS(pfn);
1536 		unsigned long end = start + (1UL << PA_SECTION_SHIFT);
1537 
1538 		ms = __pfn_to_section(pfn);
1539 		if (!early_section(ms))
1540 			continue;
1541 
1542 		if (action == MEM_GOING_OFFLINE) {
1543 			/*
1544 			 * Boot memory removal is not supported. Prevent
1545 			 * it via blocking any attempted offline request
1546 			 * for the boot memory and just report it.
1547 			 */
1548 			pr_warn("Boot memory [%lx %lx] offlining attempted\n", start, end);
1549 			return NOTIFY_BAD;
1550 		} else if (action == MEM_OFFLINE) {
1551 			/*
1552 			 * This should have never happened. Boot memory
1553 			 * offlining should have been prevented by this
1554 			 * very notifier. Probably some memory removal
1555 			 * procedure might have changed which would then
1556 			 * require further debug.
1557 			 */
1558 			pr_err("Boot memory [%lx %lx] offlined\n", start, end);
1559 
1560 			/*
1561 			 * Core memory hotplug does not process a return
1562 			 * code from the notifier for MEM_OFFLINE events.
1563 			 * The error condition has been reported. Return
1564 			 * from here as if ignored.
1565 			 */
1566 			return NOTIFY_DONE;
1567 		}
1568 	}
1569 	return NOTIFY_OK;
1570 }
1571 
1572 static struct notifier_block prevent_bootmem_remove_nb = {
1573 	.notifier_call = prevent_bootmem_remove_notifier,
1574 };
1575 
1576 /*
1577  * This ensures that boot memory sections on the platform are online
1578  * from early boot. Memory sections could not be prevented from being
1579  * offlined, unless for some reason they are not online to begin with.
1580  * This helps validate the basic assumption on which the above memory
1581  * event notifier works to prevent boot memory section offlining and
1582  * its possible removal.
1583  */
1584 static void validate_bootmem_online(void)
1585 {
1586 	phys_addr_t start, end, addr;
1587 	struct mem_section *ms;
1588 	u64 i;
1589 
1590 	/*
1591 	 * Scanning across all memblock might be expensive
1592 	 * on some big memory systems. Hence enable this
1593 	 * validation only with DEBUG_VM.
1594 	 */
1595 	if (!IS_ENABLED(CONFIG_DEBUG_VM))
1596 		return;
1597 
1598 	for_each_mem_range(i, &start, &end) {
1599 		for (addr = start; addr < end; addr += (1UL << PA_SECTION_SHIFT)) {
1600 			ms = __pfn_to_section(PHYS_PFN(addr));
1601 
1602 			/*
1603 			 * All memory ranges in the system at this point
1604 			 * should have been marked as early sections.
1605 			 */
1606 			WARN_ON(!early_section(ms));
1607 
1608 			/*
1609 			 * Memory notifier mechanism here to prevent boot
1610 			 * memory offlining depends on the fact that each
1611 			 * early section memory on the system is initially
1612 			 * online. Otherwise a given memory section which
1613 			 * is already offline will be overlooked and can
1614 			 * be removed completely. Call out such sections.
1615 			 */
1616 			if (!online_section(ms))
1617 				pr_err("Boot memory [%llx %llx] is offline, can be removed\n",
1618 					addr, addr + (1UL << PA_SECTION_SHIFT));
1619 		}
1620 	}
1621 }
1622 
1623 static int __init prevent_bootmem_remove_init(void)
1624 {
1625 	int ret = 0;
1626 
1627 	if (!IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
1628 		return ret;
1629 
1630 	validate_bootmem_online();
1631 	ret = register_memory_notifier(&prevent_bootmem_remove_nb);
1632 	if (ret)
1633 		pr_err("%s: Notifier registration failed %d\n", __func__, ret);
1634 
1635 	return ret;
1636 }
1637 early_initcall(prevent_bootmem_remove_init);
1638 #endif
1639