xref: /openbmc/linux/arch/arm64/mm/init.c (revision a89aa749ece9c6fee7932163472d2ee0efd6ddd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 
34 #include <asm/boot.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/memory.h>
39 #include <asm/numa.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <linux/sizes.h>
43 #include <asm/tlb.h>
44 #include <asm/alternative.h>
45 
46 #define ARM64_ZONE_DMA_BITS	30
47 
48 /*
49  * We need to be able to catch inadvertent references to memstart_addr
50  * that occur (potentially in generic code) before arm64_memblock_init()
51  * executes, which assigns it its actual value. So use a default value
52  * that cannot be mistaken for a real physical address.
53  */
54 s64 memstart_addr __ro_after_init = -1;
55 EXPORT_SYMBOL(memstart_addr);
56 
57 s64 physvirt_offset __ro_after_init;
58 EXPORT_SYMBOL(physvirt_offset);
59 
60 struct page *vmemmap __ro_after_init;
61 EXPORT_SYMBOL(vmemmap);
62 
63 /*
64  * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
65  * memory as some devices, namely the Raspberry Pi 4, have peripherals with
66  * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
67  * bit addressable memory area.
68  */
69 phys_addr_t arm64_dma_phys_limit __ro_after_init;
70 static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
71 
72 #ifdef CONFIG_KEXEC_CORE
73 /*
74  * reserve_crashkernel() - reserves memory for crash kernel
75  *
76  * This function reserves memory area given in "crashkernel=" kernel command
77  * line parameter. The memory reserved is used by dump capture kernel when
78  * primary kernel is crashing.
79  */
80 static void __init reserve_crashkernel(void)
81 {
82 	unsigned long long crash_base, crash_size;
83 	int ret;
84 
85 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
86 				&crash_size, &crash_base);
87 	/* no crashkernel= or invalid value specified */
88 	if (ret || !crash_size)
89 		return;
90 
91 	crash_size = PAGE_ALIGN(crash_size);
92 
93 	if (crash_base == 0) {
94 		/* Current arm64 boot protocol requires 2MB alignment */
95 		crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
96 				crash_size, SZ_2M);
97 		if (crash_base == 0) {
98 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
99 				crash_size);
100 			return;
101 		}
102 	} else {
103 		/* User specifies base address explicitly. */
104 		if (!memblock_is_region_memory(crash_base, crash_size)) {
105 			pr_warn("cannot reserve crashkernel: region is not memory\n");
106 			return;
107 		}
108 
109 		if (memblock_is_region_reserved(crash_base, crash_size)) {
110 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
111 			return;
112 		}
113 
114 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
115 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
116 			return;
117 		}
118 	}
119 	memblock_reserve(crash_base, crash_size);
120 
121 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
122 		crash_base, crash_base + crash_size, crash_size >> 20);
123 
124 	crashk_res.start = crash_base;
125 	crashk_res.end = crash_base + crash_size - 1;
126 }
127 #else
128 static void __init reserve_crashkernel(void)
129 {
130 }
131 #endif /* CONFIG_KEXEC_CORE */
132 
133 #ifdef CONFIG_CRASH_DUMP
134 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
135 		const char *uname, int depth, void *data)
136 {
137 	const __be32 *reg;
138 	int len;
139 
140 	if (depth != 1 || strcmp(uname, "chosen") != 0)
141 		return 0;
142 
143 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
144 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
145 		return 1;
146 
147 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
148 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
149 
150 	return 1;
151 }
152 
153 /*
154  * reserve_elfcorehdr() - reserves memory for elf core header
155  *
156  * This function reserves the memory occupied by an elf core header
157  * described in the device tree. This region contains all the
158  * information about primary kernel's core image and is used by a dump
159  * capture kernel to access the system memory on primary kernel.
160  */
161 static void __init reserve_elfcorehdr(void)
162 {
163 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
164 
165 	if (!elfcorehdr_size)
166 		return;
167 
168 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
169 		pr_warn("elfcorehdr is overlapped\n");
170 		return;
171 	}
172 
173 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
174 
175 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
176 		elfcorehdr_size >> 10, elfcorehdr_addr);
177 }
178 #else
179 static void __init reserve_elfcorehdr(void)
180 {
181 }
182 #endif /* CONFIG_CRASH_DUMP */
183 
184 /*
185  * Return the maximum physical address for a zone with a given address size
186  * limit. It currently assumes that for memory starting above 4G, 32-bit
187  * devices will use a DMA offset.
188  */
189 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
190 {
191 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
192 	return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
193 }
194 
195 #ifdef CONFIG_NUMA
196 
197 static void __init zone_sizes_init(unsigned long min, unsigned long max)
198 {
199 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
200 
201 #ifdef CONFIG_ZONE_DMA
202 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
203 #endif
204 #ifdef CONFIG_ZONE_DMA32
205 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
206 #endif
207 	max_zone_pfns[ZONE_NORMAL] = max;
208 
209 	free_area_init_nodes(max_zone_pfns);
210 }
211 
212 #else
213 
214 static void __init zone_sizes_init(unsigned long min, unsigned long max)
215 {
216 	struct memblock_region *reg;
217 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
218 	unsigned long __maybe_unused max_dma, max_dma32;
219 
220 	memset(zone_size, 0, sizeof(zone_size));
221 
222 	max_dma = max_dma32 = min;
223 #ifdef CONFIG_ZONE_DMA
224 	max_dma = max_dma32 = PFN_DOWN(arm64_dma_phys_limit);
225 	zone_size[ZONE_DMA] = max_dma - min;
226 #endif
227 #ifdef CONFIG_ZONE_DMA32
228 	max_dma32 = PFN_DOWN(arm64_dma32_phys_limit);
229 	zone_size[ZONE_DMA32] = max_dma32 - max_dma;
230 #endif
231 	zone_size[ZONE_NORMAL] = max - max_dma32;
232 
233 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
234 
235 	for_each_memblock(memory, reg) {
236 		unsigned long start = memblock_region_memory_base_pfn(reg);
237 		unsigned long end = memblock_region_memory_end_pfn(reg);
238 
239 #ifdef CONFIG_ZONE_DMA
240 		if (start >= min && start < max_dma) {
241 			unsigned long dma_end = min(end, max_dma);
242 			zhole_size[ZONE_DMA] -= dma_end - start;
243 			start = dma_end;
244 		}
245 #endif
246 #ifdef CONFIG_ZONE_DMA32
247 		if (start >= max_dma && start < max_dma32) {
248 			unsigned long dma32_end = min(end, max_dma32);
249 			zhole_size[ZONE_DMA32] -= dma32_end - start;
250 			start = dma32_end;
251 		}
252 #endif
253 		if (start >= max_dma32 && start < max) {
254 			unsigned long normal_end = min(end, max);
255 			zhole_size[ZONE_NORMAL] -= normal_end - start;
256 		}
257 	}
258 
259 	free_area_init_node(0, zone_size, min, zhole_size);
260 }
261 
262 #endif /* CONFIG_NUMA */
263 
264 int pfn_valid(unsigned long pfn)
265 {
266 	phys_addr_t addr = pfn << PAGE_SHIFT;
267 
268 	if ((addr >> PAGE_SHIFT) != pfn)
269 		return 0;
270 
271 #ifdef CONFIG_SPARSEMEM
272 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
273 		return 0;
274 
275 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
276 		return 0;
277 #endif
278 	return memblock_is_map_memory(addr);
279 }
280 EXPORT_SYMBOL(pfn_valid);
281 
282 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
283 
284 /*
285  * Limit the memory size that was specified via FDT.
286  */
287 static int __init early_mem(char *p)
288 {
289 	if (!p)
290 		return 1;
291 
292 	memory_limit = memparse(p, &p) & PAGE_MASK;
293 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
294 
295 	return 0;
296 }
297 early_param("mem", early_mem);
298 
299 static int __init early_init_dt_scan_usablemem(unsigned long node,
300 		const char *uname, int depth, void *data)
301 {
302 	struct memblock_region *usablemem = data;
303 	const __be32 *reg;
304 	int len;
305 
306 	if (depth != 1 || strcmp(uname, "chosen") != 0)
307 		return 0;
308 
309 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
310 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
311 		return 1;
312 
313 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
314 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
315 
316 	return 1;
317 }
318 
319 static void __init fdt_enforce_memory_region(void)
320 {
321 	struct memblock_region reg = {
322 		.size = 0,
323 	};
324 
325 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
326 
327 	if (reg.size)
328 		memblock_cap_memory_range(reg.base, reg.size);
329 }
330 
331 void __init arm64_memblock_init(void)
332 {
333 	const s64 linear_region_size = BIT(vabits_actual - 1);
334 
335 	/* Handle linux,usable-memory-range property */
336 	fdt_enforce_memory_region();
337 
338 	/* Remove memory above our supported physical address size */
339 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
340 
341 	/*
342 	 * Select a suitable value for the base of physical memory.
343 	 */
344 	memstart_addr = round_down(memblock_start_of_DRAM(),
345 				   ARM64_MEMSTART_ALIGN);
346 
347 	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
348 
349 	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
350 
351 	/*
352 	 * If we are running with a 52-bit kernel VA config on a system that
353 	 * does not support it, we have to offset our vmemmap and physvirt_offset
354 	 * s.t. we avoid the 52-bit portion of the direct linear map
355 	 */
356 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
357 		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
358 		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
359 	}
360 
361 	/*
362 	 * Remove the memory that we will not be able to cover with the
363 	 * linear mapping. Take care not to clip the kernel which may be
364 	 * high in memory.
365 	 */
366 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
367 			__pa_symbol(_end)), ULLONG_MAX);
368 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
369 		/* ensure that memstart_addr remains sufficiently aligned */
370 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
371 					 ARM64_MEMSTART_ALIGN);
372 		memblock_remove(0, memstart_addr);
373 	}
374 
375 	/*
376 	 * Apply the memory limit if it was set. Since the kernel may be loaded
377 	 * high up in memory, add back the kernel region that must be accessible
378 	 * via the linear mapping.
379 	 */
380 	if (memory_limit != PHYS_ADDR_MAX) {
381 		memblock_mem_limit_remove_map(memory_limit);
382 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
383 	}
384 
385 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
386 		/*
387 		 * Add back the memory we just removed if it results in the
388 		 * initrd to become inaccessible via the linear mapping.
389 		 * Otherwise, this is a no-op
390 		 */
391 		u64 base = phys_initrd_start & PAGE_MASK;
392 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
393 
394 		/*
395 		 * We can only add back the initrd memory if we don't end up
396 		 * with more memory than we can address via the linear mapping.
397 		 * It is up to the bootloader to position the kernel and the
398 		 * initrd reasonably close to each other (i.e., within 32 GB of
399 		 * each other) so that all granule/#levels combinations can
400 		 * always access both.
401 		 */
402 		if (WARN(base < memblock_start_of_DRAM() ||
403 			 base + size > memblock_start_of_DRAM() +
404 				       linear_region_size,
405 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
406 			phys_initrd_size = 0;
407 		} else {
408 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
409 			memblock_add(base, size);
410 			memblock_reserve(base, size);
411 		}
412 	}
413 
414 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
415 		extern u16 memstart_offset_seed;
416 		u64 range = linear_region_size -
417 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
418 
419 		/*
420 		 * If the size of the linear region exceeds, by a sufficient
421 		 * margin, the size of the region that the available physical
422 		 * memory spans, randomize the linear region as well.
423 		 */
424 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
425 			range /= ARM64_MEMSTART_ALIGN;
426 			memstart_addr -= ARM64_MEMSTART_ALIGN *
427 					 ((range * memstart_offset_seed) >> 16);
428 		}
429 	}
430 
431 	/*
432 	 * Register the kernel text, kernel data, initrd, and initial
433 	 * pagetables with memblock.
434 	 */
435 	memblock_reserve(__pa_symbol(_text), _end - _text);
436 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
437 		/* the generic initrd code expects virtual addresses */
438 		initrd_start = __phys_to_virt(phys_initrd_start);
439 		initrd_end = initrd_start + phys_initrd_size;
440 	}
441 
442 	early_init_fdt_scan_reserved_mem();
443 
444 	if (IS_ENABLED(CONFIG_ZONE_DMA)) {
445 		zone_dma_bits = ARM64_ZONE_DMA_BITS;
446 		arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
447 	}
448 
449 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
450 		arm64_dma32_phys_limit = max_zone_phys(32);
451 	else
452 		arm64_dma32_phys_limit = PHYS_MASK + 1;
453 
454 	reserve_crashkernel();
455 
456 	reserve_elfcorehdr();
457 
458 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
459 
460 	dma_contiguous_reserve(arm64_dma32_phys_limit);
461 
462 #ifdef CONFIG_ARM64_4K_PAGES
463 	hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
464 #endif
465 
466 }
467 
468 void __init bootmem_init(void)
469 {
470 	unsigned long min, max;
471 
472 	min = PFN_UP(memblock_start_of_DRAM());
473 	max = PFN_DOWN(memblock_end_of_DRAM());
474 
475 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
476 
477 	max_pfn = max_low_pfn = max;
478 	min_low_pfn = min;
479 
480 	arm64_numa_init();
481 	/*
482 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
483 	 * done after the fixed reservations.
484 	 */
485 	memblocks_present();
486 
487 	sparse_init();
488 	zone_sizes_init(min, max);
489 
490 	memblock_dump_all();
491 }
492 
493 #ifndef CONFIG_SPARSEMEM_VMEMMAP
494 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
495 {
496 	struct page *start_pg, *end_pg;
497 	unsigned long pg, pgend;
498 
499 	/*
500 	 * Convert start_pfn/end_pfn to a struct page pointer.
501 	 */
502 	start_pg = pfn_to_page(start_pfn - 1) + 1;
503 	end_pg = pfn_to_page(end_pfn - 1) + 1;
504 
505 	/*
506 	 * Convert to physical addresses, and round start upwards and end
507 	 * downwards.
508 	 */
509 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
510 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
511 
512 	/*
513 	 * If there are free pages between these, free the section of the
514 	 * memmap array.
515 	 */
516 	if (pg < pgend)
517 		memblock_free(pg, pgend - pg);
518 }
519 
520 /*
521  * The mem_map array can get very big. Free the unused area of the memory map.
522  */
523 static void __init free_unused_memmap(void)
524 {
525 	unsigned long start, prev_end = 0;
526 	struct memblock_region *reg;
527 
528 	for_each_memblock(memory, reg) {
529 		start = __phys_to_pfn(reg->base);
530 
531 #ifdef CONFIG_SPARSEMEM
532 		/*
533 		 * Take care not to free memmap entries that don't exist due
534 		 * to SPARSEMEM sections which aren't present.
535 		 */
536 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
537 #endif
538 		/*
539 		 * If we had a previous bank, and there is a space between the
540 		 * current bank and the previous, free it.
541 		 */
542 		if (prev_end && prev_end < start)
543 			free_memmap(prev_end, start);
544 
545 		/*
546 		 * Align up here since the VM subsystem insists that the
547 		 * memmap entries are valid from the bank end aligned to
548 		 * MAX_ORDER_NR_PAGES.
549 		 */
550 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
551 				 MAX_ORDER_NR_PAGES);
552 	}
553 
554 #ifdef CONFIG_SPARSEMEM
555 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
556 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
557 #endif
558 }
559 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
560 
561 /*
562  * mem_init() marks the free areas in the mem_map and tells us how much memory
563  * is free.  This is done after various parts of the system have claimed their
564  * memory after the kernel image.
565  */
566 void __init mem_init(void)
567 {
568 	if (swiotlb_force == SWIOTLB_FORCE ||
569 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
570 		swiotlb_init(1);
571 	else
572 		swiotlb_force = SWIOTLB_NO_FORCE;
573 
574 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
575 
576 #ifndef CONFIG_SPARSEMEM_VMEMMAP
577 	free_unused_memmap();
578 #endif
579 	/* this will put all unused low memory onto the freelists */
580 	memblock_free_all();
581 
582 	mem_init_print_info(NULL);
583 
584 	/*
585 	 * Check boundaries twice: Some fundamental inconsistencies can be
586 	 * detected at build time already.
587 	 */
588 #ifdef CONFIG_COMPAT
589 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
590 #endif
591 
592 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
593 		extern int sysctl_overcommit_memory;
594 		/*
595 		 * On a machine this small we won't get anywhere without
596 		 * overcommit, so turn it on by default.
597 		 */
598 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
599 	}
600 }
601 
602 void free_initmem(void)
603 {
604 	free_reserved_area(lm_alias(__init_begin),
605 			   lm_alias(__init_end),
606 			   POISON_FREE_INITMEM, "unused kernel");
607 	/*
608 	 * Unmap the __init region but leave the VM area in place. This
609 	 * prevents the region from being reused for kernel modules, which
610 	 * is not supported by kallsyms.
611 	 */
612 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
613 }
614 
615 /*
616  * Dump out memory limit information on panic.
617  */
618 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
619 {
620 	if (memory_limit != PHYS_ADDR_MAX) {
621 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
622 	} else {
623 		pr_emerg("Memory Limit: none\n");
624 	}
625 	return 0;
626 }
627 
628 static struct notifier_block mem_limit_notifier = {
629 	.notifier_call = dump_mem_limit,
630 };
631 
632 static int __init register_mem_limit_dumper(void)
633 {
634 	atomic_notifier_chain_register(&panic_notifier_list,
635 				       &mem_limit_notifier);
636 	return 0;
637 }
638 __initcall(register_mem_limit_dumper);
639