1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-map-ops.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 #include <linux/hugetlb.h> 32 #include <linux/acpi_iort.h> 33 #include <linux/kmemleak.h> 34 35 #include <asm/boot.h> 36 #include <asm/fixmap.h> 37 #include <asm/kasan.h> 38 #include <asm/kernel-pgtable.h> 39 #include <asm/kvm_host.h> 40 #include <asm/memory.h> 41 #include <asm/numa.h> 42 #include <asm/sections.h> 43 #include <asm/setup.h> 44 #include <linux/sizes.h> 45 #include <asm/tlb.h> 46 #include <asm/alternative.h> 47 #include <asm/xen/swiotlb-xen.h> 48 49 /* 50 * We need to be able to catch inadvertent references to memstart_addr 51 * that occur (potentially in generic code) before arm64_memblock_init() 52 * executes, which assigns it its actual value. So use a default value 53 * that cannot be mistaken for a real physical address. 54 */ 55 s64 memstart_addr __ro_after_init = -1; 56 EXPORT_SYMBOL(memstart_addr); 57 58 /* 59 * If the corresponding config options are enabled, we create both ZONE_DMA 60 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory 61 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). 62 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, 63 * otherwise it is empty. 64 * 65 * Memory reservation for crash kernel either done early or deferred 66 * depending on DMA memory zones configs (ZONE_DMA) -- 67 * 68 * In absence of ZONE_DMA configs arm64_dma_phys_limit initialized 69 * here instead of max_zone_phys(). This lets early reservation of 70 * crash kernel memory which has a dependency on arm64_dma_phys_limit. 71 * Reserving memory early for crash kernel allows linear creation of block 72 * mappings (greater than page-granularity) for all the memory bank rangs. 73 * In this scheme a comparatively quicker boot is observed. 74 * 75 * If ZONE_DMA configs are defined, crash kernel memory reservation 76 * is delayed until DMA zone memory range size initialization performed in 77 * zone_sizes_init(). The defer is necessary to steer clear of DMA zone 78 * memory range to avoid overlap allocation. So crash kernel memory boundaries 79 * are not known when mapping all bank memory ranges, which otherwise means 80 * not possible to exclude crash kernel range from creating block mappings 81 * so page-granularity mappings are created for the entire memory range. 82 * Hence a slightly slower boot is observed. 83 * 84 * Note: Page-granularity mappings are necessary for crash kernel memory 85 * range for shrinking its size via /sys/kernel/kexec_crash_size interface. 86 */ 87 #if IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32) 88 phys_addr_t __ro_after_init arm64_dma_phys_limit; 89 #else 90 phys_addr_t __ro_after_init arm64_dma_phys_limit = PHYS_MASK + 1; 91 #endif 92 93 /* 94 * reserve_crashkernel() - reserves memory for crash kernel 95 * 96 * This function reserves memory area given in "crashkernel=" kernel command 97 * line parameter. The memory reserved is used by dump capture kernel when 98 * primary kernel is crashing. 99 */ 100 static void __init reserve_crashkernel(void) 101 { 102 unsigned long long crash_base, crash_size; 103 unsigned long long crash_max = arm64_dma_phys_limit; 104 int ret; 105 106 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 107 return; 108 109 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 110 &crash_size, &crash_base); 111 /* no crashkernel= or invalid value specified */ 112 if (ret || !crash_size) 113 return; 114 115 crash_size = PAGE_ALIGN(crash_size); 116 117 /* User specifies base address explicitly. */ 118 if (crash_base) 119 crash_max = crash_base + crash_size; 120 121 /* Current arm64 boot protocol requires 2MB alignment */ 122 crash_base = memblock_phys_alloc_range(crash_size, SZ_2M, 123 crash_base, crash_max); 124 if (!crash_base) { 125 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 126 crash_size); 127 return; 128 } 129 130 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 131 crash_base, crash_base + crash_size, crash_size >> 20); 132 133 /* 134 * The crashkernel memory will be removed from the kernel linear 135 * map. Inform kmemleak so that it won't try to access it. 136 */ 137 kmemleak_ignore_phys(crash_base); 138 crashk_res.start = crash_base; 139 crashk_res.end = crash_base + crash_size - 1; 140 } 141 142 /* 143 * Return the maximum physical address for a zone accessible by the given bits 144 * limit. If DRAM starts above 32-bit, expand the zone to the maximum 145 * available memory, otherwise cap it at 32-bit. 146 */ 147 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 148 { 149 phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits); 150 phys_addr_t phys_start = memblock_start_of_DRAM(); 151 152 if (phys_start > U32_MAX) 153 zone_mask = PHYS_ADDR_MAX; 154 else if (phys_start > zone_mask) 155 zone_mask = U32_MAX; 156 157 return min(zone_mask, memblock_end_of_DRAM() - 1) + 1; 158 } 159 160 static void __init zone_sizes_init(unsigned long min, unsigned long max) 161 { 162 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 163 unsigned int __maybe_unused acpi_zone_dma_bits; 164 unsigned int __maybe_unused dt_zone_dma_bits; 165 phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32); 166 167 #ifdef CONFIG_ZONE_DMA 168 acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address()); 169 dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL)); 170 zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits); 171 arm64_dma_phys_limit = max_zone_phys(zone_dma_bits); 172 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 173 #endif 174 #ifdef CONFIG_ZONE_DMA32 175 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 176 if (!arm64_dma_phys_limit) 177 arm64_dma_phys_limit = dma32_phys_limit; 178 #endif 179 max_zone_pfns[ZONE_NORMAL] = max; 180 181 free_area_init(max_zone_pfns); 182 } 183 184 int pfn_is_map_memory(unsigned long pfn) 185 { 186 phys_addr_t addr = PFN_PHYS(pfn); 187 188 /* avoid false positives for bogus PFNs, see comment in pfn_valid() */ 189 if (PHYS_PFN(addr) != pfn) 190 return 0; 191 192 return memblock_is_map_memory(addr); 193 } 194 EXPORT_SYMBOL(pfn_is_map_memory); 195 196 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX; 197 198 /* 199 * Limit the memory size that was specified via FDT. 200 */ 201 static int __init early_mem(char *p) 202 { 203 if (!p) 204 return 1; 205 206 memory_limit = memparse(p, &p) & PAGE_MASK; 207 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 208 209 return 0; 210 } 211 early_param("mem", early_mem); 212 213 void __init arm64_memblock_init(void) 214 { 215 s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual); 216 217 /* 218 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may 219 * be limited in their ability to support a linear map that exceeds 51 220 * bits of VA space, depending on the placement of the ID map. Given 221 * that the placement of the ID map may be randomized, let's simply 222 * limit the kernel's linear map to 51 bits as well if we detect this 223 * configuration. 224 */ 225 if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 && 226 is_hyp_mode_available() && !is_kernel_in_hyp_mode()) { 227 pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n"); 228 linear_region_size = min_t(u64, linear_region_size, BIT(51)); 229 } 230 231 /* Remove memory above our supported physical address size */ 232 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 233 234 /* 235 * Select a suitable value for the base of physical memory. 236 */ 237 memstart_addr = round_down(memblock_start_of_DRAM(), 238 ARM64_MEMSTART_ALIGN); 239 240 if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size) 241 pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n"); 242 243 /* 244 * Remove the memory that we will not be able to cover with the 245 * linear mapping. Take care not to clip the kernel which may be 246 * high in memory. 247 */ 248 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 249 __pa_symbol(_end)), ULLONG_MAX); 250 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 251 /* ensure that memstart_addr remains sufficiently aligned */ 252 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 253 ARM64_MEMSTART_ALIGN); 254 memblock_remove(0, memstart_addr); 255 } 256 257 /* 258 * If we are running with a 52-bit kernel VA config on a system that 259 * does not support it, we have to place the available physical 260 * memory in the 48-bit addressable part of the linear region, i.e., 261 * we have to move it upward. Since memstart_addr represents the 262 * physical address of PAGE_OFFSET, we have to *subtract* from it. 263 */ 264 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) 265 memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52); 266 267 /* 268 * Apply the memory limit if it was set. Since the kernel may be loaded 269 * high up in memory, add back the kernel region that must be accessible 270 * via the linear mapping. 271 */ 272 if (memory_limit != PHYS_ADDR_MAX) { 273 memblock_mem_limit_remove_map(memory_limit); 274 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 275 } 276 277 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 278 /* 279 * Add back the memory we just removed if it results in the 280 * initrd to become inaccessible via the linear mapping. 281 * Otherwise, this is a no-op 282 */ 283 u64 base = phys_initrd_start & PAGE_MASK; 284 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 285 286 /* 287 * We can only add back the initrd memory if we don't end up 288 * with more memory than we can address via the linear mapping. 289 * It is up to the bootloader to position the kernel and the 290 * initrd reasonably close to each other (i.e., within 32 GB of 291 * each other) so that all granule/#levels combinations can 292 * always access both. 293 */ 294 if (WARN(base < memblock_start_of_DRAM() || 295 base + size > memblock_start_of_DRAM() + 296 linear_region_size, 297 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 298 phys_initrd_size = 0; 299 } else { 300 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 301 memblock_add(base, size); 302 memblock_reserve(base, size); 303 } 304 } 305 306 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 307 extern u16 memstart_offset_seed; 308 u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 309 int parange = cpuid_feature_extract_unsigned_field( 310 mmfr0, ID_AA64MMFR0_PARANGE_SHIFT); 311 s64 range = linear_region_size - 312 BIT(id_aa64mmfr0_parange_to_phys_shift(parange)); 313 314 /* 315 * If the size of the linear region exceeds, by a sufficient 316 * margin, the size of the region that the physical memory can 317 * span, randomize the linear region as well. 318 */ 319 if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) { 320 range /= ARM64_MEMSTART_ALIGN; 321 memstart_addr -= ARM64_MEMSTART_ALIGN * 322 ((range * memstart_offset_seed) >> 16); 323 } 324 } 325 326 /* 327 * Register the kernel text, kernel data, initrd, and initial 328 * pagetables with memblock. 329 */ 330 memblock_reserve(__pa_symbol(_stext), _end - _stext); 331 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 332 /* the generic initrd code expects virtual addresses */ 333 initrd_start = __phys_to_virt(phys_initrd_start); 334 initrd_end = initrd_start + phys_initrd_size; 335 } 336 337 early_init_fdt_scan_reserved_mem(); 338 339 if (!IS_ENABLED(CONFIG_ZONE_DMA) && !IS_ENABLED(CONFIG_ZONE_DMA32)) 340 reserve_crashkernel(); 341 342 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 343 } 344 345 void __init bootmem_init(void) 346 { 347 unsigned long min, max; 348 349 min = PFN_UP(memblock_start_of_DRAM()); 350 max = PFN_DOWN(memblock_end_of_DRAM()); 351 352 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 353 354 max_pfn = max_low_pfn = max; 355 min_low_pfn = min; 356 357 arch_numa_init(); 358 359 /* 360 * must be done after arch_numa_init() which calls numa_init() to 361 * initialize node_online_map that gets used in hugetlb_cma_reserve() 362 * while allocating required CMA size across online nodes. 363 */ 364 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 365 arm64_hugetlb_cma_reserve(); 366 #endif 367 368 dma_pernuma_cma_reserve(); 369 370 kvm_hyp_reserve(); 371 372 /* 373 * sparse_init() tries to allocate memory from memblock, so must be 374 * done after the fixed reservations 375 */ 376 sparse_init(); 377 zone_sizes_init(min, max); 378 379 /* 380 * Reserve the CMA area after arm64_dma_phys_limit was initialised. 381 */ 382 dma_contiguous_reserve(arm64_dma_phys_limit); 383 384 /* 385 * request_standard_resources() depends on crashkernel's memory being 386 * reserved, so do it here. 387 */ 388 if (IS_ENABLED(CONFIG_ZONE_DMA) || IS_ENABLED(CONFIG_ZONE_DMA32)) 389 reserve_crashkernel(); 390 391 memblock_dump_all(); 392 } 393 394 /* 395 * mem_init() marks the free areas in the mem_map and tells us how much memory 396 * is free. This is done after various parts of the system have claimed their 397 * memory after the kernel image. 398 */ 399 void __init mem_init(void) 400 { 401 if (swiotlb_force == SWIOTLB_FORCE || 402 max_pfn > PFN_DOWN(arm64_dma_phys_limit)) 403 swiotlb_init(1); 404 else if (!xen_swiotlb_detect()) 405 swiotlb_force = SWIOTLB_NO_FORCE; 406 407 /* this will put all unused low memory onto the freelists */ 408 memblock_free_all(); 409 410 /* 411 * Check boundaries twice: Some fundamental inconsistencies can be 412 * detected at build time already. 413 */ 414 #ifdef CONFIG_COMPAT 415 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 416 #endif 417 418 /* 419 * Selected page table levels should match when derived from 420 * scratch using the virtual address range and page size. 421 */ 422 BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) != 423 CONFIG_PGTABLE_LEVELS); 424 425 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 426 extern int sysctl_overcommit_memory; 427 /* 428 * On a machine this small we won't get anywhere without 429 * overcommit, so turn it on by default. 430 */ 431 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 432 } 433 } 434 435 void free_initmem(void) 436 { 437 free_reserved_area(lm_alias(__init_begin), 438 lm_alias(__init_end), 439 POISON_FREE_INITMEM, "unused kernel"); 440 /* 441 * Unmap the __init region but leave the VM area in place. This 442 * prevents the region from being reused for kernel modules, which 443 * is not supported by kallsyms. 444 */ 445 vunmap_range((u64)__init_begin, (u64)__init_end); 446 } 447 448 void dump_mem_limit(void) 449 { 450 if (memory_limit != PHYS_ADDR_MAX) { 451 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 452 } else { 453 pr_emerg("Memory Limit: none\n"); 454 } 455 } 456