xref: /openbmc/linux/arch/arm64/mm/init.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/kmemleak.h>
34 
35 #include <asm/boot.h>
36 #include <asm/fixmap.h>
37 #include <asm/kasan.h>
38 #include <asm/kernel-pgtable.h>
39 #include <asm/kvm_host.h>
40 #include <asm/memory.h>
41 #include <asm/numa.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <linux/sizes.h>
45 #include <asm/tlb.h>
46 #include <asm/alternative.h>
47 #include <asm/xen/swiotlb-xen.h>
48 
49 /*
50  * We need to be able to catch inadvertent references to memstart_addr
51  * that occur (potentially in generic code) before arm64_memblock_init()
52  * executes, which assigns it its actual value. So use a default value
53  * that cannot be mistaken for a real physical address.
54  */
55 s64 memstart_addr __ro_after_init = -1;
56 EXPORT_SYMBOL(memstart_addr);
57 
58 /*
59  * If the corresponding config options are enabled, we create both ZONE_DMA
60  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
61  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
62  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
63  * otherwise it is empty.
64  */
65 phys_addr_t __ro_after_init arm64_dma_phys_limit;
66 
67 /* Current arm64 boot protocol requires 2MB alignment */
68 #define CRASH_ALIGN			SZ_2M
69 
70 #define CRASH_ADDR_LOW_MAX		arm64_dma_phys_limit
71 #define CRASH_ADDR_HIGH_MAX		(PHYS_MASK + 1)
72 #define CRASH_HIGH_SEARCH_BASE		SZ_4G
73 
74 #define DEFAULT_CRASH_KERNEL_LOW_SIZE	(128UL << 20)
75 
76 static int __init reserve_crashkernel_low(unsigned long long low_size)
77 {
78 	unsigned long long low_base;
79 
80 	low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX);
81 	if (!low_base) {
82 		pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size);
83 		return -ENOMEM;
84 	}
85 
86 	pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n",
87 		low_base, low_base + low_size, low_size >> 20);
88 
89 	crashk_low_res.start = low_base;
90 	crashk_low_res.end   = low_base + low_size - 1;
91 	insert_resource(&iomem_resource, &crashk_low_res);
92 
93 	return 0;
94 }
95 
96 /*
97  * reserve_crashkernel() - reserves memory for crash kernel
98  *
99  * This function reserves memory area given in "crashkernel=" kernel command
100  * line parameter. The memory reserved is used by dump capture kernel when
101  * primary kernel is crashing.
102  */
103 static void __init reserve_crashkernel(void)
104 {
105 	unsigned long long crash_low_size = 0, search_base = 0;
106 	unsigned long long crash_max = CRASH_ADDR_LOW_MAX;
107 	unsigned long long crash_base, crash_size;
108 	char *cmdline = boot_command_line;
109 	bool fixed_base = false;
110 	bool high = false;
111 	int ret;
112 
113 	if (!IS_ENABLED(CONFIG_KEXEC_CORE))
114 		return;
115 
116 	/* crashkernel=X[@offset] */
117 	ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
118 				&crash_size, &crash_base);
119 	if (ret == -ENOENT) {
120 		ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base);
121 		if (ret || !crash_size)
122 			return;
123 
124 		/*
125 		 * crashkernel=Y,low can be specified or not, but invalid value
126 		 * is not allowed.
127 		 */
128 		ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base);
129 		if (ret == -ENOENT)
130 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
131 		else if (ret)
132 			return;
133 
134 		search_base = CRASH_HIGH_SEARCH_BASE;
135 		crash_max = CRASH_ADDR_HIGH_MAX;
136 		high = true;
137 	} else if (ret || !crash_size) {
138 		/* The specified value is invalid */
139 		return;
140 	}
141 
142 	crash_size = PAGE_ALIGN(crash_size);
143 
144 	/* User specifies base address explicitly. */
145 	if (crash_base) {
146 		fixed_base = true;
147 		search_base = crash_base;
148 		crash_max = crash_base + crash_size;
149 	}
150 
151 retry:
152 	crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN,
153 					       search_base, crash_max);
154 	if (!crash_base) {
155 		/*
156 		 * For crashkernel=size[KMG]@offset[KMG], print out failure
157 		 * message if can't reserve the specified region.
158 		 */
159 		if (fixed_base) {
160 			pr_warn("crashkernel reservation failed - memory is in use.\n");
161 			return;
162 		}
163 
164 		/*
165 		 * For crashkernel=size[KMG], if the first attempt was for
166 		 * low memory, fall back to high memory, the minimum required
167 		 * low memory will be reserved later.
168 		 */
169 		if (!high && crash_max == CRASH_ADDR_LOW_MAX) {
170 			crash_max = CRASH_ADDR_HIGH_MAX;
171 			search_base = CRASH_ADDR_LOW_MAX;
172 			crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE;
173 			goto retry;
174 		}
175 
176 		/*
177 		 * For crashkernel=size[KMG],high, if the first attempt was
178 		 * for high memory, fall back to low memory.
179 		 */
180 		if (high && crash_max == CRASH_ADDR_HIGH_MAX) {
181 			crash_max = CRASH_ADDR_LOW_MAX;
182 			search_base = 0;
183 			goto retry;
184 		}
185 		pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
186 			crash_size);
187 		return;
188 	}
189 
190 	if ((crash_base >= CRASH_ADDR_LOW_MAX) && crash_low_size &&
191 	     reserve_crashkernel_low(crash_low_size)) {
192 		memblock_phys_free(crash_base, crash_size);
193 		return;
194 	}
195 
196 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
197 		crash_base, crash_base + crash_size, crash_size >> 20);
198 
199 	/*
200 	 * The crashkernel memory will be removed from the kernel linear
201 	 * map. Inform kmemleak so that it won't try to access it.
202 	 */
203 	kmemleak_ignore_phys(crash_base);
204 	if (crashk_low_res.end)
205 		kmemleak_ignore_phys(crashk_low_res.start);
206 
207 	crashk_res.start = crash_base;
208 	crashk_res.end = crash_base + crash_size - 1;
209 	insert_resource(&iomem_resource, &crashk_res);
210 }
211 
212 /*
213  * Return the maximum physical address for a zone accessible by the given bits
214  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
215  * available memory, otherwise cap it at 32-bit.
216  */
217 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
218 {
219 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
220 	phys_addr_t phys_start = memblock_start_of_DRAM();
221 
222 	if (phys_start > U32_MAX)
223 		zone_mask = PHYS_ADDR_MAX;
224 	else if (phys_start > zone_mask)
225 		zone_mask = U32_MAX;
226 
227 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
228 }
229 
230 static void __init zone_sizes_init(void)
231 {
232 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
233 	unsigned int __maybe_unused acpi_zone_dma_bits;
234 	unsigned int __maybe_unused dt_zone_dma_bits;
235 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
236 
237 #ifdef CONFIG_ZONE_DMA
238 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
239 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
240 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
241 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
242 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
243 #endif
244 #ifdef CONFIG_ZONE_DMA32
245 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
246 	if (!arm64_dma_phys_limit)
247 		arm64_dma_phys_limit = dma32_phys_limit;
248 #endif
249 	if (!arm64_dma_phys_limit)
250 		arm64_dma_phys_limit = PHYS_MASK + 1;
251 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
252 
253 	free_area_init(max_zone_pfns);
254 }
255 
256 int pfn_is_map_memory(unsigned long pfn)
257 {
258 	phys_addr_t addr = PFN_PHYS(pfn);
259 
260 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
261 	if (PHYS_PFN(addr) != pfn)
262 		return 0;
263 
264 	return memblock_is_map_memory(addr);
265 }
266 EXPORT_SYMBOL(pfn_is_map_memory);
267 
268 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX;
269 
270 /*
271  * Limit the memory size that was specified via FDT.
272  */
273 static int __init early_mem(char *p)
274 {
275 	if (!p)
276 		return 1;
277 
278 	memory_limit = memparse(p, &p) & PAGE_MASK;
279 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
280 
281 	return 0;
282 }
283 early_param("mem", early_mem);
284 
285 void __init arm64_memblock_init(void)
286 {
287 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
288 
289 	/*
290 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
291 	 * be limited in their ability to support a linear map that exceeds 51
292 	 * bits of VA space, depending on the placement of the ID map. Given
293 	 * that the placement of the ID map may be randomized, let's simply
294 	 * limit the kernel's linear map to 51 bits as well if we detect this
295 	 * configuration.
296 	 */
297 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
298 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
299 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
300 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
301 	}
302 
303 	/* Remove memory above our supported physical address size */
304 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
305 
306 	/*
307 	 * Select a suitable value for the base of physical memory.
308 	 */
309 	memstart_addr = round_down(memblock_start_of_DRAM(),
310 				   ARM64_MEMSTART_ALIGN);
311 
312 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
313 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
314 
315 	/*
316 	 * Remove the memory that we will not be able to cover with the
317 	 * linear mapping. Take care not to clip the kernel which may be
318 	 * high in memory.
319 	 */
320 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
321 			__pa_symbol(_end)), ULLONG_MAX);
322 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
323 		/* ensure that memstart_addr remains sufficiently aligned */
324 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
325 					 ARM64_MEMSTART_ALIGN);
326 		memblock_remove(0, memstart_addr);
327 	}
328 
329 	/*
330 	 * If we are running with a 52-bit kernel VA config on a system that
331 	 * does not support it, we have to place the available physical
332 	 * memory in the 48-bit addressable part of the linear region, i.e.,
333 	 * we have to move it upward. Since memstart_addr represents the
334 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
335 	 */
336 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
337 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
338 
339 	/*
340 	 * Apply the memory limit if it was set. Since the kernel may be loaded
341 	 * high up in memory, add back the kernel region that must be accessible
342 	 * via the linear mapping.
343 	 */
344 	if (memory_limit != PHYS_ADDR_MAX) {
345 		memblock_mem_limit_remove_map(memory_limit);
346 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
347 	}
348 
349 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
350 		/*
351 		 * Add back the memory we just removed if it results in the
352 		 * initrd to become inaccessible via the linear mapping.
353 		 * Otherwise, this is a no-op
354 		 */
355 		u64 base = phys_initrd_start & PAGE_MASK;
356 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
357 
358 		/*
359 		 * We can only add back the initrd memory if we don't end up
360 		 * with more memory than we can address via the linear mapping.
361 		 * It is up to the bootloader to position the kernel and the
362 		 * initrd reasonably close to each other (i.e., within 32 GB of
363 		 * each other) so that all granule/#levels combinations can
364 		 * always access both.
365 		 */
366 		if (WARN(base < memblock_start_of_DRAM() ||
367 			 base + size > memblock_start_of_DRAM() +
368 				       linear_region_size,
369 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
370 			phys_initrd_size = 0;
371 		} else {
372 			memblock_add(base, size);
373 			memblock_clear_nomap(base, size);
374 			memblock_reserve(base, size);
375 		}
376 	}
377 
378 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
379 		extern u16 memstart_offset_seed;
380 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
381 		int parange = cpuid_feature_extract_unsigned_field(
382 					mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT);
383 		s64 range = linear_region_size -
384 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
385 
386 		/*
387 		 * If the size of the linear region exceeds, by a sufficient
388 		 * margin, the size of the region that the physical memory can
389 		 * span, randomize the linear region as well.
390 		 */
391 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
392 			range /= ARM64_MEMSTART_ALIGN;
393 			memstart_addr -= ARM64_MEMSTART_ALIGN *
394 					 ((range * memstart_offset_seed) >> 16);
395 		}
396 	}
397 
398 	/*
399 	 * Register the kernel text, kernel data, initrd, and initial
400 	 * pagetables with memblock.
401 	 */
402 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
403 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
404 		/* the generic initrd code expects virtual addresses */
405 		initrd_start = __phys_to_virt(phys_initrd_start);
406 		initrd_end = initrd_start + phys_initrd_size;
407 	}
408 
409 	early_init_fdt_scan_reserved_mem();
410 
411 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
412 }
413 
414 void __init bootmem_init(void)
415 {
416 	unsigned long min, max;
417 
418 	min = PFN_UP(memblock_start_of_DRAM());
419 	max = PFN_DOWN(memblock_end_of_DRAM());
420 
421 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
422 
423 	max_pfn = max_low_pfn = max;
424 	min_low_pfn = min;
425 
426 	arch_numa_init();
427 
428 	/*
429 	 * must be done after arch_numa_init() which calls numa_init() to
430 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
431 	 * while allocating required CMA size across online nodes.
432 	 */
433 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
434 	arm64_hugetlb_cma_reserve();
435 #endif
436 
437 	dma_pernuma_cma_reserve();
438 
439 	kvm_hyp_reserve();
440 
441 	/*
442 	 * sparse_init() tries to allocate memory from memblock, so must be
443 	 * done after the fixed reservations
444 	 */
445 	sparse_init();
446 	zone_sizes_init();
447 
448 	/*
449 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
450 	 */
451 	dma_contiguous_reserve(arm64_dma_phys_limit);
452 
453 	/*
454 	 * request_standard_resources() depends on crashkernel's memory being
455 	 * reserved, so do it here.
456 	 */
457 	reserve_crashkernel();
458 
459 	memblock_dump_all();
460 }
461 
462 /*
463  * mem_init() marks the free areas in the mem_map and tells us how much memory
464  * is free.  This is done after various parts of the system have claimed their
465  * memory after the kernel image.
466  */
467 void __init mem_init(void)
468 {
469 	bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit);
470 
471 	if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC))
472 		swiotlb = true;
473 
474 	swiotlb_init(swiotlb, SWIOTLB_VERBOSE);
475 
476 	/* this will put all unused low memory onto the freelists */
477 	memblock_free_all();
478 
479 	/*
480 	 * Check boundaries twice: Some fundamental inconsistencies can be
481 	 * detected at build time already.
482 	 */
483 #ifdef CONFIG_COMPAT
484 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
485 #endif
486 
487 	/*
488 	 * Selected page table levels should match when derived from
489 	 * scratch using the virtual address range and page size.
490 	 */
491 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
492 		     CONFIG_PGTABLE_LEVELS);
493 
494 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
495 		extern int sysctl_overcommit_memory;
496 		/*
497 		 * On a machine this small we won't get anywhere without
498 		 * overcommit, so turn it on by default.
499 		 */
500 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
501 	}
502 }
503 
504 void free_initmem(void)
505 {
506 	free_reserved_area(lm_alias(__init_begin),
507 			   lm_alias(__init_end),
508 			   POISON_FREE_INITMEM, "unused kernel");
509 	/*
510 	 * Unmap the __init region but leave the VM area in place. This
511 	 * prevents the region from being reused for kernel modules, which
512 	 * is not supported by kallsyms.
513 	 */
514 	vunmap_range((u64)__init_begin, (u64)__init_end);
515 }
516 
517 void dump_mem_limit(void)
518 {
519 	if (memory_limit != PHYS_ADDR_MAX) {
520 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
521 	} else {
522 		pr_emerg("Memory Limit: none\n");
523 	}
524 }
525