xref: /openbmc/linux/arch/arm64/mm/init.c (revision a89a501c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 
33 #include <asm/boot.h>
34 #include <asm/fixmap.h>
35 #include <asm/kasan.h>
36 #include <asm/kernel-pgtable.h>
37 #include <asm/memory.h>
38 #include <asm/numa.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <linux/sizes.h>
42 #include <asm/tlb.h>
43 #include <asm/alternative.h>
44 
45 #define ARM64_ZONE_DMA_BITS	30
46 
47 /*
48  * We need to be able to catch inadvertent references to memstart_addr
49  * that occur (potentially in generic code) before arm64_memblock_init()
50  * executes, which assigns it its actual value. So use a default value
51  * that cannot be mistaken for a real physical address.
52  */
53 s64 memstart_addr __ro_after_init = -1;
54 EXPORT_SYMBOL(memstart_addr);
55 
56 /*
57  * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
58  * memory as some devices, namely the Raspberry Pi 4, have peripherals with
59  * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
60  * bit addressable memory area.
61  */
62 phys_addr_t arm64_dma_phys_limit __ro_after_init;
63 static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
64 
65 #ifdef CONFIG_KEXEC_CORE
66 /*
67  * reserve_crashkernel() - reserves memory for crash kernel
68  *
69  * This function reserves memory area given in "crashkernel=" kernel command
70  * line parameter. The memory reserved is used by dump capture kernel when
71  * primary kernel is crashing.
72  */
73 static void __init reserve_crashkernel(void)
74 {
75 	unsigned long long crash_base, crash_size;
76 	int ret;
77 
78 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
79 				&crash_size, &crash_base);
80 	/* no crashkernel= or invalid value specified */
81 	if (ret || !crash_size)
82 		return;
83 
84 	crash_size = PAGE_ALIGN(crash_size);
85 
86 	if (crash_base == 0) {
87 		/* Current arm64 boot protocol requires 2MB alignment */
88 		crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
89 				crash_size, SZ_2M);
90 		if (crash_base == 0) {
91 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
92 				crash_size);
93 			return;
94 		}
95 	} else {
96 		/* User specifies base address explicitly. */
97 		if (!memblock_is_region_memory(crash_base, crash_size)) {
98 			pr_warn("cannot reserve crashkernel: region is not memory\n");
99 			return;
100 		}
101 
102 		if (memblock_is_region_reserved(crash_base, crash_size)) {
103 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
104 			return;
105 		}
106 
107 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
108 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
109 			return;
110 		}
111 	}
112 	memblock_reserve(crash_base, crash_size);
113 
114 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
115 		crash_base, crash_base + crash_size, crash_size >> 20);
116 
117 	crashk_res.start = crash_base;
118 	crashk_res.end = crash_base + crash_size - 1;
119 }
120 #else
121 static void __init reserve_crashkernel(void)
122 {
123 }
124 #endif /* CONFIG_KEXEC_CORE */
125 
126 #ifdef CONFIG_CRASH_DUMP
127 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
128 		const char *uname, int depth, void *data)
129 {
130 	const __be32 *reg;
131 	int len;
132 
133 	if (depth != 1 || strcmp(uname, "chosen") != 0)
134 		return 0;
135 
136 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
137 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
138 		return 1;
139 
140 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
141 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
142 
143 	return 1;
144 }
145 
146 /*
147  * reserve_elfcorehdr() - reserves memory for elf core header
148  *
149  * This function reserves the memory occupied by an elf core header
150  * described in the device tree. This region contains all the
151  * information about primary kernel's core image and is used by a dump
152  * capture kernel to access the system memory on primary kernel.
153  */
154 static void __init reserve_elfcorehdr(void)
155 {
156 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
157 
158 	if (!elfcorehdr_size)
159 		return;
160 
161 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
162 		pr_warn("elfcorehdr is overlapped\n");
163 		return;
164 	}
165 
166 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
167 
168 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
169 		elfcorehdr_size >> 10, elfcorehdr_addr);
170 }
171 #else
172 static void __init reserve_elfcorehdr(void)
173 {
174 }
175 #endif /* CONFIG_CRASH_DUMP */
176 
177 /*
178  * Return the maximum physical address for a zone with a given address size
179  * limit. It currently assumes that for memory starting above 4G, 32-bit
180  * devices will use a DMA offset.
181  */
182 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
183 {
184 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
185 	return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
186 }
187 
188 static void __init zone_sizes_init(unsigned long min, unsigned long max)
189 {
190 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
191 
192 #ifdef CONFIG_ZONE_DMA
193 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
194 #endif
195 #ifdef CONFIG_ZONE_DMA32
196 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
197 #endif
198 	max_zone_pfns[ZONE_NORMAL] = max;
199 
200 	free_area_init(max_zone_pfns);
201 }
202 
203 int pfn_valid(unsigned long pfn)
204 {
205 	phys_addr_t addr = pfn << PAGE_SHIFT;
206 
207 	if ((addr >> PAGE_SHIFT) != pfn)
208 		return 0;
209 
210 #ifdef CONFIG_SPARSEMEM
211 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
212 		return 0;
213 
214 	if (!valid_section(__pfn_to_section(pfn)))
215 		return 0;
216 #endif
217 	return memblock_is_map_memory(addr);
218 }
219 EXPORT_SYMBOL(pfn_valid);
220 
221 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
222 
223 /*
224  * Limit the memory size that was specified via FDT.
225  */
226 static int __init early_mem(char *p)
227 {
228 	if (!p)
229 		return 1;
230 
231 	memory_limit = memparse(p, &p) & PAGE_MASK;
232 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
233 
234 	return 0;
235 }
236 early_param("mem", early_mem);
237 
238 static int __init early_init_dt_scan_usablemem(unsigned long node,
239 		const char *uname, int depth, void *data)
240 {
241 	struct memblock_region *usablemem = data;
242 	const __be32 *reg;
243 	int len;
244 
245 	if (depth != 1 || strcmp(uname, "chosen") != 0)
246 		return 0;
247 
248 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
249 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
250 		return 1;
251 
252 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
253 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
254 
255 	return 1;
256 }
257 
258 static void __init fdt_enforce_memory_region(void)
259 {
260 	struct memblock_region reg = {
261 		.size = 0,
262 	};
263 
264 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
265 
266 	if (reg.size)
267 		memblock_cap_memory_range(reg.base, reg.size);
268 }
269 
270 void __init arm64_memblock_init(void)
271 {
272 	const s64 linear_region_size = BIT(vabits_actual - 1);
273 
274 	/* Handle linux,usable-memory-range property */
275 	fdt_enforce_memory_region();
276 
277 	/* Remove memory above our supported physical address size */
278 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
279 
280 	/*
281 	 * Select a suitable value for the base of physical memory.
282 	 */
283 	memstart_addr = round_down(memblock_start_of_DRAM(),
284 				   ARM64_MEMSTART_ALIGN);
285 
286 	/*
287 	 * Remove the memory that we will not be able to cover with the
288 	 * linear mapping. Take care not to clip the kernel which may be
289 	 * high in memory.
290 	 */
291 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
292 			__pa_symbol(_end)), ULLONG_MAX);
293 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
294 		/* ensure that memstart_addr remains sufficiently aligned */
295 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
296 					 ARM64_MEMSTART_ALIGN);
297 		memblock_remove(0, memstart_addr);
298 	}
299 
300 	/*
301 	 * If we are running with a 52-bit kernel VA config on a system that
302 	 * does not support it, we have to place the available physical
303 	 * memory in the 48-bit addressable part of the linear region, i.e.,
304 	 * we have to move it upward. Since memstart_addr represents the
305 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
306 	 */
307 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
308 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
309 
310 	/*
311 	 * Apply the memory limit if it was set. Since the kernel may be loaded
312 	 * high up in memory, add back the kernel region that must be accessible
313 	 * via the linear mapping.
314 	 */
315 	if (memory_limit != PHYS_ADDR_MAX) {
316 		memblock_mem_limit_remove_map(memory_limit);
317 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
318 	}
319 
320 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
321 		/*
322 		 * Add back the memory we just removed if it results in the
323 		 * initrd to become inaccessible via the linear mapping.
324 		 * Otherwise, this is a no-op
325 		 */
326 		u64 base = phys_initrd_start & PAGE_MASK;
327 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
328 
329 		/*
330 		 * We can only add back the initrd memory if we don't end up
331 		 * with more memory than we can address via the linear mapping.
332 		 * It is up to the bootloader to position the kernel and the
333 		 * initrd reasonably close to each other (i.e., within 32 GB of
334 		 * each other) so that all granule/#levels combinations can
335 		 * always access both.
336 		 */
337 		if (WARN(base < memblock_start_of_DRAM() ||
338 			 base + size > memblock_start_of_DRAM() +
339 				       linear_region_size,
340 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
341 			phys_initrd_size = 0;
342 		} else {
343 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
344 			memblock_add(base, size);
345 			memblock_reserve(base, size);
346 		}
347 	}
348 
349 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
350 		extern u16 memstart_offset_seed;
351 		u64 range = linear_region_size -
352 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
353 
354 		/*
355 		 * If the size of the linear region exceeds, by a sufficient
356 		 * margin, the size of the region that the available physical
357 		 * memory spans, randomize the linear region as well.
358 		 */
359 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
360 			range /= ARM64_MEMSTART_ALIGN;
361 			memstart_addr -= ARM64_MEMSTART_ALIGN *
362 					 ((range * memstart_offset_seed) >> 16);
363 		}
364 	}
365 
366 	/*
367 	 * Register the kernel text, kernel data, initrd, and initial
368 	 * pagetables with memblock.
369 	 */
370 	memblock_reserve(__pa_symbol(_text), _end - _text);
371 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
372 		/* the generic initrd code expects virtual addresses */
373 		initrd_start = __phys_to_virt(phys_initrd_start);
374 		initrd_end = initrd_start + phys_initrd_size;
375 	}
376 
377 	early_init_fdt_scan_reserved_mem();
378 
379 	if (IS_ENABLED(CONFIG_ZONE_DMA)) {
380 		zone_dma_bits = ARM64_ZONE_DMA_BITS;
381 		arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
382 	}
383 
384 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
385 		arm64_dma32_phys_limit = max_zone_phys(32);
386 	else
387 		arm64_dma32_phys_limit = PHYS_MASK + 1;
388 
389 	reserve_crashkernel();
390 
391 	reserve_elfcorehdr();
392 
393 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
394 
395 	dma_contiguous_reserve(arm64_dma32_phys_limit);
396 }
397 
398 void __init bootmem_init(void)
399 {
400 	unsigned long min, max;
401 
402 	min = PFN_UP(memblock_start_of_DRAM());
403 	max = PFN_DOWN(memblock_end_of_DRAM());
404 
405 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
406 
407 	max_pfn = max_low_pfn = max;
408 	min_low_pfn = min;
409 
410 	arm64_numa_init();
411 
412 	/*
413 	 * must be done after arm64_numa_init() which calls numa_init() to
414 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
415 	 * while allocating required CMA size across online nodes.
416 	 */
417 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
418 	arm64_hugetlb_cma_reserve();
419 #endif
420 
421 	dma_pernuma_cma_reserve();
422 
423 	/*
424 	 * sparse_init() tries to allocate memory from memblock, so must be
425 	 * done after the fixed reservations
426 	 */
427 	sparse_init();
428 	zone_sizes_init(min, max);
429 
430 	memblock_dump_all();
431 }
432 
433 #ifndef CONFIG_SPARSEMEM_VMEMMAP
434 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
435 {
436 	struct page *start_pg, *end_pg;
437 	unsigned long pg, pgend;
438 
439 	/*
440 	 * Convert start_pfn/end_pfn to a struct page pointer.
441 	 */
442 	start_pg = pfn_to_page(start_pfn - 1) + 1;
443 	end_pg = pfn_to_page(end_pfn - 1) + 1;
444 
445 	/*
446 	 * Convert to physical addresses, and round start upwards and end
447 	 * downwards.
448 	 */
449 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
450 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
451 
452 	/*
453 	 * If there are free pages between these, free the section of the
454 	 * memmap array.
455 	 */
456 	if (pg < pgend)
457 		memblock_free(pg, pgend - pg);
458 }
459 
460 /*
461  * The mem_map array can get very big. Free the unused area of the memory map.
462  */
463 static void __init free_unused_memmap(void)
464 {
465 	unsigned long start, end, prev_end = 0;
466 	int i;
467 
468 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
469 #ifdef CONFIG_SPARSEMEM
470 		/*
471 		 * Take care not to free memmap entries that don't exist due
472 		 * to SPARSEMEM sections which aren't present.
473 		 */
474 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
475 #endif
476 		/*
477 		 * If we had a previous bank, and there is a space between the
478 		 * current bank and the previous, free it.
479 		 */
480 		if (prev_end && prev_end < start)
481 			free_memmap(prev_end, start);
482 
483 		/*
484 		 * Align up here since the VM subsystem insists that the
485 		 * memmap entries are valid from the bank end aligned to
486 		 * MAX_ORDER_NR_PAGES.
487 		 */
488 		prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
489 	}
490 
491 #ifdef CONFIG_SPARSEMEM
492 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
493 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
494 #endif
495 }
496 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
497 
498 /*
499  * mem_init() marks the free areas in the mem_map and tells us how much memory
500  * is free.  This is done after various parts of the system have claimed their
501  * memory after the kernel image.
502  */
503 void __init mem_init(void)
504 {
505 	if (swiotlb_force == SWIOTLB_FORCE ||
506 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
507 		swiotlb_init(1);
508 	else
509 		swiotlb_force = SWIOTLB_NO_FORCE;
510 
511 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
512 
513 #ifndef CONFIG_SPARSEMEM_VMEMMAP
514 	free_unused_memmap();
515 #endif
516 	/* this will put all unused low memory onto the freelists */
517 	memblock_free_all();
518 
519 	mem_init_print_info(NULL);
520 
521 	/*
522 	 * Check boundaries twice: Some fundamental inconsistencies can be
523 	 * detected at build time already.
524 	 */
525 #ifdef CONFIG_COMPAT
526 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
527 #endif
528 
529 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
530 		extern int sysctl_overcommit_memory;
531 		/*
532 		 * On a machine this small we won't get anywhere without
533 		 * overcommit, so turn it on by default.
534 		 */
535 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
536 	}
537 }
538 
539 void free_initmem(void)
540 {
541 	free_reserved_area(lm_alias(__init_begin),
542 			   lm_alias(__init_end),
543 			   POISON_FREE_INITMEM, "unused kernel");
544 	/*
545 	 * Unmap the __init region but leave the VM area in place. This
546 	 * prevents the region from being reused for kernel modules, which
547 	 * is not supported by kallsyms.
548 	 */
549 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
550 }
551 
552 void dump_mem_limit(void)
553 {
554 	if (memory_limit != PHYS_ADDR_MAX) {
555 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
556 	} else {
557 		pr_emerg("Memory Limit: none\n");
558 	}
559 }
560