xref: /openbmc/linux/arch/arm64/mm/init.c (revision a44f9d6f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 #include <linux/kmemleak.h>
34 
35 #include <asm/boot.h>
36 #include <asm/fixmap.h>
37 #include <asm/kasan.h>
38 #include <asm/kernel-pgtable.h>
39 #include <asm/kvm_host.h>
40 #include <asm/memory.h>
41 #include <asm/numa.h>
42 #include <asm/sections.h>
43 #include <asm/setup.h>
44 #include <linux/sizes.h>
45 #include <asm/tlb.h>
46 #include <asm/alternative.h>
47 #include <asm/xen/swiotlb-xen.h>
48 
49 /*
50  * We need to be able to catch inadvertent references to memstart_addr
51  * that occur (potentially in generic code) before arm64_memblock_init()
52  * executes, which assigns it its actual value. So use a default value
53  * that cannot be mistaken for a real physical address.
54  */
55 s64 memstart_addr __ro_after_init = -1;
56 EXPORT_SYMBOL(memstart_addr);
57 
58 /*
59  * If the corresponding config options are enabled, we create both ZONE_DMA
60  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
61  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
62  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
63  * otherwise it is empty.
64  */
65 phys_addr_t arm64_dma_phys_limit __ro_after_init;
66 
67 #ifdef CONFIG_KEXEC_CORE
68 /*
69  * reserve_crashkernel() - reserves memory for crash kernel
70  *
71  * This function reserves memory area given in "crashkernel=" kernel command
72  * line parameter. The memory reserved is used by dump capture kernel when
73  * primary kernel is crashing.
74  */
75 static void __init reserve_crashkernel(void)
76 {
77 	unsigned long long crash_base, crash_size;
78 	unsigned long long crash_max = arm64_dma_phys_limit;
79 	int ret;
80 
81 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
82 				&crash_size, &crash_base);
83 	/* no crashkernel= or invalid value specified */
84 	if (ret || !crash_size)
85 		return;
86 
87 	crash_size = PAGE_ALIGN(crash_size);
88 
89 	/* User specifies base address explicitly. */
90 	if (crash_base)
91 		crash_max = crash_base + crash_size;
92 
93 	/* Current arm64 boot protocol requires 2MB alignment */
94 	crash_base = memblock_phys_alloc_range(crash_size, SZ_2M,
95 					       crash_base, crash_max);
96 	if (!crash_base) {
97 		pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
98 			crash_size);
99 		return;
100 	}
101 
102 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
103 		crash_base, crash_base + crash_size, crash_size >> 20);
104 
105 	/*
106 	 * The crashkernel memory will be removed from the kernel linear
107 	 * map. Inform kmemleak so that it won't try to access it.
108 	 */
109 	kmemleak_ignore_phys(crash_base);
110 	crashk_res.start = crash_base;
111 	crashk_res.end = crash_base + crash_size - 1;
112 }
113 #else
114 static void __init reserve_crashkernel(void)
115 {
116 }
117 #endif /* CONFIG_KEXEC_CORE */
118 
119 /*
120  * Return the maximum physical address for a zone accessible by the given bits
121  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
122  * available memory, otherwise cap it at 32-bit.
123  */
124 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
125 {
126 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
127 	phys_addr_t phys_start = memblock_start_of_DRAM();
128 
129 	if (phys_start > U32_MAX)
130 		zone_mask = PHYS_ADDR_MAX;
131 	else if (phys_start > zone_mask)
132 		zone_mask = U32_MAX;
133 
134 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
135 }
136 
137 static void __init zone_sizes_init(unsigned long min, unsigned long max)
138 {
139 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
140 	unsigned int __maybe_unused acpi_zone_dma_bits;
141 	unsigned int __maybe_unused dt_zone_dma_bits;
142 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
143 
144 #ifdef CONFIG_ZONE_DMA
145 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
146 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
147 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
148 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
149 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
150 #endif
151 #ifdef CONFIG_ZONE_DMA32
152 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
153 	if (!arm64_dma_phys_limit)
154 		arm64_dma_phys_limit = dma32_phys_limit;
155 #endif
156 	if (!arm64_dma_phys_limit)
157 		arm64_dma_phys_limit = PHYS_MASK + 1;
158 	max_zone_pfns[ZONE_NORMAL] = max;
159 
160 	free_area_init(max_zone_pfns);
161 }
162 
163 int pfn_valid(unsigned long pfn)
164 {
165 	phys_addr_t addr = PFN_PHYS(pfn);
166 	struct mem_section *ms;
167 
168 	/*
169 	 * Ensure the upper PAGE_SHIFT bits are clear in the
170 	 * pfn. Else it might lead to false positives when
171 	 * some of the upper bits are set, but the lower bits
172 	 * match a valid pfn.
173 	 */
174 	if (PHYS_PFN(addr) != pfn)
175 		return 0;
176 
177 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
178 		return 0;
179 
180 	ms = __pfn_to_section(pfn);
181 	if (!valid_section(ms))
182 		return 0;
183 
184 	/*
185 	 * ZONE_DEVICE memory does not have the memblock entries.
186 	 * memblock_is_map_memory() check for ZONE_DEVICE based
187 	 * addresses will always fail. Even the normal hotplugged
188 	 * memory will never have MEMBLOCK_NOMAP flag set in their
189 	 * memblock entries. Skip memblock search for all non early
190 	 * memory sections covering all of hotplug memory including
191 	 * both normal and ZONE_DEVICE based.
192 	 */
193 	if (!early_section(ms))
194 		return pfn_section_valid(ms, pfn);
195 
196 	return memblock_is_memory(addr);
197 }
198 EXPORT_SYMBOL(pfn_valid);
199 
200 int pfn_is_map_memory(unsigned long pfn)
201 {
202 	phys_addr_t addr = PFN_PHYS(pfn);
203 
204 	/* avoid false positives for bogus PFNs, see comment in pfn_valid() */
205 	if (PHYS_PFN(addr) != pfn)
206 		return 0;
207 
208 	return memblock_is_map_memory(addr);
209 }
210 EXPORT_SYMBOL(pfn_is_map_memory);
211 
212 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
213 
214 /*
215  * Limit the memory size that was specified via FDT.
216  */
217 static int __init early_mem(char *p)
218 {
219 	if (!p)
220 		return 1;
221 
222 	memory_limit = memparse(p, &p) & PAGE_MASK;
223 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
224 
225 	return 0;
226 }
227 early_param("mem", early_mem);
228 
229 void __init arm64_memblock_init(void)
230 {
231 	s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
232 
233 	/*
234 	 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may
235 	 * be limited in their ability to support a linear map that exceeds 51
236 	 * bits of VA space, depending on the placement of the ID map. Given
237 	 * that the placement of the ID map may be randomized, let's simply
238 	 * limit the kernel's linear map to 51 bits as well if we detect this
239 	 * configuration.
240 	 */
241 	if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 &&
242 	    is_hyp_mode_available() && !is_kernel_in_hyp_mode()) {
243 		pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n");
244 		linear_region_size = min_t(u64, linear_region_size, BIT(51));
245 	}
246 
247 	/* Remove memory above our supported physical address size */
248 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
249 
250 	/*
251 	 * Select a suitable value for the base of physical memory.
252 	 */
253 	memstart_addr = round_down(memblock_start_of_DRAM(),
254 				   ARM64_MEMSTART_ALIGN);
255 
256 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
257 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
258 
259 	/*
260 	 * Remove the memory that we will not be able to cover with the
261 	 * linear mapping. Take care not to clip the kernel which may be
262 	 * high in memory.
263 	 */
264 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
265 			__pa_symbol(_end)), ULLONG_MAX);
266 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
267 		/* ensure that memstart_addr remains sufficiently aligned */
268 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
269 					 ARM64_MEMSTART_ALIGN);
270 		memblock_remove(0, memstart_addr);
271 	}
272 
273 	/*
274 	 * If we are running with a 52-bit kernel VA config on a system that
275 	 * does not support it, we have to place the available physical
276 	 * memory in the 48-bit addressable part of the linear region, i.e.,
277 	 * we have to move it upward. Since memstart_addr represents the
278 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
279 	 */
280 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
281 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
282 
283 	/*
284 	 * Apply the memory limit if it was set. Since the kernel may be loaded
285 	 * high up in memory, add back the kernel region that must be accessible
286 	 * via the linear mapping.
287 	 */
288 	if (memory_limit != PHYS_ADDR_MAX) {
289 		memblock_mem_limit_remove_map(memory_limit);
290 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
291 	}
292 
293 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
294 		/*
295 		 * Add back the memory we just removed if it results in the
296 		 * initrd to become inaccessible via the linear mapping.
297 		 * Otherwise, this is a no-op
298 		 */
299 		u64 base = phys_initrd_start & PAGE_MASK;
300 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
301 
302 		/*
303 		 * We can only add back the initrd memory if we don't end up
304 		 * with more memory than we can address via the linear mapping.
305 		 * It is up to the bootloader to position the kernel and the
306 		 * initrd reasonably close to each other (i.e., within 32 GB of
307 		 * each other) so that all granule/#levels combinations can
308 		 * always access both.
309 		 */
310 		if (WARN(base < memblock_start_of_DRAM() ||
311 			 base + size > memblock_start_of_DRAM() +
312 				       linear_region_size,
313 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
314 			phys_initrd_size = 0;
315 		} else {
316 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
317 			memblock_add(base, size);
318 			memblock_reserve(base, size);
319 		}
320 	}
321 
322 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
323 		extern u16 memstart_offset_seed;
324 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
325 		int parange = cpuid_feature_extract_unsigned_field(
326 					mmfr0, ID_AA64MMFR0_PARANGE_SHIFT);
327 		s64 range = linear_region_size -
328 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
329 
330 		/*
331 		 * If the size of the linear region exceeds, by a sufficient
332 		 * margin, the size of the region that the physical memory can
333 		 * span, randomize the linear region as well.
334 		 */
335 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
336 			range /= ARM64_MEMSTART_ALIGN;
337 			memstart_addr -= ARM64_MEMSTART_ALIGN *
338 					 ((range * memstart_offset_seed) >> 16);
339 		}
340 	}
341 
342 	/*
343 	 * Register the kernel text, kernel data, initrd, and initial
344 	 * pagetables with memblock.
345 	 */
346 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
347 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
348 		/* the generic initrd code expects virtual addresses */
349 		initrd_start = __phys_to_virt(phys_initrd_start);
350 		initrd_end = initrd_start + phys_initrd_size;
351 	}
352 
353 	early_init_fdt_scan_reserved_mem();
354 
355 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
356 }
357 
358 void __init bootmem_init(void)
359 {
360 	unsigned long min, max;
361 
362 	min = PFN_UP(memblock_start_of_DRAM());
363 	max = PFN_DOWN(memblock_end_of_DRAM());
364 
365 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
366 
367 	max_pfn = max_low_pfn = max;
368 	min_low_pfn = min;
369 
370 	arch_numa_init();
371 
372 	/*
373 	 * must be done after arch_numa_init() which calls numa_init() to
374 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
375 	 * while allocating required CMA size across online nodes.
376 	 */
377 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
378 	arm64_hugetlb_cma_reserve();
379 #endif
380 
381 	dma_pernuma_cma_reserve();
382 
383 	kvm_hyp_reserve();
384 
385 	/*
386 	 * sparse_init() tries to allocate memory from memblock, so must be
387 	 * done after the fixed reservations
388 	 */
389 	sparse_init();
390 	zone_sizes_init(min, max);
391 
392 	/*
393 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
394 	 */
395 	dma_contiguous_reserve(arm64_dma_phys_limit);
396 
397 	/*
398 	 * request_standard_resources() depends on crashkernel's memory being
399 	 * reserved, so do it here.
400 	 */
401 	reserve_crashkernel();
402 
403 	memblock_dump_all();
404 }
405 
406 /*
407  * mem_init() marks the free areas in the mem_map and tells us how much memory
408  * is free.  This is done after various parts of the system have claimed their
409  * memory after the kernel image.
410  */
411 void __init mem_init(void)
412 {
413 	if (swiotlb_force == SWIOTLB_FORCE ||
414 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
415 		swiotlb_init(1);
416 	else if (!xen_swiotlb_detect())
417 		swiotlb_force = SWIOTLB_NO_FORCE;
418 
419 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
420 
421 	/* this will put all unused low memory onto the freelists */
422 	memblock_free_all();
423 
424 	/*
425 	 * Check boundaries twice: Some fundamental inconsistencies can be
426 	 * detected at build time already.
427 	 */
428 #ifdef CONFIG_COMPAT
429 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
430 #endif
431 
432 	/*
433 	 * Selected page table levels should match when derived from
434 	 * scratch using the virtual address range and page size.
435 	 */
436 	BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) !=
437 		     CONFIG_PGTABLE_LEVELS);
438 
439 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
440 		extern int sysctl_overcommit_memory;
441 		/*
442 		 * On a machine this small we won't get anywhere without
443 		 * overcommit, so turn it on by default.
444 		 */
445 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
446 	}
447 }
448 
449 void free_initmem(void)
450 {
451 	free_reserved_area(lm_alias(__init_begin),
452 			   lm_alias(__init_end),
453 			   POISON_FREE_INITMEM, "unused kernel");
454 	/*
455 	 * Unmap the __init region but leave the VM area in place. This
456 	 * prevents the region from being reused for kernel modules, which
457 	 * is not supported by kallsyms.
458 	 */
459 	vunmap_range((u64)__init_begin, (u64)__init_end);
460 }
461 
462 void dump_mem_limit(void)
463 {
464 	if (memory_limit != PHYS_ADDR_MAX) {
465 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
466 	} else {
467 		pr_emerg("Memory Limit: none\n");
468 	}
469 }
470