xref: /openbmc/linux/arch/arm64/mm/init.c (revision be80507d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dma-contiguous.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 
32 #include <asm/boot.h>
33 #include <asm/fixmap.h>
34 #include <asm/kasan.h>
35 #include <asm/kernel-pgtable.h>
36 #include <asm/memory.h>
37 #include <asm/numa.h>
38 #include <asm/sections.h>
39 #include <asm/setup.h>
40 #include <linux/sizes.h>
41 #include <asm/tlb.h>
42 #include <asm/alternative.h>
43 
44 /*
45  * We need to be able to catch inadvertent references to memstart_addr
46  * that occur (potentially in generic code) before arm64_memblock_init()
47  * executes, which assigns it its actual value. So use a default value
48  * that cannot be mistaken for a real physical address.
49  */
50 s64 memstart_addr __ro_after_init = -1;
51 EXPORT_SYMBOL(memstart_addr);
52 
53 s64 physvirt_offset __ro_after_init;
54 EXPORT_SYMBOL(physvirt_offset);
55 
56 struct page *vmemmap __ro_after_init;
57 EXPORT_SYMBOL(vmemmap);
58 
59 phys_addr_t arm64_dma_phys_limit __ro_after_init;
60 
61 #ifdef CONFIG_KEXEC_CORE
62 /*
63  * reserve_crashkernel() - reserves memory for crash kernel
64  *
65  * This function reserves memory area given in "crashkernel=" kernel command
66  * line parameter. The memory reserved is used by dump capture kernel when
67  * primary kernel is crashing.
68  */
69 static void __init reserve_crashkernel(void)
70 {
71 	unsigned long long crash_base, crash_size;
72 	int ret;
73 
74 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
75 				&crash_size, &crash_base);
76 	/* no crashkernel= or invalid value specified */
77 	if (ret || !crash_size)
78 		return;
79 
80 	crash_size = PAGE_ALIGN(crash_size);
81 
82 	if (crash_base == 0) {
83 		/* Current arm64 boot protocol requires 2MB alignment */
84 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
85 				crash_size, SZ_2M);
86 		if (crash_base == 0) {
87 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
88 				crash_size);
89 			return;
90 		}
91 	} else {
92 		/* User specifies base address explicitly. */
93 		if (!memblock_is_region_memory(crash_base, crash_size)) {
94 			pr_warn("cannot reserve crashkernel: region is not memory\n");
95 			return;
96 		}
97 
98 		if (memblock_is_region_reserved(crash_base, crash_size)) {
99 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
100 			return;
101 		}
102 
103 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
104 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
105 			return;
106 		}
107 	}
108 	memblock_reserve(crash_base, crash_size);
109 
110 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
111 		crash_base, crash_base + crash_size, crash_size >> 20);
112 
113 	crashk_res.start = crash_base;
114 	crashk_res.end = crash_base + crash_size - 1;
115 }
116 #else
117 static void __init reserve_crashkernel(void)
118 {
119 }
120 #endif /* CONFIG_KEXEC_CORE */
121 
122 #ifdef CONFIG_CRASH_DUMP
123 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
124 		const char *uname, int depth, void *data)
125 {
126 	const __be32 *reg;
127 	int len;
128 
129 	if (depth != 1 || strcmp(uname, "chosen") != 0)
130 		return 0;
131 
132 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
133 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
134 		return 1;
135 
136 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
137 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
138 
139 	return 1;
140 }
141 
142 /*
143  * reserve_elfcorehdr() - reserves memory for elf core header
144  *
145  * This function reserves the memory occupied by an elf core header
146  * described in the device tree. This region contains all the
147  * information about primary kernel's core image and is used by a dump
148  * capture kernel to access the system memory on primary kernel.
149  */
150 static void __init reserve_elfcorehdr(void)
151 {
152 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
153 
154 	if (!elfcorehdr_size)
155 		return;
156 
157 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
158 		pr_warn("elfcorehdr is overlapped\n");
159 		return;
160 	}
161 
162 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
163 
164 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
165 		elfcorehdr_size >> 10, elfcorehdr_addr);
166 }
167 #else
168 static void __init reserve_elfcorehdr(void)
169 {
170 }
171 #endif /* CONFIG_CRASH_DUMP */
172 /*
173  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
174  * currently assumes that for memory starting above 4G, 32-bit devices will
175  * use a DMA offset.
176  */
177 static phys_addr_t __init max_zone_dma_phys(void)
178 {
179 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
180 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
181 }
182 
183 #ifdef CONFIG_NUMA
184 
185 static void __init zone_sizes_init(unsigned long min, unsigned long max)
186 {
187 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
188 
189 #ifdef CONFIG_ZONE_DMA32
190 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
191 #endif
192 	max_zone_pfns[ZONE_NORMAL] = max;
193 
194 	free_area_init_nodes(max_zone_pfns);
195 }
196 
197 #else
198 
199 static void __init zone_sizes_init(unsigned long min, unsigned long max)
200 {
201 	struct memblock_region *reg;
202 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
203 	unsigned long max_dma = min;
204 
205 	memset(zone_size, 0, sizeof(zone_size));
206 
207 	/* 4GB maximum for 32-bit only capable devices */
208 #ifdef CONFIG_ZONE_DMA32
209 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
210 	zone_size[ZONE_DMA32] = max_dma - min;
211 #endif
212 	zone_size[ZONE_NORMAL] = max - max_dma;
213 
214 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
215 
216 	for_each_memblock(memory, reg) {
217 		unsigned long start = memblock_region_memory_base_pfn(reg);
218 		unsigned long end = memblock_region_memory_end_pfn(reg);
219 
220 		if (start >= max)
221 			continue;
222 
223 #ifdef CONFIG_ZONE_DMA32
224 		if (start < max_dma) {
225 			unsigned long dma_end = min(end, max_dma);
226 			zhole_size[ZONE_DMA32] -= dma_end - start;
227 		}
228 #endif
229 		if (end > max_dma) {
230 			unsigned long normal_end = min(end, max);
231 			unsigned long normal_start = max(start, max_dma);
232 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
233 		}
234 	}
235 
236 	free_area_init_node(0, zone_size, min, zhole_size);
237 }
238 
239 #endif /* CONFIG_NUMA */
240 
241 int pfn_valid(unsigned long pfn)
242 {
243 	phys_addr_t addr = pfn << PAGE_SHIFT;
244 
245 	if ((addr >> PAGE_SHIFT) != pfn)
246 		return 0;
247 
248 #ifdef CONFIG_SPARSEMEM
249 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
250 		return 0;
251 
252 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
253 		return 0;
254 #endif
255 	return memblock_is_map_memory(addr);
256 }
257 EXPORT_SYMBOL(pfn_valid);
258 
259 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
260 
261 /*
262  * Limit the memory size that was specified via FDT.
263  */
264 static int __init early_mem(char *p)
265 {
266 	if (!p)
267 		return 1;
268 
269 	memory_limit = memparse(p, &p) & PAGE_MASK;
270 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
271 
272 	return 0;
273 }
274 early_param("mem", early_mem);
275 
276 static int __init early_init_dt_scan_usablemem(unsigned long node,
277 		const char *uname, int depth, void *data)
278 {
279 	struct memblock_region *usablemem = data;
280 	const __be32 *reg;
281 	int len;
282 
283 	if (depth != 1 || strcmp(uname, "chosen") != 0)
284 		return 0;
285 
286 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
287 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
288 		return 1;
289 
290 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
291 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
292 
293 	return 1;
294 }
295 
296 static void __init fdt_enforce_memory_region(void)
297 {
298 	struct memblock_region reg = {
299 		.size = 0,
300 	};
301 
302 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
303 
304 	if (reg.size)
305 		memblock_cap_memory_range(reg.base, reg.size);
306 }
307 
308 void __init arm64_memblock_init(void)
309 {
310 	const s64 linear_region_size = BIT(vabits_actual - 1);
311 
312 	/* Handle linux,usable-memory-range property */
313 	fdt_enforce_memory_region();
314 
315 	/* Remove memory above our supported physical address size */
316 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
317 
318 	/*
319 	 * Select a suitable value for the base of physical memory.
320 	 */
321 	memstart_addr = round_down(memblock_start_of_DRAM(),
322 				   ARM64_MEMSTART_ALIGN);
323 
324 	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
325 
326 	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
327 
328 	/*
329 	 * If we are running with a 52-bit kernel VA config on a system that
330 	 * does not support it, we have to offset our vmemmap and physvirt_offset
331 	 * s.t. we avoid the 52-bit portion of the direct linear map
332 	 */
333 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
334 		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
335 		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
336 	}
337 
338 	/*
339 	 * Remove the memory that we will not be able to cover with the
340 	 * linear mapping. Take care not to clip the kernel which may be
341 	 * high in memory.
342 	 */
343 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
344 			__pa_symbol(_end)), ULLONG_MAX);
345 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
346 		/* ensure that memstart_addr remains sufficiently aligned */
347 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
348 					 ARM64_MEMSTART_ALIGN);
349 		memblock_remove(0, memstart_addr);
350 	}
351 
352 	/*
353 	 * Apply the memory limit if it was set. Since the kernel may be loaded
354 	 * high up in memory, add back the kernel region that must be accessible
355 	 * via the linear mapping.
356 	 */
357 	if (memory_limit != PHYS_ADDR_MAX) {
358 		memblock_mem_limit_remove_map(memory_limit);
359 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
360 	}
361 
362 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
363 		/*
364 		 * Add back the memory we just removed if it results in the
365 		 * initrd to become inaccessible via the linear mapping.
366 		 * Otherwise, this is a no-op
367 		 */
368 		u64 base = phys_initrd_start & PAGE_MASK;
369 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
370 
371 		/*
372 		 * We can only add back the initrd memory if we don't end up
373 		 * with more memory than we can address via the linear mapping.
374 		 * It is up to the bootloader to position the kernel and the
375 		 * initrd reasonably close to each other (i.e., within 32 GB of
376 		 * each other) so that all granule/#levels combinations can
377 		 * always access both.
378 		 */
379 		if (WARN(base < memblock_start_of_DRAM() ||
380 			 base + size > memblock_start_of_DRAM() +
381 				       linear_region_size,
382 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
383 			phys_initrd_size = 0;
384 		} else {
385 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
386 			memblock_add(base, size);
387 			memblock_reserve(base, size);
388 		}
389 	}
390 
391 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
392 		extern u16 memstart_offset_seed;
393 		u64 range = linear_region_size -
394 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
395 
396 		/*
397 		 * If the size of the linear region exceeds, by a sufficient
398 		 * margin, the size of the region that the available physical
399 		 * memory spans, randomize the linear region as well.
400 		 */
401 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
402 			range /= ARM64_MEMSTART_ALIGN;
403 			memstart_addr -= ARM64_MEMSTART_ALIGN *
404 					 ((range * memstart_offset_seed) >> 16);
405 		}
406 	}
407 
408 	/*
409 	 * Register the kernel text, kernel data, initrd, and initial
410 	 * pagetables with memblock.
411 	 */
412 	memblock_reserve(__pa_symbol(_text), _end - _text);
413 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
414 		/* the generic initrd code expects virtual addresses */
415 		initrd_start = __phys_to_virt(phys_initrd_start);
416 		initrd_end = initrd_start + phys_initrd_size;
417 	}
418 
419 	early_init_fdt_scan_reserved_mem();
420 
421 	/* 4GB maximum for 32-bit only capable devices */
422 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
423 		arm64_dma_phys_limit = max_zone_dma_phys();
424 	else
425 		arm64_dma_phys_limit = PHYS_MASK + 1;
426 
427 	reserve_crashkernel();
428 
429 	reserve_elfcorehdr();
430 
431 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
432 
433 	dma_contiguous_reserve(arm64_dma_phys_limit);
434 }
435 
436 void __init bootmem_init(void)
437 {
438 	unsigned long min, max;
439 
440 	min = PFN_UP(memblock_start_of_DRAM());
441 	max = PFN_DOWN(memblock_end_of_DRAM());
442 
443 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
444 
445 	max_pfn = max_low_pfn = max;
446 	min_low_pfn = min;
447 
448 	arm64_numa_init();
449 	/*
450 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
451 	 * done after the fixed reservations.
452 	 */
453 	memblocks_present();
454 
455 	sparse_init();
456 	zone_sizes_init(min, max);
457 
458 	memblock_dump_all();
459 }
460 
461 #ifndef CONFIG_SPARSEMEM_VMEMMAP
462 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
463 {
464 	struct page *start_pg, *end_pg;
465 	unsigned long pg, pgend;
466 
467 	/*
468 	 * Convert start_pfn/end_pfn to a struct page pointer.
469 	 */
470 	start_pg = pfn_to_page(start_pfn - 1) + 1;
471 	end_pg = pfn_to_page(end_pfn - 1) + 1;
472 
473 	/*
474 	 * Convert to physical addresses, and round start upwards and end
475 	 * downwards.
476 	 */
477 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
478 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
479 
480 	/*
481 	 * If there are free pages between these, free the section of the
482 	 * memmap array.
483 	 */
484 	if (pg < pgend)
485 		memblock_free(pg, pgend - pg);
486 }
487 
488 /*
489  * The mem_map array can get very big. Free the unused area of the memory map.
490  */
491 static void __init free_unused_memmap(void)
492 {
493 	unsigned long start, prev_end = 0;
494 	struct memblock_region *reg;
495 
496 	for_each_memblock(memory, reg) {
497 		start = __phys_to_pfn(reg->base);
498 
499 #ifdef CONFIG_SPARSEMEM
500 		/*
501 		 * Take care not to free memmap entries that don't exist due
502 		 * to SPARSEMEM sections which aren't present.
503 		 */
504 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
505 #endif
506 		/*
507 		 * If we had a previous bank, and there is a space between the
508 		 * current bank and the previous, free it.
509 		 */
510 		if (prev_end && prev_end < start)
511 			free_memmap(prev_end, start);
512 
513 		/*
514 		 * Align up here since the VM subsystem insists that the
515 		 * memmap entries are valid from the bank end aligned to
516 		 * MAX_ORDER_NR_PAGES.
517 		 */
518 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
519 				 MAX_ORDER_NR_PAGES);
520 	}
521 
522 #ifdef CONFIG_SPARSEMEM
523 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
524 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
525 #endif
526 }
527 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
528 
529 /*
530  * mem_init() marks the free areas in the mem_map and tells us how much memory
531  * is free.  This is done after various parts of the system have claimed their
532  * memory after the kernel image.
533  */
534 void __init mem_init(void)
535 {
536 	if (swiotlb_force == SWIOTLB_FORCE ||
537 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
538 		swiotlb_init(1);
539 	else
540 		swiotlb_force = SWIOTLB_NO_FORCE;
541 
542 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
543 
544 #ifndef CONFIG_SPARSEMEM_VMEMMAP
545 	free_unused_memmap();
546 #endif
547 	/* this will put all unused low memory onto the freelists */
548 	memblock_free_all();
549 
550 	mem_init_print_info(NULL);
551 
552 	/*
553 	 * Check boundaries twice: Some fundamental inconsistencies can be
554 	 * detected at build time already.
555 	 */
556 #ifdef CONFIG_COMPAT
557 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
558 #endif
559 
560 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
561 		extern int sysctl_overcommit_memory;
562 		/*
563 		 * On a machine this small we won't get anywhere without
564 		 * overcommit, so turn it on by default.
565 		 */
566 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
567 	}
568 }
569 
570 void free_initmem(void)
571 {
572 	free_reserved_area(lm_alias(__init_begin),
573 			   lm_alias(__init_end),
574 			   0, "unused kernel");
575 	/*
576 	 * Unmap the __init region but leave the VM area in place. This
577 	 * prevents the region from being reused for kernel modules, which
578 	 * is not supported by kallsyms.
579 	 */
580 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
581 }
582 
583 #ifdef CONFIG_BLK_DEV_INITRD
584 void __init free_initrd_mem(unsigned long start, unsigned long end)
585 {
586 	unsigned long aligned_start, aligned_end;
587 
588 	aligned_start = __virt_to_phys(start) & PAGE_MASK;
589 	aligned_end = PAGE_ALIGN(__virt_to_phys(end));
590 	memblock_free(aligned_start, aligned_end - aligned_start);
591 	free_reserved_area((void *)start, (void *)end, 0, "initrd");
592 }
593 #endif
594 
595 /*
596  * Dump out memory limit information on panic.
597  */
598 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
599 {
600 	if (memory_limit != PHYS_ADDR_MAX) {
601 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
602 	} else {
603 		pr_emerg("Memory Limit: none\n");
604 	}
605 	return 0;
606 }
607 
608 static struct notifier_block mem_limit_notifier = {
609 	.notifier_call = dump_mem_limit,
610 };
611 
612 static int __init register_mem_limit_dumper(void)
613 {
614 	atomic_notifier_chain_register(&panic_notifier_list,
615 				       &mem_limit_notifier);
616 	return 0;
617 }
618 __initcall(register_mem_limit_dumper);
619