1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dma-contiguous.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 32 #include <asm/boot.h> 33 #include <asm/fixmap.h> 34 #include <asm/kasan.h> 35 #include <asm/kernel-pgtable.h> 36 #include <asm/memory.h> 37 #include <asm/numa.h> 38 #include <asm/sections.h> 39 #include <asm/setup.h> 40 #include <linux/sizes.h> 41 #include <asm/tlb.h> 42 #include <asm/alternative.h> 43 44 /* 45 * We need to be able to catch inadvertent references to memstart_addr 46 * that occur (potentially in generic code) before arm64_memblock_init() 47 * executes, which assigns it its actual value. So use a default value 48 * that cannot be mistaken for a real physical address. 49 */ 50 s64 memstart_addr __ro_after_init = -1; 51 EXPORT_SYMBOL(memstart_addr); 52 53 phys_addr_t arm64_dma_phys_limit __ro_after_init; 54 55 #ifdef CONFIG_KEXEC_CORE 56 /* 57 * reserve_crashkernel() - reserves memory for crash kernel 58 * 59 * This function reserves memory area given in "crashkernel=" kernel command 60 * line parameter. The memory reserved is used by dump capture kernel when 61 * primary kernel is crashing. 62 */ 63 static void __init reserve_crashkernel(void) 64 { 65 unsigned long long crash_base, crash_size; 66 int ret; 67 68 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 69 &crash_size, &crash_base); 70 /* no crashkernel= or invalid value specified */ 71 if (ret || !crash_size) 72 return; 73 74 crash_size = PAGE_ALIGN(crash_size); 75 76 if (crash_base == 0) { 77 /* Current arm64 boot protocol requires 2MB alignment */ 78 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, 79 crash_size, SZ_2M); 80 if (crash_base == 0) { 81 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 82 crash_size); 83 return; 84 } 85 } else { 86 /* User specifies base address explicitly. */ 87 if (!memblock_is_region_memory(crash_base, crash_size)) { 88 pr_warn("cannot reserve crashkernel: region is not memory\n"); 89 return; 90 } 91 92 if (memblock_is_region_reserved(crash_base, crash_size)) { 93 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 94 return; 95 } 96 97 if (!IS_ALIGNED(crash_base, SZ_2M)) { 98 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 99 return; 100 } 101 } 102 memblock_reserve(crash_base, crash_size); 103 104 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 105 crash_base, crash_base + crash_size, crash_size >> 20); 106 107 crashk_res.start = crash_base; 108 crashk_res.end = crash_base + crash_size - 1; 109 } 110 #else 111 static void __init reserve_crashkernel(void) 112 { 113 } 114 #endif /* CONFIG_KEXEC_CORE */ 115 116 #ifdef CONFIG_CRASH_DUMP 117 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 118 const char *uname, int depth, void *data) 119 { 120 const __be32 *reg; 121 int len; 122 123 if (depth != 1 || strcmp(uname, "chosen") != 0) 124 return 0; 125 126 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 127 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 128 return 1; 129 130 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 131 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 132 133 return 1; 134 } 135 136 /* 137 * reserve_elfcorehdr() - reserves memory for elf core header 138 * 139 * This function reserves the memory occupied by an elf core header 140 * described in the device tree. This region contains all the 141 * information about primary kernel's core image and is used by a dump 142 * capture kernel to access the system memory on primary kernel. 143 */ 144 static void __init reserve_elfcorehdr(void) 145 { 146 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 147 148 if (!elfcorehdr_size) 149 return; 150 151 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 152 pr_warn("elfcorehdr is overlapped\n"); 153 return; 154 } 155 156 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 157 158 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 159 elfcorehdr_size >> 10, elfcorehdr_addr); 160 } 161 #else 162 static void __init reserve_elfcorehdr(void) 163 { 164 } 165 #endif /* CONFIG_CRASH_DUMP */ 166 /* 167 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It 168 * currently assumes that for memory starting above 4G, 32-bit devices will 169 * use a DMA offset. 170 */ 171 static phys_addr_t __init max_zone_dma_phys(void) 172 { 173 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); 174 return min(offset + (1ULL << 32), memblock_end_of_DRAM()); 175 } 176 177 #ifdef CONFIG_NUMA 178 179 static void __init zone_sizes_init(unsigned long min, unsigned long max) 180 { 181 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 182 183 #ifdef CONFIG_ZONE_DMA32 184 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); 185 #endif 186 max_zone_pfns[ZONE_NORMAL] = max; 187 188 free_area_init_nodes(max_zone_pfns); 189 } 190 191 #else 192 193 static void __init zone_sizes_init(unsigned long min, unsigned long max) 194 { 195 struct memblock_region *reg; 196 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 197 unsigned long max_dma = min; 198 199 memset(zone_size, 0, sizeof(zone_size)); 200 201 /* 4GB maximum for 32-bit only capable devices */ 202 #ifdef CONFIG_ZONE_DMA32 203 max_dma = PFN_DOWN(arm64_dma_phys_limit); 204 zone_size[ZONE_DMA32] = max_dma - min; 205 #endif 206 zone_size[ZONE_NORMAL] = max - max_dma; 207 208 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 209 210 for_each_memblock(memory, reg) { 211 unsigned long start = memblock_region_memory_base_pfn(reg); 212 unsigned long end = memblock_region_memory_end_pfn(reg); 213 214 if (start >= max) 215 continue; 216 217 #ifdef CONFIG_ZONE_DMA32 218 if (start < max_dma) { 219 unsigned long dma_end = min(end, max_dma); 220 zhole_size[ZONE_DMA32] -= dma_end - start; 221 } 222 #endif 223 if (end > max_dma) { 224 unsigned long normal_end = min(end, max); 225 unsigned long normal_start = max(start, max_dma); 226 zhole_size[ZONE_NORMAL] -= normal_end - normal_start; 227 } 228 } 229 230 free_area_init_node(0, zone_size, min, zhole_size); 231 } 232 233 #endif /* CONFIG_NUMA */ 234 235 int pfn_valid(unsigned long pfn) 236 { 237 phys_addr_t addr = pfn << PAGE_SHIFT; 238 239 if ((addr >> PAGE_SHIFT) != pfn) 240 return 0; 241 242 #ifdef CONFIG_SPARSEMEM 243 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 244 return 0; 245 246 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn)))) 247 return 0; 248 #endif 249 return memblock_is_map_memory(addr); 250 } 251 EXPORT_SYMBOL(pfn_valid); 252 253 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 254 255 /* 256 * Limit the memory size that was specified via FDT. 257 */ 258 static int __init early_mem(char *p) 259 { 260 if (!p) 261 return 1; 262 263 memory_limit = memparse(p, &p) & PAGE_MASK; 264 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 265 266 return 0; 267 } 268 early_param("mem", early_mem); 269 270 static int __init early_init_dt_scan_usablemem(unsigned long node, 271 const char *uname, int depth, void *data) 272 { 273 struct memblock_region *usablemem = data; 274 const __be32 *reg; 275 int len; 276 277 if (depth != 1 || strcmp(uname, "chosen") != 0) 278 return 0; 279 280 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 281 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 282 return 1; 283 284 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 285 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 286 287 return 1; 288 } 289 290 static void __init fdt_enforce_memory_region(void) 291 { 292 struct memblock_region reg = { 293 .size = 0, 294 }; 295 296 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 297 298 if (reg.size) 299 memblock_cap_memory_range(reg.base, reg.size); 300 } 301 302 void __init arm64_memblock_init(void) 303 { 304 const s64 linear_region_size = -(s64)PAGE_OFFSET; 305 306 /* Handle linux,usable-memory-range property */ 307 fdt_enforce_memory_region(); 308 309 /* Remove memory above our supported physical address size */ 310 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 311 312 /* 313 * Ensure that the linear region takes up exactly half of the kernel 314 * virtual address space. This way, we can distinguish a linear address 315 * from a kernel/module/vmalloc address by testing a single bit. 316 */ 317 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); 318 319 /* 320 * Select a suitable value for the base of physical memory. 321 */ 322 memstart_addr = round_down(memblock_start_of_DRAM(), 323 ARM64_MEMSTART_ALIGN); 324 325 /* 326 * Remove the memory that we will not be able to cover with the 327 * linear mapping. Take care not to clip the kernel which may be 328 * high in memory. 329 */ 330 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 331 __pa_symbol(_end)), ULLONG_MAX); 332 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 333 /* ensure that memstart_addr remains sufficiently aligned */ 334 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 335 ARM64_MEMSTART_ALIGN); 336 memblock_remove(0, memstart_addr); 337 } 338 339 /* 340 * Apply the memory limit if it was set. Since the kernel may be loaded 341 * high up in memory, add back the kernel region that must be accessible 342 * via the linear mapping. 343 */ 344 if (memory_limit != PHYS_ADDR_MAX) { 345 memblock_mem_limit_remove_map(memory_limit); 346 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 347 } 348 349 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 350 /* 351 * Add back the memory we just removed if it results in the 352 * initrd to become inaccessible via the linear mapping. 353 * Otherwise, this is a no-op 354 */ 355 u64 base = phys_initrd_start & PAGE_MASK; 356 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 357 358 /* 359 * We can only add back the initrd memory if we don't end up 360 * with more memory than we can address via the linear mapping. 361 * It is up to the bootloader to position the kernel and the 362 * initrd reasonably close to each other (i.e., within 32 GB of 363 * each other) so that all granule/#levels combinations can 364 * always access both. 365 */ 366 if (WARN(base < memblock_start_of_DRAM() || 367 base + size > memblock_start_of_DRAM() + 368 linear_region_size, 369 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 370 phys_initrd_size = 0; 371 } else { 372 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 373 memblock_add(base, size); 374 memblock_reserve(base, size); 375 } 376 } 377 378 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 379 extern u16 memstart_offset_seed; 380 u64 range = linear_region_size - 381 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 382 383 /* 384 * If the size of the linear region exceeds, by a sufficient 385 * margin, the size of the region that the available physical 386 * memory spans, randomize the linear region as well. 387 */ 388 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 389 range /= ARM64_MEMSTART_ALIGN; 390 memstart_addr -= ARM64_MEMSTART_ALIGN * 391 ((range * memstart_offset_seed) >> 16); 392 } 393 } 394 395 /* 396 * Register the kernel text, kernel data, initrd, and initial 397 * pagetables with memblock. 398 */ 399 memblock_reserve(__pa_symbol(_text), _end - _text); 400 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 401 /* the generic initrd code expects virtual addresses */ 402 initrd_start = __phys_to_virt(phys_initrd_start); 403 initrd_end = initrd_start + phys_initrd_size; 404 } 405 406 early_init_fdt_scan_reserved_mem(); 407 408 /* 4GB maximum for 32-bit only capable devices */ 409 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 410 arm64_dma_phys_limit = max_zone_dma_phys(); 411 else 412 arm64_dma_phys_limit = PHYS_MASK + 1; 413 414 reserve_crashkernel(); 415 416 reserve_elfcorehdr(); 417 418 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 419 420 dma_contiguous_reserve(arm64_dma_phys_limit); 421 } 422 423 void __init bootmem_init(void) 424 { 425 unsigned long min, max; 426 427 min = PFN_UP(memblock_start_of_DRAM()); 428 max = PFN_DOWN(memblock_end_of_DRAM()); 429 430 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 431 432 max_pfn = max_low_pfn = max; 433 min_low_pfn = min; 434 435 arm64_numa_init(); 436 /* 437 * Sparsemem tries to allocate bootmem in memory_present(), so must be 438 * done after the fixed reservations. 439 */ 440 memblocks_present(); 441 442 sparse_init(); 443 zone_sizes_init(min, max); 444 445 memblock_dump_all(); 446 } 447 448 #ifndef CONFIG_SPARSEMEM_VMEMMAP 449 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 450 { 451 struct page *start_pg, *end_pg; 452 unsigned long pg, pgend; 453 454 /* 455 * Convert start_pfn/end_pfn to a struct page pointer. 456 */ 457 start_pg = pfn_to_page(start_pfn - 1) + 1; 458 end_pg = pfn_to_page(end_pfn - 1) + 1; 459 460 /* 461 * Convert to physical addresses, and round start upwards and end 462 * downwards. 463 */ 464 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 465 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 466 467 /* 468 * If there are free pages between these, free the section of the 469 * memmap array. 470 */ 471 if (pg < pgend) 472 memblock_free(pg, pgend - pg); 473 } 474 475 /* 476 * The mem_map array can get very big. Free the unused area of the memory map. 477 */ 478 static void __init free_unused_memmap(void) 479 { 480 unsigned long start, prev_end = 0; 481 struct memblock_region *reg; 482 483 for_each_memblock(memory, reg) { 484 start = __phys_to_pfn(reg->base); 485 486 #ifdef CONFIG_SPARSEMEM 487 /* 488 * Take care not to free memmap entries that don't exist due 489 * to SPARSEMEM sections which aren't present. 490 */ 491 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 492 #endif 493 /* 494 * If we had a previous bank, and there is a space between the 495 * current bank and the previous, free it. 496 */ 497 if (prev_end && prev_end < start) 498 free_memmap(prev_end, start); 499 500 /* 501 * Align up here since the VM subsystem insists that the 502 * memmap entries are valid from the bank end aligned to 503 * MAX_ORDER_NR_PAGES. 504 */ 505 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 506 MAX_ORDER_NR_PAGES); 507 } 508 509 #ifdef CONFIG_SPARSEMEM 510 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 511 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 512 #endif 513 } 514 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 515 516 /* 517 * mem_init() marks the free areas in the mem_map and tells us how much memory 518 * is free. This is done after various parts of the system have claimed their 519 * memory after the kernel image. 520 */ 521 void __init mem_init(void) 522 { 523 if (swiotlb_force == SWIOTLB_FORCE || 524 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 525 swiotlb_init(1); 526 else 527 swiotlb_force = SWIOTLB_NO_FORCE; 528 529 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); 530 531 #ifndef CONFIG_SPARSEMEM_VMEMMAP 532 free_unused_memmap(); 533 #endif 534 /* this will put all unused low memory onto the freelists */ 535 memblock_free_all(); 536 537 mem_init_print_info(NULL); 538 539 /* 540 * Check boundaries twice: Some fundamental inconsistencies can be 541 * detected at build time already. 542 */ 543 #ifdef CONFIG_COMPAT 544 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 545 #endif 546 547 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 548 extern int sysctl_overcommit_memory; 549 /* 550 * On a machine this small we won't get anywhere without 551 * overcommit, so turn it on by default. 552 */ 553 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 554 } 555 } 556 557 void free_initmem(void) 558 { 559 free_reserved_area(lm_alias(__init_begin), 560 lm_alias(__init_end), 561 0, "unused kernel"); 562 /* 563 * Unmap the __init region but leave the VM area in place. This 564 * prevents the region from being reused for kernel modules, which 565 * is not supported by kallsyms. 566 */ 567 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 568 } 569 570 #ifdef CONFIG_BLK_DEV_INITRD 571 void __init free_initrd_mem(unsigned long start, unsigned long end) 572 { 573 free_reserved_area((void *)start, (void *)end, 0, "initrd"); 574 memblock_free(__virt_to_phys(start), end - start); 575 } 576 #endif 577 578 /* 579 * Dump out memory limit information on panic. 580 */ 581 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 582 { 583 if (memory_limit != PHYS_ADDR_MAX) { 584 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 585 } else { 586 pr_emerg("Memory Limit: none\n"); 587 } 588 return 0; 589 } 590 591 static struct notifier_block mem_limit_notifier = { 592 .notifier_call = dump_mem_limit, 593 }; 594 595 static int __init register_mem_limit_dumper(void) 596 { 597 atomic_notifier_chain_register(&panic_notifier_list, 598 &mem_limit_notifier); 599 return 0; 600 } 601 __initcall(register_mem_limit_dumper); 602