1 /* 2 * Based on arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/errno.h> 23 #include <linux/swap.h> 24 #include <linux/init.h> 25 #include <linux/bootmem.h> 26 #include <linux/cache.h> 27 #include <linux/mman.h> 28 #include <linux/nodemask.h> 29 #include <linux/initrd.h> 30 #include <linux/gfp.h> 31 #include <linux/memblock.h> 32 #include <linux/sort.h> 33 #include <linux/of.h> 34 #include <linux/of_fdt.h> 35 #include <linux/dma-mapping.h> 36 #include <linux/dma-contiguous.h> 37 #include <linux/efi.h> 38 #include <linux/swiotlb.h> 39 #include <linux/vmalloc.h> 40 #include <linux/mm.h> 41 #include <linux/kexec.h> 42 #include <linux/crash_dump.h> 43 44 #include <asm/boot.h> 45 #include <asm/fixmap.h> 46 #include <asm/kasan.h> 47 #include <asm/kernel-pgtable.h> 48 #include <asm/memory.h> 49 #include <asm/numa.h> 50 #include <asm/sections.h> 51 #include <asm/setup.h> 52 #include <asm/sizes.h> 53 #include <asm/tlb.h> 54 #include <asm/alternative.h> 55 56 /* 57 * We need to be able to catch inadvertent references to memstart_addr 58 * that occur (potentially in generic code) before arm64_memblock_init() 59 * executes, which assigns it its actual value. So use a default value 60 * that cannot be mistaken for a real physical address. 61 */ 62 s64 memstart_addr __ro_after_init = -1; 63 phys_addr_t arm64_dma_phys_limit __ro_after_init; 64 65 #ifdef CONFIG_BLK_DEV_INITRD 66 static int __init early_initrd(char *p) 67 { 68 unsigned long start, size; 69 char *endp; 70 71 start = memparse(p, &endp); 72 if (*endp == ',') { 73 size = memparse(endp + 1, NULL); 74 75 initrd_start = start; 76 initrd_end = start + size; 77 } 78 return 0; 79 } 80 early_param("initrd", early_initrd); 81 #endif 82 83 #ifdef CONFIG_KEXEC_CORE 84 /* 85 * reserve_crashkernel() - reserves memory for crash kernel 86 * 87 * This function reserves memory area given in "crashkernel=" kernel command 88 * line parameter. The memory reserved is used by dump capture kernel when 89 * primary kernel is crashing. 90 */ 91 static void __init reserve_crashkernel(void) 92 { 93 unsigned long long crash_base, crash_size; 94 int ret; 95 96 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 97 &crash_size, &crash_base); 98 /* no crashkernel= or invalid value specified */ 99 if (ret || !crash_size) 100 return; 101 102 crash_size = PAGE_ALIGN(crash_size); 103 104 if (crash_base == 0) { 105 /* Current arm64 boot protocol requires 2MB alignment */ 106 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, 107 crash_size, SZ_2M); 108 if (crash_base == 0) { 109 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 110 crash_size); 111 return; 112 } 113 } else { 114 /* User specifies base address explicitly. */ 115 if (!memblock_is_region_memory(crash_base, crash_size)) { 116 pr_warn("cannot reserve crashkernel: region is not memory\n"); 117 return; 118 } 119 120 if (memblock_is_region_reserved(crash_base, crash_size)) { 121 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 122 return; 123 } 124 125 if (!IS_ALIGNED(crash_base, SZ_2M)) { 126 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 127 return; 128 } 129 } 130 memblock_reserve(crash_base, crash_size); 131 132 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 133 crash_base, crash_base + crash_size, crash_size >> 20); 134 135 crashk_res.start = crash_base; 136 crashk_res.end = crash_base + crash_size - 1; 137 } 138 139 static void __init kexec_reserve_crashkres_pages(void) 140 { 141 #ifdef CONFIG_HIBERNATION 142 phys_addr_t addr; 143 struct page *page; 144 145 if (!crashk_res.end) 146 return; 147 148 /* 149 * To reduce the size of hibernation image, all the pages are 150 * marked as Reserved initially. 151 */ 152 for (addr = crashk_res.start; addr < (crashk_res.end + 1); 153 addr += PAGE_SIZE) { 154 page = phys_to_page(addr); 155 SetPageReserved(page); 156 } 157 #endif 158 } 159 #else 160 static void __init reserve_crashkernel(void) 161 { 162 } 163 164 static void __init kexec_reserve_crashkres_pages(void) 165 { 166 } 167 #endif /* CONFIG_KEXEC_CORE */ 168 169 #ifdef CONFIG_CRASH_DUMP 170 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 171 const char *uname, int depth, void *data) 172 { 173 const __be32 *reg; 174 int len; 175 176 if (depth != 1 || strcmp(uname, "chosen") != 0) 177 return 0; 178 179 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 180 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 181 return 1; 182 183 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 184 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 185 186 return 1; 187 } 188 189 /* 190 * reserve_elfcorehdr() - reserves memory for elf core header 191 * 192 * This function reserves the memory occupied by an elf core header 193 * described in the device tree. This region contains all the 194 * information about primary kernel's core image and is used by a dump 195 * capture kernel to access the system memory on primary kernel. 196 */ 197 static void __init reserve_elfcorehdr(void) 198 { 199 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 200 201 if (!elfcorehdr_size) 202 return; 203 204 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 205 pr_warn("elfcorehdr is overlapped\n"); 206 return; 207 } 208 209 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 210 211 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 212 elfcorehdr_size >> 10, elfcorehdr_addr); 213 } 214 #else 215 static void __init reserve_elfcorehdr(void) 216 { 217 } 218 #endif /* CONFIG_CRASH_DUMP */ 219 /* 220 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It 221 * currently assumes that for memory starting above 4G, 32-bit devices will 222 * use a DMA offset. 223 */ 224 static phys_addr_t __init max_zone_dma_phys(void) 225 { 226 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); 227 return min(offset + (1ULL << 32), memblock_end_of_DRAM()); 228 } 229 230 #ifdef CONFIG_NUMA 231 232 static void __init zone_sizes_init(unsigned long min, unsigned long max) 233 { 234 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 235 236 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 237 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); 238 max_zone_pfns[ZONE_NORMAL] = max; 239 240 free_area_init_nodes(max_zone_pfns); 241 } 242 243 #else 244 245 static void __init zone_sizes_init(unsigned long min, unsigned long max) 246 { 247 struct memblock_region *reg; 248 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 249 unsigned long max_dma = min; 250 251 memset(zone_size, 0, sizeof(zone_size)); 252 253 /* 4GB maximum for 32-bit only capable devices */ 254 #ifdef CONFIG_ZONE_DMA32 255 max_dma = PFN_DOWN(arm64_dma_phys_limit); 256 zone_size[ZONE_DMA32] = max_dma - min; 257 #endif 258 zone_size[ZONE_NORMAL] = max - max_dma; 259 260 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 261 262 for_each_memblock(memory, reg) { 263 unsigned long start = memblock_region_memory_base_pfn(reg); 264 unsigned long end = memblock_region_memory_end_pfn(reg); 265 266 if (start >= max) 267 continue; 268 269 #ifdef CONFIG_ZONE_DMA32 270 if (start < max_dma) { 271 unsigned long dma_end = min(end, max_dma); 272 zhole_size[ZONE_DMA32] -= dma_end - start; 273 } 274 #endif 275 if (end > max_dma) { 276 unsigned long normal_end = min(end, max); 277 unsigned long normal_start = max(start, max_dma); 278 zhole_size[ZONE_NORMAL] -= normal_end - normal_start; 279 } 280 } 281 282 free_area_init_node(0, zone_size, min, zhole_size); 283 } 284 285 #endif /* CONFIG_NUMA */ 286 287 #ifdef CONFIG_HAVE_ARCH_PFN_VALID 288 int pfn_valid(unsigned long pfn) 289 { 290 phys_addr_t addr = pfn << PAGE_SHIFT; 291 292 if ((addr >> PAGE_SHIFT) != pfn) 293 return 0; 294 return memblock_is_map_memory(addr); 295 } 296 EXPORT_SYMBOL(pfn_valid); 297 #endif 298 299 #ifndef CONFIG_SPARSEMEM 300 static void __init arm64_memory_present(void) 301 { 302 } 303 #else 304 static void __init arm64_memory_present(void) 305 { 306 struct memblock_region *reg; 307 308 for_each_memblock(memory, reg) { 309 int nid = memblock_get_region_node(reg); 310 311 memory_present(nid, memblock_region_memory_base_pfn(reg), 312 memblock_region_memory_end_pfn(reg)); 313 } 314 } 315 #endif 316 317 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 318 319 /* 320 * Limit the memory size that was specified via FDT. 321 */ 322 static int __init early_mem(char *p) 323 { 324 if (!p) 325 return 1; 326 327 memory_limit = memparse(p, &p) & PAGE_MASK; 328 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 329 330 return 0; 331 } 332 early_param("mem", early_mem); 333 334 static int __init early_init_dt_scan_usablemem(unsigned long node, 335 const char *uname, int depth, void *data) 336 { 337 struct memblock_region *usablemem = data; 338 const __be32 *reg; 339 int len; 340 341 if (depth != 1 || strcmp(uname, "chosen") != 0) 342 return 0; 343 344 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 345 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 346 return 1; 347 348 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 349 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 350 351 return 1; 352 } 353 354 static void __init fdt_enforce_memory_region(void) 355 { 356 struct memblock_region reg = { 357 .size = 0, 358 }; 359 360 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 361 362 if (reg.size) 363 memblock_cap_memory_range(reg.base, reg.size); 364 } 365 366 void __init arm64_memblock_init(void) 367 { 368 const s64 linear_region_size = -(s64)PAGE_OFFSET; 369 370 /* Handle linux,usable-memory-range property */ 371 fdt_enforce_memory_region(); 372 373 /* Remove memory above our supported physical address size */ 374 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 375 376 /* 377 * Ensure that the linear region takes up exactly half of the kernel 378 * virtual address space. This way, we can distinguish a linear address 379 * from a kernel/module/vmalloc address by testing a single bit. 380 */ 381 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); 382 383 /* 384 * Select a suitable value for the base of physical memory. 385 */ 386 memstart_addr = round_down(memblock_start_of_DRAM(), 387 ARM64_MEMSTART_ALIGN); 388 389 /* 390 * Remove the memory that we will not be able to cover with the 391 * linear mapping. Take care not to clip the kernel which may be 392 * high in memory. 393 */ 394 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 395 __pa_symbol(_end)), ULLONG_MAX); 396 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 397 /* ensure that memstart_addr remains sufficiently aligned */ 398 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 399 ARM64_MEMSTART_ALIGN); 400 memblock_remove(0, memstart_addr); 401 } 402 403 /* 404 * Apply the memory limit if it was set. Since the kernel may be loaded 405 * high up in memory, add back the kernel region that must be accessible 406 * via the linear mapping. 407 */ 408 if (memory_limit != PHYS_ADDR_MAX) { 409 memblock_mem_limit_remove_map(memory_limit); 410 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 411 } 412 413 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) { 414 /* 415 * Add back the memory we just removed if it results in the 416 * initrd to become inaccessible via the linear mapping. 417 * Otherwise, this is a no-op 418 */ 419 u64 base = initrd_start & PAGE_MASK; 420 u64 size = PAGE_ALIGN(initrd_end) - base; 421 422 /* 423 * We can only add back the initrd memory if we don't end up 424 * with more memory than we can address via the linear mapping. 425 * It is up to the bootloader to position the kernel and the 426 * initrd reasonably close to each other (i.e., within 32 GB of 427 * each other) so that all granule/#levels combinations can 428 * always access both. 429 */ 430 if (WARN(base < memblock_start_of_DRAM() || 431 base + size > memblock_start_of_DRAM() + 432 linear_region_size, 433 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 434 initrd_start = 0; 435 } else { 436 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 437 memblock_add(base, size); 438 memblock_reserve(base, size); 439 } 440 } 441 442 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 443 extern u16 memstart_offset_seed; 444 u64 range = linear_region_size - 445 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 446 447 /* 448 * If the size of the linear region exceeds, by a sufficient 449 * margin, the size of the region that the available physical 450 * memory spans, randomize the linear region as well. 451 */ 452 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 453 range = range / ARM64_MEMSTART_ALIGN + 1; 454 memstart_addr -= ARM64_MEMSTART_ALIGN * 455 ((range * memstart_offset_seed) >> 16); 456 } 457 } 458 459 /* 460 * Register the kernel text, kernel data, initrd, and initial 461 * pagetables with memblock. 462 */ 463 memblock_reserve(__pa_symbol(_text), _end - _text); 464 #ifdef CONFIG_BLK_DEV_INITRD 465 if (initrd_start) { 466 memblock_reserve(initrd_start, initrd_end - initrd_start); 467 468 /* the generic initrd code expects virtual addresses */ 469 initrd_start = __phys_to_virt(initrd_start); 470 initrd_end = __phys_to_virt(initrd_end); 471 } 472 #endif 473 474 early_init_fdt_scan_reserved_mem(); 475 476 /* 4GB maximum for 32-bit only capable devices */ 477 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 478 arm64_dma_phys_limit = max_zone_dma_phys(); 479 else 480 arm64_dma_phys_limit = PHYS_MASK + 1; 481 482 reserve_crashkernel(); 483 484 reserve_elfcorehdr(); 485 486 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 487 488 dma_contiguous_reserve(arm64_dma_phys_limit); 489 490 memblock_allow_resize(); 491 } 492 493 void __init bootmem_init(void) 494 { 495 unsigned long min, max; 496 497 min = PFN_UP(memblock_start_of_DRAM()); 498 max = PFN_DOWN(memblock_end_of_DRAM()); 499 500 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 501 502 max_pfn = max_low_pfn = max; 503 504 arm64_numa_init(); 505 /* 506 * Sparsemem tries to allocate bootmem in memory_present(), so must be 507 * done after the fixed reservations. 508 */ 509 arm64_memory_present(); 510 511 sparse_init(); 512 zone_sizes_init(min, max); 513 514 memblock_dump_all(); 515 } 516 517 #ifndef CONFIG_SPARSEMEM_VMEMMAP 518 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 519 { 520 struct page *start_pg, *end_pg; 521 unsigned long pg, pgend; 522 523 /* 524 * Convert start_pfn/end_pfn to a struct page pointer. 525 */ 526 start_pg = pfn_to_page(start_pfn - 1) + 1; 527 end_pg = pfn_to_page(end_pfn - 1) + 1; 528 529 /* 530 * Convert to physical addresses, and round start upwards and end 531 * downwards. 532 */ 533 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 534 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 535 536 /* 537 * If there are free pages between these, free the section of the 538 * memmap array. 539 */ 540 if (pg < pgend) 541 free_bootmem(pg, pgend - pg); 542 } 543 544 /* 545 * The mem_map array can get very big. Free the unused area of the memory map. 546 */ 547 static void __init free_unused_memmap(void) 548 { 549 unsigned long start, prev_end = 0; 550 struct memblock_region *reg; 551 552 for_each_memblock(memory, reg) { 553 start = __phys_to_pfn(reg->base); 554 555 #ifdef CONFIG_SPARSEMEM 556 /* 557 * Take care not to free memmap entries that don't exist due 558 * to SPARSEMEM sections which aren't present. 559 */ 560 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 561 #endif 562 /* 563 * If we had a previous bank, and there is a space between the 564 * current bank and the previous, free it. 565 */ 566 if (prev_end && prev_end < start) 567 free_memmap(prev_end, start); 568 569 /* 570 * Align up here since the VM subsystem insists that the 571 * memmap entries are valid from the bank end aligned to 572 * MAX_ORDER_NR_PAGES. 573 */ 574 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 575 MAX_ORDER_NR_PAGES); 576 } 577 578 #ifdef CONFIG_SPARSEMEM 579 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 580 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 581 #endif 582 } 583 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 584 585 /* 586 * mem_init() marks the free areas in the mem_map and tells us how much memory 587 * is free. This is done after various parts of the system have claimed their 588 * memory after the kernel image. 589 */ 590 void __init mem_init(void) 591 { 592 if (swiotlb_force == SWIOTLB_FORCE || 593 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 594 swiotlb_init(1); 595 else 596 swiotlb_force = SWIOTLB_NO_FORCE; 597 598 set_max_mapnr(pfn_to_page(max_pfn) - mem_map); 599 600 #ifndef CONFIG_SPARSEMEM_VMEMMAP 601 free_unused_memmap(); 602 #endif 603 /* this will put all unused low memory onto the freelists */ 604 free_all_bootmem(); 605 606 kexec_reserve_crashkres_pages(); 607 608 mem_init_print_info(NULL); 609 610 /* 611 * Check boundaries twice: Some fundamental inconsistencies can be 612 * detected at build time already. 613 */ 614 #ifdef CONFIG_COMPAT 615 BUILD_BUG_ON(TASK_SIZE_32 > TASK_SIZE_64); 616 #endif 617 618 #ifdef CONFIG_SPARSEMEM_VMEMMAP 619 /* 620 * Make sure we chose the upper bound of sizeof(struct page) 621 * correctly when sizing the VMEMMAP array. 622 */ 623 BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT)); 624 #endif 625 626 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 627 extern int sysctl_overcommit_memory; 628 /* 629 * On a machine this small we won't get anywhere without 630 * overcommit, so turn it on by default. 631 */ 632 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 633 } 634 } 635 636 void free_initmem(void) 637 { 638 free_reserved_area(lm_alias(__init_begin), 639 lm_alias(__init_end), 640 0, "unused kernel"); 641 /* 642 * Unmap the __init region but leave the VM area in place. This 643 * prevents the region from being reused for kernel modules, which 644 * is not supported by kallsyms. 645 */ 646 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 647 } 648 649 #ifdef CONFIG_BLK_DEV_INITRD 650 651 static int keep_initrd __initdata; 652 653 void __init free_initrd_mem(unsigned long start, unsigned long end) 654 { 655 if (!keep_initrd) { 656 free_reserved_area((void *)start, (void *)end, 0, "initrd"); 657 memblock_free(__virt_to_phys(start), end - start); 658 } 659 } 660 661 static int __init keepinitrd_setup(char *__unused) 662 { 663 keep_initrd = 1; 664 return 1; 665 } 666 667 __setup("keepinitrd", keepinitrd_setup); 668 #endif 669 670 /* 671 * Dump out memory limit information on panic. 672 */ 673 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 674 { 675 if (memory_limit != PHYS_ADDR_MAX) { 676 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 677 } else { 678 pr_emerg("Memory Limit: none\n"); 679 } 680 return 0; 681 } 682 683 static struct notifier_block mem_limit_notifier = { 684 .notifier_call = dump_mem_limit, 685 }; 686 687 static int __init register_mem_limit_dumper(void) 688 { 689 atomic_notifier_chain_register(&panic_notifier_list, 690 &mem_limit_notifier); 691 return 0; 692 } 693 __initcall(register_mem_limit_dumper); 694