xref: /openbmc/linux/arch/arm64/mm/init.c (revision c62d3cd0ddd629606a3830aa22e9dcc6c2a0d3bf)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/bootmem.h>
26 #include <linux/cache.h>
27 #include <linux/mman.h>
28 #include <linux/nodemask.h>
29 #include <linux/initrd.h>
30 #include <linux/gfp.h>
31 #include <linux/memblock.h>
32 #include <linux/sort.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/efi.h>
38 #include <linux/swiotlb.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mm.h>
41 #include <linux/kexec.h>
42 #include <linux/crash_dump.h>
43 
44 #include <asm/boot.h>
45 #include <asm/fixmap.h>
46 #include <asm/kasan.h>
47 #include <asm/kernel-pgtable.h>
48 #include <asm/memory.h>
49 #include <asm/numa.h>
50 #include <asm/sections.h>
51 #include <asm/setup.h>
52 #include <asm/sizes.h>
53 #include <asm/tlb.h>
54 #include <asm/alternative.h>
55 
56 /*
57  * We need to be able to catch inadvertent references to memstart_addr
58  * that occur (potentially in generic code) before arm64_memblock_init()
59  * executes, which assigns it its actual value. So use a default value
60  * that cannot be mistaken for a real physical address.
61  */
62 s64 memstart_addr __ro_after_init = -1;
63 phys_addr_t arm64_dma_phys_limit __ro_after_init;
64 
65 #ifdef CONFIG_BLK_DEV_INITRD
66 static int __init early_initrd(char *p)
67 {
68 	unsigned long start, size;
69 	char *endp;
70 
71 	start = memparse(p, &endp);
72 	if (*endp == ',') {
73 		size = memparse(endp + 1, NULL);
74 
75 		initrd_start = start;
76 		initrd_end = start + size;
77 	}
78 	return 0;
79 }
80 early_param("initrd", early_initrd);
81 #endif
82 
83 #ifdef CONFIG_KEXEC_CORE
84 /*
85  * reserve_crashkernel() - reserves memory for crash kernel
86  *
87  * This function reserves memory area given in "crashkernel=" kernel command
88  * line parameter. The memory reserved is used by dump capture kernel when
89  * primary kernel is crashing.
90  */
91 static void __init reserve_crashkernel(void)
92 {
93 	unsigned long long crash_base, crash_size;
94 	int ret;
95 
96 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
97 				&crash_size, &crash_base);
98 	/* no crashkernel= or invalid value specified */
99 	if (ret || !crash_size)
100 		return;
101 
102 	crash_size = PAGE_ALIGN(crash_size);
103 
104 	if (crash_base == 0) {
105 		/* Current arm64 boot protocol requires 2MB alignment */
106 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
107 				crash_size, SZ_2M);
108 		if (crash_base == 0) {
109 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
110 				crash_size);
111 			return;
112 		}
113 	} else {
114 		/* User specifies base address explicitly. */
115 		if (!memblock_is_region_memory(crash_base, crash_size)) {
116 			pr_warn("cannot reserve crashkernel: region is not memory\n");
117 			return;
118 		}
119 
120 		if (memblock_is_region_reserved(crash_base, crash_size)) {
121 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
122 			return;
123 		}
124 
125 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
126 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
127 			return;
128 		}
129 	}
130 	memblock_reserve(crash_base, crash_size);
131 
132 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
133 		crash_base, crash_base + crash_size, crash_size >> 20);
134 
135 	crashk_res.start = crash_base;
136 	crashk_res.end = crash_base + crash_size - 1;
137 }
138 
139 static void __init kexec_reserve_crashkres_pages(void)
140 {
141 #ifdef CONFIG_HIBERNATION
142 	phys_addr_t addr;
143 	struct page *page;
144 
145 	if (!crashk_res.end)
146 		return;
147 
148 	/*
149 	 * To reduce the size of hibernation image, all the pages are
150 	 * marked as Reserved initially.
151 	 */
152 	for (addr = crashk_res.start; addr < (crashk_res.end + 1);
153 			addr += PAGE_SIZE) {
154 		page = phys_to_page(addr);
155 		SetPageReserved(page);
156 	}
157 #endif
158 }
159 #else
160 static void __init reserve_crashkernel(void)
161 {
162 }
163 
164 static void __init kexec_reserve_crashkres_pages(void)
165 {
166 }
167 #endif /* CONFIG_KEXEC_CORE */
168 
169 #ifdef CONFIG_CRASH_DUMP
170 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
171 		const char *uname, int depth, void *data)
172 {
173 	const __be32 *reg;
174 	int len;
175 
176 	if (depth != 1 || strcmp(uname, "chosen") != 0)
177 		return 0;
178 
179 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
180 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
181 		return 1;
182 
183 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
184 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
185 
186 	return 1;
187 }
188 
189 /*
190  * reserve_elfcorehdr() - reserves memory for elf core header
191  *
192  * This function reserves the memory occupied by an elf core header
193  * described in the device tree. This region contains all the
194  * information about primary kernel's core image and is used by a dump
195  * capture kernel to access the system memory on primary kernel.
196  */
197 static void __init reserve_elfcorehdr(void)
198 {
199 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
200 
201 	if (!elfcorehdr_size)
202 		return;
203 
204 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
205 		pr_warn("elfcorehdr is overlapped\n");
206 		return;
207 	}
208 
209 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
210 
211 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
212 		elfcorehdr_size >> 10, elfcorehdr_addr);
213 }
214 #else
215 static void __init reserve_elfcorehdr(void)
216 {
217 }
218 #endif /* CONFIG_CRASH_DUMP */
219 /*
220  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
221  * currently assumes that for memory starting above 4G, 32-bit devices will
222  * use a DMA offset.
223  */
224 static phys_addr_t __init max_zone_dma_phys(void)
225 {
226 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
227 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
228 }
229 
230 #ifdef CONFIG_NUMA
231 
232 static void __init zone_sizes_init(unsigned long min, unsigned long max)
233 {
234 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
235 
236 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
237 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
238 	max_zone_pfns[ZONE_NORMAL] = max;
239 
240 	free_area_init_nodes(max_zone_pfns);
241 }
242 
243 #else
244 
245 static void __init zone_sizes_init(unsigned long min, unsigned long max)
246 {
247 	struct memblock_region *reg;
248 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
249 	unsigned long max_dma = min;
250 
251 	memset(zone_size, 0, sizeof(zone_size));
252 
253 	/* 4GB maximum for 32-bit only capable devices */
254 #ifdef CONFIG_ZONE_DMA32
255 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
256 	zone_size[ZONE_DMA32] = max_dma - min;
257 #endif
258 	zone_size[ZONE_NORMAL] = max - max_dma;
259 
260 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
261 
262 	for_each_memblock(memory, reg) {
263 		unsigned long start = memblock_region_memory_base_pfn(reg);
264 		unsigned long end = memblock_region_memory_end_pfn(reg);
265 
266 		if (start >= max)
267 			continue;
268 
269 #ifdef CONFIG_ZONE_DMA32
270 		if (start < max_dma) {
271 			unsigned long dma_end = min(end, max_dma);
272 			zhole_size[ZONE_DMA32] -= dma_end - start;
273 		}
274 #endif
275 		if (end > max_dma) {
276 			unsigned long normal_end = min(end, max);
277 			unsigned long normal_start = max(start, max_dma);
278 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
279 		}
280 	}
281 
282 	free_area_init_node(0, zone_size, min, zhole_size);
283 }
284 
285 #endif /* CONFIG_NUMA */
286 
287 #ifdef CONFIG_HAVE_ARCH_PFN_VALID
288 int pfn_valid(unsigned long pfn)
289 {
290 	phys_addr_t addr = pfn << PAGE_SHIFT;
291 
292 	if ((addr >> PAGE_SHIFT) != pfn)
293 		return 0;
294 	return memblock_is_map_memory(addr);
295 }
296 EXPORT_SYMBOL(pfn_valid);
297 #endif
298 
299 #ifndef CONFIG_SPARSEMEM
300 static void __init arm64_memory_present(void)
301 {
302 }
303 #else
304 static void __init arm64_memory_present(void)
305 {
306 	struct memblock_region *reg;
307 
308 	for_each_memblock(memory, reg) {
309 		int nid = memblock_get_region_node(reg);
310 
311 		memory_present(nid, memblock_region_memory_base_pfn(reg),
312 				memblock_region_memory_end_pfn(reg));
313 	}
314 }
315 #endif
316 
317 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
318 
319 /*
320  * Limit the memory size that was specified via FDT.
321  */
322 static int __init early_mem(char *p)
323 {
324 	if (!p)
325 		return 1;
326 
327 	memory_limit = memparse(p, &p) & PAGE_MASK;
328 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
329 
330 	return 0;
331 }
332 early_param("mem", early_mem);
333 
334 static int __init early_init_dt_scan_usablemem(unsigned long node,
335 		const char *uname, int depth, void *data)
336 {
337 	struct memblock_region *usablemem = data;
338 	const __be32 *reg;
339 	int len;
340 
341 	if (depth != 1 || strcmp(uname, "chosen") != 0)
342 		return 0;
343 
344 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
345 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
346 		return 1;
347 
348 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
349 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
350 
351 	return 1;
352 }
353 
354 static void __init fdt_enforce_memory_region(void)
355 {
356 	struct memblock_region reg = {
357 		.size = 0,
358 	};
359 
360 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
361 
362 	if (reg.size)
363 		memblock_cap_memory_range(reg.base, reg.size);
364 }
365 
366 void __init arm64_memblock_init(void)
367 {
368 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
369 
370 	/* Handle linux,usable-memory-range property */
371 	fdt_enforce_memory_region();
372 
373 	/* Remove memory above our supported physical address size */
374 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
375 
376 	/*
377 	 * Ensure that the linear region takes up exactly half of the kernel
378 	 * virtual address space. This way, we can distinguish a linear address
379 	 * from a kernel/module/vmalloc address by testing a single bit.
380 	 */
381 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
382 
383 	/*
384 	 * Select a suitable value for the base of physical memory.
385 	 */
386 	memstart_addr = round_down(memblock_start_of_DRAM(),
387 				   ARM64_MEMSTART_ALIGN);
388 
389 	/*
390 	 * Remove the memory that we will not be able to cover with the
391 	 * linear mapping. Take care not to clip the kernel which may be
392 	 * high in memory.
393 	 */
394 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
395 			__pa_symbol(_end)), ULLONG_MAX);
396 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
397 		/* ensure that memstart_addr remains sufficiently aligned */
398 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
399 					 ARM64_MEMSTART_ALIGN);
400 		memblock_remove(0, memstart_addr);
401 	}
402 
403 	/*
404 	 * Apply the memory limit if it was set. Since the kernel may be loaded
405 	 * high up in memory, add back the kernel region that must be accessible
406 	 * via the linear mapping.
407 	 */
408 	if (memory_limit != PHYS_ADDR_MAX) {
409 		memblock_mem_limit_remove_map(memory_limit);
410 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
411 	}
412 
413 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
414 		/*
415 		 * Add back the memory we just removed if it results in the
416 		 * initrd to become inaccessible via the linear mapping.
417 		 * Otherwise, this is a no-op
418 		 */
419 		u64 base = initrd_start & PAGE_MASK;
420 		u64 size = PAGE_ALIGN(initrd_end) - base;
421 
422 		/*
423 		 * We can only add back the initrd memory if we don't end up
424 		 * with more memory than we can address via the linear mapping.
425 		 * It is up to the bootloader to position the kernel and the
426 		 * initrd reasonably close to each other (i.e., within 32 GB of
427 		 * each other) so that all granule/#levels combinations can
428 		 * always access both.
429 		 */
430 		if (WARN(base < memblock_start_of_DRAM() ||
431 			 base + size > memblock_start_of_DRAM() +
432 				       linear_region_size,
433 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
434 			initrd_start = 0;
435 		} else {
436 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
437 			memblock_add(base, size);
438 			memblock_reserve(base, size);
439 		}
440 	}
441 
442 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
443 		extern u16 memstart_offset_seed;
444 		u64 range = linear_region_size -
445 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
446 
447 		/*
448 		 * If the size of the linear region exceeds, by a sufficient
449 		 * margin, the size of the region that the available physical
450 		 * memory spans, randomize the linear region as well.
451 		 */
452 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
453 			range = range / ARM64_MEMSTART_ALIGN + 1;
454 			memstart_addr -= ARM64_MEMSTART_ALIGN *
455 					 ((range * memstart_offset_seed) >> 16);
456 		}
457 	}
458 
459 	/*
460 	 * Register the kernel text, kernel data, initrd, and initial
461 	 * pagetables with memblock.
462 	 */
463 	memblock_reserve(__pa_symbol(_text), _end - _text);
464 #ifdef CONFIG_BLK_DEV_INITRD
465 	if (initrd_start) {
466 		memblock_reserve(initrd_start, initrd_end - initrd_start);
467 
468 		/* the generic initrd code expects virtual addresses */
469 		initrd_start = __phys_to_virt(initrd_start);
470 		initrd_end = __phys_to_virt(initrd_end);
471 	}
472 #endif
473 
474 	early_init_fdt_scan_reserved_mem();
475 
476 	/* 4GB maximum for 32-bit only capable devices */
477 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
478 		arm64_dma_phys_limit = max_zone_dma_phys();
479 	else
480 		arm64_dma_phys_limit = PHYS_MASK + 1;
481 
482 	reserve_crashkernel();
483 
484 	reserve_elfcorehdr();
485 
486 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
487 
488 	dma_contiguous_reserve(arm64_dma_phys_limit);
489 
490 	memblock_allow_resize();
491 }
492 
493 void __init bootmem_init(void)
494 {
495 	unsigned long min, max;
496 
497 	min = PFN_UP(memblock_start_of_DRAM());
498 	max = PFN_DOWN(memblock_end_of_DRAM());
499 
500 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
501 
502 	max_pfn = max_low_pfn = max;
503 
504 	arm64_numa_init();
505 	/*
506 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
507 	 * done after the fixed reservations.
508 	 */
509 	arm64_memory_present();
510 
511 	sparse_init();
512 	zone_sizes_init(min, max);
513 
514 	memblock_dump_all();
515 }
516 
517 #ifndef CONFIG_SPARSEMEM_VMEMMAP
518 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
519 {
520 	struct page *start_pg, *end_pg;
521 	unsigned long pg, pgend;
522 
523 	/*
524 	 * Convert start_pfn/end_pfn to a struct page pointer.
525 	 */
526 	start_pg = pfn_to_page(start_pfn - 1) + 1;
527 	end_pg = pfn_to_page(end_pfn - 1) + 1;
528 
529 	/*
530 	 * Convert to physical addresses, and round start upwards and end
531 	 * downwards.
532 	 */
533 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
534 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
535 
536 	/*
537 	 * If there are free pages between these, free the section of the
538 	 * memmap array.
539 	 */
540 	if (pg < pgend)
541 		free_bootmem(pg, pgend - pg);
542 }
543 
544 /*
545  * The mem_map array can get very big. Free the unused area of the memory map.
546  */
547 static void __init free_unused_memmap(void)
548 {
549 	unsigned long start, prev_end = 0;
550 	struct memblock_region *reg;
551 
552 	for_each_memblock(memory, reg) {
553 		start = __phys_to_pfn(reg->base);
554 
555 #ifdef CONFIG_SPARSEMEM
556 		/*
557 		 * Take care not to free memmap entries that don't exist due
558 		 * to SPARSEMEM sections which aren't present.
559 		 */
560 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
561 #endif
562 		/*
563 		 * If we had a previous bank, and there is a space between the
564 		 * current bank and the previous, free it.
565 		 */
566 		if (prev_end && prev_end < start)
567 			free_memmap(prev_end, start);
568 
569 		/*
570 		 * Align up here since the VM subsystem insists that the
571 		 * memmap entries are valid from the bank end aligned to
572 		 * MAX_ORDER_NR_PAGES.
573 		 */
574 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
575 				 MAX_ORDER_NR_PAGES);
576 	}
577 
578 #ifdef CONFIG_SPARSEMEM
579 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
580 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
581 #endif
582 }
583 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
584 
585 /*
586  * mem_init() marks the free areas in the mem_map and tells us how much memory
587  * is free.  This is done after various parts of the system have claimed their
588  * memory after the kernel image.
589  */
590 void __init mem_init(void)
591 {
592 	if (swiotlb_force == SWIOTLB_FORCE ||
593 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
594 		swiotlb_init(1);
595 	else
596 		swiotlb_force = SWIOTLB_NO_FORCE;
597 
598 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
599 
600 #ifndef CONFIG_SPARSEMEM_VMEMMAP
601 	free_unused_memmap();
602 #endif
603 	/* this will put all unused low memory onto the freelists */
604 	free_all_bootmem();
605 
606 	kexec_reserve_crashkres_pages();
607 
608 	mem_init_print_info(NULL);
609 
610 	/*
611 	 * Check boundaries twice: Some fundamental inconsistencies can be
612 	 * detected at build time already.
613 	 */
614 #ifdef CONFIG_COMPAT
615 	BUILD_BUG_ON(TASK_SIZE_32			> TASK_SIZE_64);
616 #endif
617 
618 #ifdef CONFIG_SPARSEMEM_VMEMMAP
619 	/*
620 	 * Make sure we chose the upper bound of sizeof(struct page)
621 	 * correctly when sizing the VMEMMAP array.
622 	 */
623 	BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
624 #endif
625 
626 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
627 		extern int sysctl_overcommit_memory;
628 		/*
629 		 * On a machine this small we won't get anywhere without
630 		 * overcommit, so turn it on by default.
631 		 */
632 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
633 	}
634 }
635 
636 void free_initmem(void)
637 {
638 	free_reserved_area(lm_alias(__init_begin),
639 			   lm_alias(__init_end),
640 			   0, "unused kernel");
641 	/*
642 	 * Unmap the __init region but leave the VM area in place. This
643 	 * prevents the region from being reused for kernel modules, which
644 	 * is not supported by kallsyms.
645 	 */
646 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
647 }
648 
649 #ifdef CONFIG_BLK_DEV_INITRD
650 
651 static int keep_initrd __initdata;
652 
653 void __init free_initrd_mem(unsigned long start, unsigned long end)
654 {
655 	if (!keep_initrd) {
656 		free_reserved_area((void *)start, (void *)end, 0, "initrd");
657 		memblock_free(__virt_to_phys(start), end - start);
658 	}
659 }
660 
661 static int __init keepinitrd_setup(char *__unused)
662 {
663 	keep_initrd = 1;
664 	return 1;
665 }
666 
667 __setup("keepinitrd", keepinitrd_setup);
668 #endif
669 
670 /*
671  * Dump out memory limit information on panic.
672  */
673 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
674 {
675 	if (memory_limit != PHYS_ADDR_MAX) {
676 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
677 	} else {
678 		pr_emerg("Memory Limit: none\n");
679 	}
680 	return 0;
681 }
682 
683 static struct notifier_block mem_limit_notifier = {
684 	.notifier_call = dump_mem_limit,
685 };
686 
687 static int __init register_mem_limit_dumper(void)
688 {
689 	atomic_notifier_chain_register(&panic_notifier_list,
690 				       &mem_limit_notifier);
691 	return 0;
692 }
693 __initcall(register_mem_limit_dumper);
694