1 /* 2 * Based on arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/errno.h> 23 #include <linux/swap.h> 24 #include <linux/init.h> 25 #include <linux/bootmem.h> 26 #include <linux/cache.h> 27 #include <linux/mman.h> 28 #include <linux/nodemask.h> 29 #include <linux/initrd.h> 30 #include <linux/gfp.h> 31 #include <linux/memblock.h> 32 #include <linux/sort.h> 33 #include <linux/of.h> 34 #include <linux/of_fdt.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/dma-contiguous.h> 37 #include <linux/efi.h> 38 #include <linux/swiotlb.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mm.h> 41 #include <linux/kexec.h> 42 #include <linux/crash_dump.h> 43 44 #include <asm/boot.h> 45 #include <asm/fixmap.h> 46 #include <asm/kasan.h> 47 #include <asm/kernel-pgtable.h> 48 #include <asm/memory.h> 49 #include <asm/numa.h> 50 #include <asm/sections.h> 51 #include <asm/setup.h> 52 #include <asm/sizes.h> 53 #include <asm/tlb.h> 54 #include <asm/alternative.h> 55 56 /* 57 * We need to be able to catch inadvertent references to memstart_addr 58 * that occur (potentially in generic code) before arm64_memblock_init() 59 * executes, which assigns it its actual value. So use a default value 60 * that cannot be mistaken for a real physical address. 61 */ 62 s64 memstart_addr __ro_after_init = -1; 63 phys_addr_t arm64_dma_phys_limit __ro_after_init; 64 65 #ifdef CONFIG_BLK_DEV_INITRD 66 static int __init early_initrd(char *p) 67 { 68 unsigned long start, size; 69 char *endp; 70 71 start = memparse(p, &endp); 72 if (*endp == ',') { 73 size = memparse(endp + 1, NULL); 74 75 initrd_start = start; 76 initrd_end = start + size; 77 } 78 return 0; 79 } 80 early_param("initrd", early_initrd); 81 #endif 82 83 #ifdef CONFIG_KEXEC_CORE 84 /* 85 * reserve_crashkernel() - reserves memory for crash kernel 86 * 87 * This function reserves memory area given in "crashkernel=" kernel command 88 * line parameter. The memory reserved is used by dump capture kernel when 89 * primary kernel is crashing. 90 */ 91 static void __init reserve_crashkernel(void) 92 { 93 unsigned long long crash_base, crash_size; 94 int ret; 95 96 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 97 &crash_size, &crash_base); 98 /* no crashkernel= or invalid value specified */ 99 if (ret || !crash_size) 100 return; 101 102 crash_size = PAGE_ALIGN(crash_size); 103 104 if (crash_base == 0) { 105 /* Current arm64 boot protocol requires 2MB alignment */ 106 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, 107 crash_size, SZ_2M); 108 if (crash_base == 0) { 109 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 110 crash_size); 111 return; 112 } 113 } else { 114 /* User specifies base address explicitly. */ 115 if (!memblock_is_region_memory(crash_base, crash_size)) { 116 pr_warn("cannot reserve crashkernel: region is not memory\n"); 117 return; 118 } 119 120 if (memblock_is_region_reserved(crash_base, crash_size)) { 121 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 122 return; 123 } 124 125 if (!IS_ALIGNED(crash_base, SZ_2M)) { 126 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 127 return; 128 } 129 } 130 memblock_reserve(crash_base, crash_size); 131 132 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 133 crash_base, crash_base + crash_size, crash_size >> 20); 134 135 crashk_res.start = crash_base; 136 crashk_res.end = crash_base + crash_size - 1; 137 } 138 139 static void __init kexec_reserve_crashkres_pages(void) 140 { 141 #ifdef CONFIG_HIBERNATION 142 phys_addr_t addr; 143 struct page *page; 144 145 if (!crashk_res.end) 146 return; 147 148 /* 149 * To reduce the size of hibernation image, all the pages are 150 * marked as Reserved initially. 151 */ 152 for (addr = crashk_res.start; addr < (crashk_res.end + 1); 153 addr += PAGE_SIZE) { 154 page = phys_to_page(addr); 155 SetPageReserved(page); 156 } 157 #endif 158 } 159 #else 160 static void __init reserve_crashkernel(void) 161 { 162 } 163 164 static void __init kexec_reserve_crashkres_pages(void) 165 { 166 } 167 #endif /* CONFIG_KEXEC_CORE */ 168 169 #ifdef CONFIG_CRASH_DUMP 170 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 171 const char *uname, int depth, void *data) 172 { 173 const __be32 *reg; 174 int len; 175 176 if (depth != 1 || strcmp(uname, "chosen") != 0) 177 return 0; 178 179 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 180 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 181 return 1; 182 183 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 184 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 185 186 return 1; 187 } 188 189 /* 190 * reserve_elfcorehdr() - reserves memory for elf core header 191 * 192 * This function reserves the memory occupied by an elf core header 193 * described in the device tree. This region contains all the 194 * information about primary kernel's core image and is used by a dump 195 * capture kernel to access the system memory on primary kernel. 196 */ 197 static void __init reserve_elfcorehdr(void) 198 { 199 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 200 201 if (!elfcorehdr_size) 202 return; 203 204 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 205 pr_warn("elfcorehdr is overlapped\n"); 206 return; 207 } 208 209 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 210 211 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 212 elfcorehdr_size >> 10, elfcorehdr_addr); 213 } 214 #else 215 static void __init reserve_elfcorehdr(void) 216 { 217 } 218 #endif /* CONFIG_CRASH_DUMP */ 219 /* 220 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It 221 * currently assumes that for memory starting above 4G, 32-bit devices will 222 * use a DMA offset. 223 */ 224 static phys_addr_t __init max_zone_dma_phys(void) 225 { 226 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); 227 return min(offset + (1ULL << 32), memblock_end_of_DRAM()); 228 } 229 230 #ifdef CONFIG_NUMA 231 232 static void __init zone_sizes_init(unsigned long min, unsigned long max) 233 { 234 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 235 236 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 237 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); 238 max_zone_pfns[ZONE_NORMAL] = max; 239 240 free_area_init_nodes(max_zone_pfns); 241 } 242 243 #else 244 245 static void __init zone_sizes_init(unsigned long min, unsigned long max) 246 { 247 struct memblock_region *reg; 248 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 249 unsigned long max_dma = min; 250 251 memset(zone_size, 0, sizeof(zone_size)); 252 253 /* 4GB maximum for 32-bit only capable devices */ 254 #ifdef CONFIG_ZONE_DMA32 255 max_dma = PFN_DOWN(arm64_dma_phys_limit); 256 zone_size[ZONE_DMA32] = max_dma - min; 257 #endif 258 zone_size[ZONE_NORMAL] = max - max_dma; 259 260 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 261 262 for_each_memblock(memory, reg) { 263 unsigned long start = memblock_region_memory_base_pfn(reg); 264 unsigned long end = memblock_region_memory_end_pfn(reg); 265 266 if (start >= max) 267 continue; 268 269 #ifdef CONFIG_ZONE_DMA32 270 if (start < max_dma) { 271 unsigned long dma_end = min(end, max_dma); 272 zhole_size[ZONE_DMA32] -= dma_end - start; 273 } 274 #endif 275 if (end > max_dma) { 276 unsigned long normal_end = min(end, max); 277 unsigned long normal_start = max(start, max_dma); 278 zhole_size[ZONE_NORMAL] -= normal_end - normal_start; 279 } 280 } 281 282 free_area_init_node(0, zone_size, min, zhole_size); 283 } 284 285 #endif /* CONFIG_NUMA */ 286 287 #ifdef CONFIG_HAVE_ARCH_PFN_VALID 288 int pfn_valid(unsigned long pfn) 289 { 290 return memblock_is_map_memory(pfn << PAGE_SHIFT); 291 } 292 EXPORT_SYMBOL(pfn_valid); 293 #endif 294 295 #ifndef CONFIG_SPARSEMEM 296 static void __init arm64_memory_present(void) 297 { 298 } 299 #else 300 static void __init arm64_memory_present(void) 301 { 302 struct memblock_region *reg; 303 304 for_each_memblock(memory, reg) { 305 int nid = memblock_get_region_node(reg); 306 307 memory_present(nid, memblock_region_memory_base_pfn(reg), 308 memblock_region_memory_end_pfn(reg)); 309 } 310 } 311 #endif 312 313 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 314 315 /* 316 * Limit the memory size that was specified via FDT. 317 */ 318 static int __init early_mem(char *p) 319 { 320 if (!p) 321 return 1; 322 323 memory_limit = memparse(p, &p) & PAGE_MASK; 324 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 325 326 return 0; 327 } 328 early_param("mem", early_mem); 329 330 static int __init early_init_dt_scan_usablemem(unsigned long node, 331 const char *uname, int depth, void *data) 332 { 333 struct memblock_region *usablemem = data; 334 const __be32 *reg; 335 int len; 336 337 if (depth != 1 || strcmp(uname, "chosen") != 0) 338 return 0; 339 340 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 341 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 342 return 1; 343 344 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 345 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 346 347 return 1; 348 } 349 350 static void __init fdt_enforce_memory_region(void) 351 { 352 struct memblock_region reg = { 353 .size = 0, 354 }; 355 356 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 357 358 if (reg.size) 359 memblock_cap_memory_range(reg.base, reg.size); 360 } 361 362 void __init arm64_memblock_init(void) 363 { 364 const s64 linear_region_size = -(s64)PAGE_OFFSET; 365 366 /* Handle linux,usable-memory-range property */ 367 fdt_enforce_memory_region(); 368 369 /* Remove memory above our supported physical address size */ 370 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 371 372 /* 373 * Ensure that the linear region takes up exactly half of the kernel 374 * virtual address space. This way, we can distinguish a linear address 375 * from a kernel/module/vmalloc address by testing a single bit. 376 */ 377 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); 378 379 /* 380 * Select a suitable value for the base of physical memory. 381 */ 382 memstart_addr = round_down(memblock_start_of_DRAM(), 383 ARM64_MEMSTART_ALIGN); 384 385 /* 386 * Remove the memory that we will not be able to cover with the 387 * linear mapping. Take care not to clip the kernel which may be 388 * high in memory. 389 */ 390 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 391 __pa_symbol(_end)), ULLONG_MAX); 392 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 393 /* ensure that memstart_addr remains sufficiently aligned */ 394 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 395 ARM64_MEMSTART_ALIGN); 396 memblock_remove(0, memstart_addr); 397 } 398 399 /* 400 * Apply the memory limit if it was set. Since the kernel may be loaded 401 * high up in memory, add back the kernel region that must be accessible 402 * via the linear mapping. 403 */ 404 if (memory_limit != PHYS_ADDR_MAX) { 405 memblock_mem_limit_remove_map(memory_limit); 406 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 407 } 408 409 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) { 410 /* 411 * Add back the memory we just removed if it results in the 412 * initrd to become inaccessible via the linear mapping. 413 * Otherwise, this is a no-op 414 */ 415 u64 base = initrd_start & PAGE_MASK; 416 u64 size = PAGE_ALIGN(initrd_end) - base; 417 418 /* 419 * We can only add back the initrd memory if we don't end up 420 * with more memory than we can address via the linear mapping. 421 * It is up to the bootloader to position the kernel and the 422 * initrd reasonably close to each other (i.e., within 32 GB of 423 * each other) so that all granule/#levels combinations can 424 * always access both. 425 */ 426 if (WARN(base < memblock_start_of_DRAM() || 427 base + size > memblock_start_of_DRAM() + 428 linear_region_size, 429 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 430 initrd_start = 0; 431 } else { 432 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 433 memblock_add(base, size); 434 memblock_reserve(base, size); 435 } 436 } 437 438 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 439 extern u16 memstart_offset_seed; 440 u64 range = linear_region_size - 441 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 442 443 /* 444 * If the size of the linear region exceeds, by a sufficient 445 * margin, the size of the region that the available physical 446 * memory spans, randomize the linear region as well. 447 */ 448 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 449 range = range / ARM64_MEMSTART_ALIGN + 1; 450 memstart_addr -= ARM64_MEMSTART_ALIGN * 451 ((range * memstart_offset_seed) >> 16); 452 } 453 } 454 455 /* 456 * Register the kernel text, kernel data, initrd, and initial 457 * pagetables with memblock. 458 */ 459 memblock_reserve(__pa_symbol(_text), _end - _text); 460 #ifdef CONFIG_BLK_DEV_INITRD 461 if (initrd_start) { 462 memblock_reserve(initrd_start, initrd_end - initrd_start); 463 464 /* the generic initrd code expects virtual addresses */ 465 initrd_start = __phys_to_virt(initrd_start); 466 initrd_end = __phys_to_virt(initrd_end); 467 } 468 #endif 469 470 early_init_fdt_scan_reserved_mem(); 471 472 /* 4GB maximum for 32-bit only capable devices */ 473 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 474 arm64_dma_phys_limit = max_zone_dma_phys(); 475 else 476 arm64_dma_phys_limit = PHYS_MASK + 1; 477 478 reserve_crashkernel(); 479 480 reserve_elfcorehdr(); 481 482 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 483 484 dma_contiguous_reserve(arm64_dma_phys_limit); 485 486 memblock_allow_resize(); 487 } 488 489 void __init bootmem_init(void) 490 { 491 unsigned long min, max; 492 493 min = PFN_UP(memblock_start_of_DRAM()); 494 max = PFN_DOWN(memblock_end_of_DRAM()); 495 496 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 497 498 max_pfn = max_low_pfn = max; 499 500 arm64_numa_init(); 501 /* 502 * Sparsemem tries to allocate bootmem in memory_present(), so must be 503 * done after the fixed reservations. 504 */ 505 arm64_memory_present(); 506 507 sparse_init(); 508 zone_sizes_init(min, max); 509 510 memblock_dump_all(); 511 } 512 513 #ifndef CONFIG_SPARSEMEM_VMEMMAP 514 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 515 { 516 struct page *start_pg, *end_pg; 517 unsigned long pg, pgend; 518 519 /* 520 * Convert start_pfn/end_pfn to a struct page pointer. 521 */ 522 start_pg = pfn_to_page(start_pfn - 1) + 1; 523 end_pg = pfn_to_page(end_pfn - 1) + 1; 524 525 /* 526 * Convert to physical addresses, and round start upwards and end 527 * downwards. 528 */ 529 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 530 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 531 532 /* 533 * If there are free pages between these, free the section of the 534 * memmap array. 535 */ 536 if (pg < pgend) 537 free_bootmem(pg, pgend - pg); 538 } 539 540 /* 541 * The mem_map array can get very big. Free the unused area of the memory map. 542 */ 543 static void __init free_unused_memmap(void) 544 { 545 unsigned long start, prev_end = 0; 546 struct memblock_region *reg; 547 548 for_each_memblock(memory, reg) { 549 start = __phys_to_pfn(reg->base); 550 551 #ifdef CONFIG_SPARSEMEM 552 /* 553 * Take care not to free memmap entries that don't exist due 554 * to SPARSEMEM sections which aren't present. 555 */ 556 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 557 #endif 558 /* 559 * If we had a previous bank, and there is a space between the 560 * current bank and the previous, free it. 561 */ 562 if (prev_end && prev_end < start) 563 free_memmap(prev_end, start); 564 565 /* 566 * Align up here since the VM subsystem insists that the 567 * memmap entries are valid from the bank end aligned to 568 * MAX_ORDER_NR_PAGES. 569 */ 570 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 571 MAX_ORDER_NR_PAGES); 572 } 573 574 #ifdef CONFIG_SPARSEMEM 575 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 576 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 577 #endif 578 } 579 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 580 581 /* 582 * mem_init() marks the free areas in the mem_map and tells us how much memory 583 * is free. This is done after various parts of the system have claimed their 584 * memory after the kernel image. 585 */ 586 void __init mem_init(void) 587 { 588 if (swiotlb_force == SWIOTLB_FORCE || 589 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 590 swiotlb_init(1); 591 else 592 swiotlb_force = SWIOTLB_NO_FORCE; 593 594 set_max_mapnr(pfn_to_page(max_pfn) - mem_map); 595 596 #ifndef CONFIG_SPARSEMEM_VMEMMAP 597 free_unused_memmap(); 598 #endif 599 /* this will put all unused low memory onto the freelists */ 600 free_all_bootmem(); 601 602 kexec_reserve_crashkres_pages(); 603 604 mem_init_print_info(NULL); 605 606 /* 607 * Check boundaries twice: Some fundamental inconsistencies can be 608 * detected at build time already. 609 */ 610 #ifdef CONFIG_COMPAT 611 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64); 612 #endif 613 614 /* 615 * Make sure we chose the upper bound of sizeof(struct page) 616 * correctly. 617 */ 618 BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT)); 619 620 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 621 extern int sysctl_overcommit_memory; 622 /* 623 * On a machine this small we won't get anywhere without 624 * overcommit, so turn it on by default. 625 */ 626 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 627 } 628 } 629 630 void free_initmem(void) 631 { 632 free_reserved_area(lm_alias(__init_begin), 633 lm_alias(__init_end), 634 0, "unused kernel"); 635 /* 636 * Unmap the __init region but leave the VM area in place. This 637 * prevents the region from being reused for kernel modules, which 638 * is not supported by kallsyms. 639 */ 640 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 641 } 642 643 #ifdef CONFIG_BLK_DEV_INITRD 644 645 static int keep_initrd __initdata; 646 647 void __init free_initrd_mem(unsigned long start, unsigned long end) 648 { 649 if (!keep_initrd) { 650 free_reserved_area((void *)start, (void *)end, 0, "initrd"); 651 memblock_free(__virt_to_phys(start), end - start); 652 } 653 } 654 655 static int __init keepinitrd_setup(char *__unused) 656 { 657 keep_initrd = 1; 658 return 1; 659 } 660 661 __setup("keepinitrd", keepinitrd_setup); 662 #endif 663 664 /* 665 * Dump out memory limit information on panic. 666 */ 667 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 668 { 669 if (memory_limit != PHYS_ADDR_MAX) { 670 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 671 } else { 672 pr_emerg("Memory Limit: none\n"); 673 } 674 return 0; 675 } 676 677 static struct notifier_block mem_limit_notifier = { 678 .notifier_call = dump_mem_limit, 679 }; 680 681 static int __init register_mem_limit_dumper(void) 682 { 683 atomic_notifier_chain_register(&panic_notifier_list, 684 &mem_limit_notifier); 685 return 0; 686 } 687 __initcall(register_mem_limit_dumper); 688