xref: /openbmc/linux/arch/arm64/mm/mmu.c (revision 1c2f87c2)
1 /*
2  * Based on arch/arm/mm/mmu.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/export.h>
21 #include <linux/kernel.h>
22 #include <linux/errno.h>
23 #include <linux/init.h>
24 #include <linux/mman.h>
25 #include <linux/nodemask.h>
26 #include <linux/memblock.h>
27 #include <linux/fs.h>
28 #include <linux/io.h>
29 
30 #include <asm/cputype.h>
31 #include <asm/sections.h>
32 #include <asm/setup.h>
33 #include <asm/sizes.h>
34 #include <asm/tlb.h>
35 #include <asm/mmu_context.h>
36 
37 #include "mm.h"
38 
39 /*
40  * Empty_zero_page is a special page that is used for zero-initialized data
41  * and COW.
42  */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45 
46 pgprot_t pgprot_default;
47 EXPORT_SYMBOL(pgprot_default);
48 
49 static pmdval_t prot_sect_kernel;
50 
51 struct cachepolicy {
52 	const char	policy[16];
53 	u64		mair;
54 	u64		tcr;
55 };
56 
57 static struct cachepolicy cache_policies[] __initdata = {
58 	{
59 		.policy		= "uncached",
60 		.mair		= 0x44,			/* inner, outer non-cacheable */
61 		.tcr		= TCR_IRGN_NC | TCR_ORGN_NC,
62 	}, {
63 		.policy		= "writethrough",
64 		.mair		= 0xaa,			/* inner, outer write-through, read-allocate */
65 		.tcr		= TCR_IRGN_WT | TCR_ORGN_WT,
66 	}, {
67 		.policy		= "writeback",
68 		.mair		= 0xee,			/* inner, outer write-back, read-allocate */
69 		.tcr		= TCR_IRGN_WBnWA | TCR_ORGN_WBnWA,
70 	}
71 };
72 
73 /*
74  * These are useful for identifying cache coherency problems by allowing the
75  * cache or the cache and writebuffer to be turned off. It changes the Normal
76  * memory caching attributes in the MAIR_EL1 register.
77  */
78 static int __init early_cachepolicy(char *p)
79 {
80 	int i;
81 	u64 tmp;
82 
83 	for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
84 		int len = strlen(cache_policies[i].policy);
85 
86 		if (memcmp(p, cache_policies[i].policy, len) == 0)
87 			break;
88 	}
89 	if (i == ARRAY_SIZE(cache_policies)) {
90 		pr_err("ERROR: unknown or unsupported cache policy: %s\n", p);
91 		return 0;
92 	}
93 
94 	flush_cache_all();
95 
96 	/*
97 	 * Modify MT_NORMAL attributes in MAIR_EL1.
98 	 */
99 	asm volatile(
100 	"	mrs	%0, mair_el1\n"
101 	"	bfi	%0, %1, #%2, #8\n"
102 	"	msr	mair_el1, %0\n"
103 	"	isb\n"
104 	: "=&r" (tmp)
105 	: "r" (cache_policies[i].mair), "i" (MT_NORMAL * 8));
106 
107 	/*
108 	 * Modify TCR PTW cacheability attributes.
109 	 */
110 	asm volatile(
111 	"	mrs	%0, tcr_el1\n"
112 	"	bic	%0, %0, %2\n"
113 	"	orr	%0, %0, %1\n"
114 	"	msr	tcr_el1, %0\n"
115 	"	isb\n"
116 	: "=&r" (tmp)
117 	: "r" (cache_policies[i].tcr), "r" (TCR_IRGN_MASK | TCR_ORGN_MASK));
118 
119 	flush_cache_all();
120 
121 	return 0;
122 }
123 early_param("cachepolicy", early_cachepolicy);
124 
125 /*
126  * Adjust the PMD section entries according to the CPU in use.
127  */
128 void __init init_mem_pgprot(void)
129 {
130 	pteval_t default_pgprot;
131 	int i;
132 
133 	default_pgprot = PTE_ATTRINDX(MT_NORMAL);
134 	prot_sect_kernel = PMD_TYPE_SECT | PMD_SECT_AF | PMD_ATTRINDX(MT_NORMAL);
135 
136 #ifdef CONFIG_SMP
137 	/*
138 	 * Mark memory with the "shared" attribute for SMP systems
139 	 */
140 	default_pgprot |= PTE_SHARED;
141 	prot_sect_kernel |= PMD_SECT_S;
142 #endif
143 
144 	for (i = 0; i < 16; i++) {
145 		unsigned long v = pgprot_val(protection_map[i]);
146 		protection_map[i] = __pgprot(v | default_pgprot);
147 	}
148 
149 	pgprot_default = __pgprot(PTE_TYPE_PAGE | PTE_AF | default_pgprot);
150 }
151 
152 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
153 			      unsigned long size, pgprot_t vma_prot)
154 {
155 	if (!pfn_valid(pfn))
156 		return pgprot_noncached(vma_prot);
157 	else if (file->f_flags & O_SYNC)
158 		return pgprot_writecombine(vma_prot);
159 	return vma_prot;
160 }
161 EXPORT_SYMBOL(phys_mem_access_prot);
162 
163 static void __init *early_alloc(unsigned long sz)
164 {
165 	void *ptr = __va(memblock_alloc(sz, sz));
166 	memset(ptr, 0, sz);
167 	return ptr;
168 }
169 
170 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
171 				  unsigned long end, unsigned long pfn)
172 {
173 	pte_t *pte;
174 
175 	if (pmd_none(*pmd)) {
176 		pte = early_alloc(PTRS_PER_PTE * sizeof(pte_t));
177 		__pmd_populate(pmd, __pa(pte), PMD_TYPE_TABLE);
178 	}
179 	BUG_ON(pmd_bad(*pmd));
180 
181 	pte = pte_offset_kernel(pmd, addr);
182 	do {
183 		set_pte(pte, pfn_pte(pfn, PAGE_KERNEL_EXEC));
184 		pfn++;
185 	} while (pte++, addr += PAGE_SIZE, addr != end);
186 }
187 
188 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
189 				  unsigned long end, phys_addr_t phys)
190 {
191 	pmd_t *pmd;
192 	unsigned long next;
193 
194 	/*
195 	 * Check for initial section mappings in the pgd/pud and remove them.
196 	 */
197 	if (pud_none(*pud) || pud_bad(*pud)) {
198 		pmd = early_alloc(PTRS_PER_PMD * sizeof(pmd_t));
199 		pud_populate(&init_mm, pud, pmd);
200 	}
201 
202 	pmd = pmd_offset(pud, addr);
203 	do {
204 		next = pmd_addr_end(addr, end);
205 		/* try section mapping first */
206 		if (((addr | next | phys) & ~SECTION_MASK) == 0) {
207 			pmd_t old_pmd =*pmd;
208 			set_pmd(pmd, __pmd(phys | prot_sect_kernel));
209 			/*
210 			 * Check for previous table entries created during
211 			 * boot (__create_page_tables) and flush them.
212 			 */
213 			if (!pmd_none(old_pmd))
214 				flush_tlb_all();
215 		} else {
216 			alloc_init_pte(pmd, addr, next, __phys_to_pfn(phys));
217 		}
218 		phys += next - addr;
219 	} while (pmd++, addr = next, addr != end);
220 }
221 
222 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
223 				  unsigned long end, unsigned long phys)
224 {
225 	pud_t *pud = pud_offset(pgd, addr);
226 	unsigned long next;
227 
228 	do {
229 		next = pud_addr_end(addr, end);
230 		alloc_init_pmd(pud, addr, next, phys);
231 		phys += next - addr;
232 	} while (pud++, addr = next, addr != end);
233 }
234 
235 /*
236  * Create the page directory entries and any necessary page tables for the
237  * mapping specified by 'md'.
238  */
239 static void __init create_mapping(phys_addr_t phys, unsigned long virt,
240 				  phys_addr_t size)
241 {
242 	unsigned long addr, length, end, next;
243 	pgd_t *pgd;
244 
245 	if (virt < VMALLOC_START) {
246 		pr_warning("BUG: not creating mapping for 0x%016llx at 0x%016lx - outside kernel range\n",
247 			   phys, virt);
248 		return;
249 	}
250 
251 	addr = virt & PAGE_MASK;
252 	length = PAGE_ALIGN(size + (virt & ~PAGE_MASK));
253 
254 	pgd = pgd_offset_k(addr);
255 	end = addr + length;
256 	do {
257 		next = pgd_addr_end(addr, end);
258 		alloc_init_pud(pgd, addr, next, phys);
259 		phys += next - addr;
260 	} while (pgd++, addr = next, addr != end);
261 }
262 
263 static void __init map_mem(void)
264 {
265 	struct memblock_region *reg;
266 	phys_addr_t limit;
267 
268 	/*
269 	 * Temporarily limit the memblock range. We need to do this as
270 	 * create_mapping requires puds, pmds and ptes to be allocated from
271 	 * memory addressable from the initial direct kernel mapping.
272 	 *
273 	 * The initial direct kernel mapping, located at swapper_pg_dir,
274 	 * gives us PGDIR_SIZE memory starting from PHYS_OFFSET (which must be
275 	 * aligned to 2MB as per Documentation/arm64/booting.txt).
276 	 */
277 	limit = PHYS_OFFSET + PGDIR_SIZE;
278 	memblock_set_current_limit(limit);
279 
280 	/* map all the memory banks */
281 	for_each_memblock(memory, reg) {
282 		phys_addr_t start = reg->base;
283 		phys_addr_t end = start + reg->size;
284 
285 		if (start >= end)
286 			break;
287 
288 #ifndef CONFIG_ARM64_64K_PAGES
289 		/*
290 		 * For the first memory bank align the start address and
291 		 * current memblock limit to prevent create_mapping() from
292 		 * allocating pte page tables from unmapped memory.
293 		 * When 64K pages are enabled, the pte page table for the
294 		 * first PGDIR_SIZE is already present in swapper_pg_dir.
295 		 */
296 		if (start < limit)
297 			start = ALIGN(start, PMD_SIZE);
298 		if (end < limit) {
299 			limit = end & PMD_MASK;
300 			memblock_set_current_limit(limit);
301 		}
302 #endif
303 
304 		create_mapping(start, __phys_to_virt(start), end - start);
305 	}
306 
307 	/* Limit no longer required. */
308 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
309 }
310 
311 /*
312  * paging_init() sets up the page tables, initialises the zone memory
313  * maps and sets up the zero page.
314  */
315 void __init paging_init(void)
316 {
317 	void *zero_page;
318 
319 	map_mem();
320 
321 	/*
322 	 * Finally flush the caches and tlb to ensure that we're in a
323 	 * consistent state.
324 	 */
325 	flush_cache_all();
326 	flush_tlb_all();
327 
328 	/* allocate the zero page. */
329 	zero_page = early_alloc(PAGE_SIZE);
330 
331 	bootmem_init();
332 
333 	empty_zero_page = virt_to_page(zero_page);
334 
335 	/*
336 	 * TTBR0 is only used for the identity mapping at this stage. Make it
337 	 * point to zero page to avoid speculatively fetching new entries.
338 	 */
339 	cpu_set_reserved_ttbr0();
340 	flush_tlb_all();
341 }
342 
343 /*
344  * Enable the identity mapping to allow the MMU disabling.
345  */
346 void setup_mm_for_reboot(void)
347 {
348 	cpu_switch_mm(idmap_pg_dir, &init_mm);
349 	flush_tlb_all();
350 }
351 
352 /*
353  * Check whether a kernel address is valid (derived from arch/x86/).
354  */
355 int kern_addr_valid(unsigned long addr)
356 {
357 	pgd_t *pgd;
358 	pud_t *pud;
359 	pmd_t *pmd;
360 	pte_t *pte;
361 
362 	if ((((long)addr) >> VA_BITS) != -1UL)
363 		return 0;
364 
365 	pgd = pgd_offset_k(addr);
366 	if (pgd_none(*pgd))
367 		return 0;
368 
369 	pud = pud_offset(pgd, addr);
370 	if (pud_none(*pud))
371 		return 0;
372 
373 	pmd = pmd_offset(pud, addr);
374 	if (pmd_none(*pmd))
375 		return 0;
376 
377 	pte = pte_offset_kernel(pmd, addr);
378 	if (pte_none(*pte))
379 		return 0;
380 
381 	return pfn_valid(pte_pfn(*pte));
382 }
383 #ifdef CONFIG_SPARSEMEM_VMEMMAP
384 #ifdef CONFIG_ARM64_64K_PAGES
385 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
386 {
387 	return vmemmap_populate_basepages(start, end, node);
388 }
389 #else	/* !CONFIG_ARM64_64K_PAGES */
390 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
391 {
392 	unsigned long addr = start;
393 	unsigned long next;
394 	pgd_t *pgd;
395 	pud_t *pud;
396 	pmd_t *pmd;
397 
398 	do {
399 		next = pmd_addr_end(addr, end);
400 
401 		pgd = vmemmap_pgd_populate(addr, node);
402 		if (!pgd)
403 			return -ENOMEM;
404 
405 		pud = vmemmap_pud_populate(pgd, addr, node);
406 		if (!pud)
407 			return -ENOMEM;
408 
409 		pmd = pmd_offset(pud, addr);
410 		if (pmd_none(*pmd)) {
411 			void *p = NULL;
412 
413 			p = vmemmap_alloc_block_buf(PMD_SIZE, node);
414 			if (!p)
415 				return -ENOMEM;
416 
417 			set_pmd(pmd, __pmd(__pa(p) | prot_sect_kernel));
418 		} else
419 			vmemmap_verify((pte_t *)pmd, node, addr, next);
420 	} while (addr = next, addr != end);
421 
422 	return 0;
423 }
424 #endif	/* CONFIG_ARM64_64K_PAGES */
425 void vmemmap_free(unsigned long start, unsigned long end)
426 {
427 }
428 #endif	/* CONFIG_SPARSEMEM_VMEMMAP */
429