xref: /openbmc/linux/arch/arm64/mm/init.c (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mman.h>
27 #include <linux/nodemask.h>
28 #include <linux/initrd.h>
29 #include <linux/gfp.h>
30 #include <linux/memblock.h>
31 #include <linux/sort.h>
32 #include <linux/of.h>
33 #include <linux/of_fdt.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dma-contiguous.h>
36 #include <linux/efi.h>
37 #include <linux/swiotlb.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm.h>
40 #include <linux/kexec.h>
41 #include <linux/crash_dump.h>
42 
43 #include <asm/boot.h>
44 #include <asm/fixmap.h>
45 #include <asm/kasan.h>
46 #include <asm/kernel-pgtable.h>
47 #include <asm/memory.h>
48 #include <asm/numa.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <asm/sizes.h>
52 #include <asm/tlb.h>
53 #include <asm/alternative.h>
54 
55 /*
56  * We need to be able to catch inadvertent references to memstart_addr
57  * that occur (potentially in generic code) before arm64_memblock_init()
58  * executes, which assigns it its actual value. So use a default value
59  * that cannot be mistaken for a real physical address.
60  */
61 s64 memstart_addr __ro_after_init = -1;
62 EXPORT_SYMBOL(memstart_addr);
63 
64 phys_addr_t arm64_dma_phys_limit __ro_after_init;
65 
66 #ifdef CONFIG_KEXEC_CORE
67 /*
68  * reserve_crashkernel() - reserves memory for crash kernel
69  *
70  * This function reserves memory area given in "crashkernel=" kernel command
71  * line parameter. The memory reserved is used by dump capture kernel when
72  * primary kernel is crashing.
73  */
74 static void __init reserve_crashkernel(void)
75 {
76 	unsigned long long crash_base, crash_size;
77 	int ret;
78 
79 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
80 				&crash_size, &crash_base);
81 	/* no crashkernel= or invalid value specified */
82 	if (ret || !crash_size)
83 		return;
84 
85 	crash_size = PAGE_ALIGN(crash_size);
86 
87 	if (crash_base == 0) {
88 		/* Current arm64 boot protocol requires 2MB alignment */
89 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
90 				crash_size, SZ_2M);
91 		if (crash_base == 0) {
92 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
93 				crash_size);
94 			return;
95 		}
96 	} else {
97 		/* User specifies base address explicitly. */
98 		if (!memblock_is_region_memory(crash_base, crash_size)) {
99 			pr_warn("cannot reserve crashkernel: region is not memory\n");
100 			return;
101 		}
102 
103 		if (memblock_is_region_reserved(crash_base, crash_size)) {
104 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
105 			return;
106 		}
107 
108 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
109 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
110 			return;
111 		}
112 	}
113 	memblock_reserve(crash_base, crash_size);
114 
115 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
116 		crash_base, crash_base + crash_size, crash_size >> 20);
117 
118 	crashk_res.start = crash_base;
119 	crashk_res.end = crash_base + crash_size - 1;
120 }
121 
122 static void __init kexec_reserve_crashkres_pages(void)
123 {
124 #ifdef CONFIG_HIBERNATION
125 	phys_addr_t addr;
126 	struct page *page;
127 
128 	if (!crashk_res.end)
129 		return;
130 
131 	/*
132 	 * To reduce the size of hibernation image, all the pages are
133 	 * marked as Reserved initially.
134 	 */
135 	for (addr = crashk_res.start; addr < (crashk_res.end + 1);
136 			addr += PAGE_SIZE) {
137 		page = phys_to_page(addr);
138 		SetPageReserved(page);
139 	}
140 #endif
141 }
142 #else
143 static void __init reserve_crashkernel(void)
144 {
145 }
146 
147 static void __init kexec_reserve_crashkres_pages(void)
148 {
149 }
150 #endif /* CONFIG_KEXEC_CORE */
151 
152 #ifdef CONFIG_CRASH_DUMP
153 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
154 		const char *uname, int depth, void *data)
155 {
156 	const __be32 *reg;
157 	int len;
158 
159 	if (depth != 1 || strcmp(uname, "chosen") != 0)
160 		return 0;
161 
162 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
163 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
164 		return 1;
165 
166 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
167 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
168 
169 	return 1;
170 }
171 
172 /*
173  * reserve_elfcorehdr() - reserves memory for elf core header
174  *
175  * This function reserves the memory occupied by an elf core header
176  * described in the device tree. This region contains all the
177  * information about primary kernel's core image and is used by a dump
178  * capture kernel to access the system memory on primary kernel.
179  */
180 static void __init reserve_elfcorehdr(void)
181 {
182 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
183 
184 	if (!elfcorehdr_size)
185 		return;
186 
187 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
188 		pr_warn("elfcorehdr is overlapped\n");
189 		return;
190 	}
191 
192 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
193 
194 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
195 		elfcorehdr_size >> 10, elfcorehdr_addr);
196 }
197 #else
198 static void __init reserve_elfcorehdr(void)
199 {
200 }
201 #endif /* CONFIG_CRASH_DUMP */
202 /*
203  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
204  * currently assumes that for memory starting above 4G, 32-bit devices will
205  * use a DMA offset.
206  */
207 static phys_addr_t __init max_zone_dma_phys(void)
208 {
209 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
210 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
211 }
212 
213 #ifdef CONFIG_NUMA
214 
215 static void __init zone_sizes_init(unsigned long min, unsigned long max)
216 {
217 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
218 
219 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
220 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
221 	max_zone_pfns[ZONE_NORMAL] = max;
222 
223 	free_area_init_nodes(max_zone_pfns);
224 }
225 
226 #else
227 
228 static void __init zone_sizes_init(unsigned long min, unsigned long max)
229 {
230 	struct memblock_region *reg;
231 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
232 	unsigned long max_dma = min;
233 
234 	memset(zone_size, 0, sizeof(zone_size));
235 
236 	/* 4GB maximum for 32-bit only capable devices */
237 #ifdef CONFIG_ZONE_DMA32
238 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
239 	zone_size[ZONE_DMA32] = max_dma - min;
240 #endif
241 	zone_size[ZONE_NORMAL] = max - max_dma;
242 
243 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
244 
245 	for_each_memblock(memory, reg) {
246 		unsigned long start = memblock_region_memory_base_pfn(reg);
247 		unsigned long end = memblock_region_memory_end_pfn(reg);
248 
249 		if (start >= max)
250 			continue;
251 
252 #ifdef CONFIG_ZONE_DMA32
253 		if (start < max_dma) {
254 			unsigned long dma_end = min(end, max_dma);
255 			zhole_size[ZONE_DMA32] -= dma_end - start;
256 		}
257 #endif
258 		if (end > max_dma) {
259 			unsigned long normal_end = min(end, max);
260 			unsigned long normal_start = max(start, max_dma);
261 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
262 		}
263 	}
264 
265 	free_area_init_node(0, zone_size, min, zhole_size);
266 }
267 
268 #endif /* CONFIG_NUMA */
269 
270 int pfn_valid(unsigned long pfn)
271 {
272 	phys_addr_t addr = pfn << PAGE_SHIFT;
273 
274 	if ((addr >> PAGE_SHIFT) != pfn)
275 		return 0;
276 
277 #ifdef CONFIG_SPARSEMEM
278 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
279 		return 0;
280 
281 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
282 		return 0;
283 #endif
284 	return memblock_is_map_memory(addr);
285 }
286 EXPORT_SYMBOL(pfn_valid);
287 
288 #ifndef CONFIG_SPARSEMEM
289 static void __init arm64_memory_present(void)
290 {
291 }
292 #else
293 static void __init arm64_memory_present(void)
294 {
295 	struct memblock_region *reg;
296 
297 	for_each_memblock(memory, reg) {
298 		int nid = memblock_get_region_node(reg);
299 
300 		memory_present(nid, memblock_region_memory_base_pfn(reg),
301 				memblock_region_memory_end_pfn(reg));
302 	}
303 }
304 #endif
305 
306 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
307 
308 /*
309  * Limit the memory size that was specified via FDT.
310  */
311 static int __init early_mem(char *p)
312 {
313 	if (!p)
314 		return 1;
315 
316 	memory_limit = memparse(p, &p) & PAGE_MASK;
317 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
318 
319 	return 0;
320 }
321 early_param("mem", early_mem);
322 
323 static int __init early_init_dt_scan_usablemem(unsigned long node,
324 		const char *uname, int depth, void *data)
325 {
326 	struct memblock_region *usablemem = data;
327 	const __be32 *reg;
328 	int len;
329 
330 	if (depth != 1 || strcmp(uname, "chosen") != 0)
331 		return 0;
332 
333 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
334 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
335 		return 1;
336 
337 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
338 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
339 
340 	return 1;
341 }
342 
343 static void __init fdt_enforce_memory_region(void)
344 {
345 	struct memblock_region reg = {
346 		.size = 0,
347 	};
348 
349 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
350 
351 	if (reg.size)
352 		memblock_cap_memory_range(reg.base, reg.size);
353 }
354 
355 void __init arm64_memblock_init(void)
356 {
357 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
358 
359 	/* Handle linux,usable-memory-range property */
360 	fdt_enforce_memory_region();
361 
362 	/* Remove memory above our supported physical address size */
363 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
364 
365 	/*
366 	 * Ensure that the linear region takes up exactly half of the kernel
367 	 * virtual address space. This way, we can distinguish a linear address
368 	 * from a kernel/module/vmalloc address by testing a single bit.
369 	 */
370 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
371 
372 	/*
373 	 * Select a suitable value for the base of physical memory.
374 	 */
375 	memstart_addr = round_down(memblock_start_of_DRAM(),
376 				   ARM64_MEMSTART_ALIGN);
377 
378 	/*
379 	 * Remove the memory that we will not be able to cover with the
380 	 * linear mapping. Take care not to clip the kernel which may be
381 	 * high in memory.
382 	 */
383 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
384 			__pa_symbol(_end)), ULLONG_MAX);
385 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
386 		/* ensure that memstart_addr remains sufficiently aligned */
387 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
388 					 ARM64_MEMSTART_ALIGN);
389 		memblock_remove(0, memstart_addr);
390 	}
391 
392 	/*
393 	 * Apply the memory limit if it was set. Since the kernel may be loaded
394 	 * high up in memory, add back the kernel region that must be accessible
395 	 * via the linear mapping.
396 	 */
397 	if (memory_limit != PHYS_ADDR_MAX) {
398 		memblock_mem_limit_remove_map(memory_limit);
399 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
400 	}
401 
402 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
403 		/*
404 		 * Add back the memory we just removed if it results in the
405 		 * initrd to become inaccessible via the linear mapping.
406 		 * Otherwise, this is a no-op
407 		 */
408 		u64 base = phys_initrd_start & PAGE_MASK;
409 		u64 size = PAGE_ALIGN(phys_initrd_size);
410 
411 		/*
412 		 * We can only add back the initrd memory if we don't end up
413 		 * with more memory than we can address via the linear mapping.
414 		 * It is up to the bootloader to position the kernel and the
415 		 * initrd reasonably close to each other (i.e., within 32 GB of
416 		 * each other) so that all granule/#levels combinations can
417 		 * always access both.
418 		 */
419 		if (WARN(base < memblock_start_of_DRAM() ||
420 			 base + size > memblock_start_of_DRAM() +
421 				       linear_region_size,
422 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
423 			initrd_start = 0;
424 		} else {
425 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
426 			memblock_add(base, size);
427 			memblock_reserve(base, size);
428 		}
429 	}
430 
431 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
432 		extern u16 memstart_offset_seed;
433 		u64 range = linear_region_size -
434 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
435 
436 		/*
437 		 * If the size of the linear region exceeds, by a sufficient
438 		 * margin, the size of the region that the available physical
439 		 * memory spans, randomize the linear region as well.
440 		 */
441 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
442 			range /= ARM64_MEMSTART_ALIGN;
443 			memstart_addr -= ARM64_MEMSTART_ALIGN *
444 					 ((range * memstart_offset_seed) >> 16);
445 		}
446 	}
447 
448 	/*
449 	 * Register the kernel text, kernel data, initrd, and initial
450 	 * pagetables with memblock.
451 	 */
452 	memblock_reserve(__pa_symbol(_text), _end - _text);
453 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
454 		/* the generic initrd code expects virtual addresses */
455 		initrd_start = __phys_to_virt(phys_initrd_start);
456 		initrd_end = initrd_start + phys_initrd_size;
457 	}
458 
459 	early_init_fdt_scan_reserved_mem();
460 
461 	/* 4GB maximum for 32-bit only capable devices */
462 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
463 		arm64_dma_phys_limit = max_zone_dma_phys();
464 	else
465 		arm64_dma_phys_limit = PHYS_MASK + 1;
466 
467 	reserve_crashkernel();
468 
469 	reserve_elfcorehdr();
470 
471 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
472 
473 	dma_contiguous_reserve(arm64_dma_phys_limit);
474 }
475 
476 void __init bootmem_init(void)
477 {
478 	unsigned long min, max;
479 
480 	min = PFN_UP(memblock_start_of_DRAM());
481 	max = PFN_DOWN(memblock_end_of_DRAM());
482 
483 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
484 
485 	max_pfn = max_low_pfn = max;
486 
487 	arm64_numa_init();
488 	/*
489 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
490 	 * done after the fixed reservations.
491 	 */
492 	arm64_memory_present();
493 
494 	sparse_init();
495 	zone_sizes_init(min, max);
496 
497 	memblock_dump_all();
498 }
499 
500 #ifndef CONFIG_SPARSEMEM_VMEMMAP
501 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
502 {
503 	struct page *start_pg, *end_pg;
504 	unsigned long pg, pgend;
505 
506 	/*
507 	 * Convert start_pfn/end_pfn to a struct page pointer.
508 	 */
509 	start_pg = pfn_to_page(start_pfn - 1) + 1;
510 	end_pg = pfn_to_page(end_pfn - 1) + 1;
511 
512 	/*
513 	 * Convert to physical addresses, and round start upwards and end
514 	 * downwards.
515 	 */
516 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
517 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
518 
519 	/*
520 	 * If there are free pages between these, free the section of the
521 	 * memmap array.
522 	 */
523 	if (pg < pgend)
524 		memblock_free(pg, pgend - pg);
525 }
526 
527 /*
528  * The mem_map array can get very big. Free the unused area of the memory map.
529  */
530 static void __init free_unused_memmap(void)
531 {
532 	unsigned long start, prev_end = 0;
533 	struct memblock_region *reg;
534 
535 	for_each_memblock(memory, reg) {
536 		start = __phys_to_pfn(reg->base);
537 
538 #ifdef CONFIG_SPARSEMEM
539 		/*
540 		 * Take care not to free memmap entries that don't exist due
541 		 * to SPARSEMEM sections which aren't present.
542 		 */
543 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
544 #endif
545 		/*
546 		 * If we had a previous bank, and there is a space between the
547 		 * current bank and the previous, free it.
548 		 */
549 		if (prev_end && prev_end < start)
550 			free_memmap(prev_end, start);
551 
552 		/*
553 		 * Align up here since the VM subsystem insists that the
554 		 * memmap entries are valid from the bank end aligned to
555 		 * MAX_ORDER_NR_PAGES.
556 		 */
557 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
558 				 MAX_ORDER_NR_PAGES);
559 	}
560 
561 #ifdef CONFIG_SPARSEMEM
562 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
563 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
564 #endif
565 }
566 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
567 
568 /*
569  * mem_init() marks the free areas in the mem_map and tells us how much memory
570  * is free.  This is done after various parts of the system have claimed their
571  * memory after the kernel image.
572  */
573 void __init mem_init(void)
574 {
575 	if (swiotlb_force == SWIOTLB_FORCE ||
576 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
577 		swiotlb_init(1);
578 	else
579 		swiotlb_force = SWIOTLB_NO_FORCE;
580 
581 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
582 
583 #ifndef CONFIG_SPARSEMEM_VMEMMAP
584 	free_unused_memmap();
585 #endif
586 	/* this will put all unused low memory onto the freelists */
587 	memblock_free_all();
588 
589 	kexec_reserve_crashkres_pages();
590 
591 	mem_init_print_info(NULL);
592 
593 	/*
594 	 * Check boundaries twice: Some fundamental inconsistencies can be
595 	 * detected at build time already.
596 	 */
597 #ifdef CONFIG_COMPAT
598 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
599 #endif
600 
601 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
602 		extern int sysctl_overcommit_memory;
603 		/*
604 		 * On a machine this small we won't get anywhere without
605 		 * overcommit, so turn it on by default.
606 		 */
607 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
608 	}
609 }
610 
611 void free_initmem(void)
612 {
613 	free_reserved_area(lm_alias(__init_begin),
614 			   lm_alias(__init_end),
615 			   0, "unused kernel");
616 	/*
617 	 * Unmap the __init region but leave the VM area in place. This
618 	 * prevents the region from being reused for kernel modules, which
619 	 * is not supported by kallsyms.
620 	 */
621 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
622 }
623 
624 #ifdef CONFIG_BLK_DEV_INITRD
625 
626 static int keep_initrd __initdata;
627 
628 void __init free_initrd_mem(unsigned long start, unsigned long end)
629 {
630 	if (!keep_initrd) {
631 		free_reserved_area((void *)start, (void *)end, 0, "initrd");
632 		memblock_free(__virt_to_phys(start), end - start);
633 	}
634 }
635 
636 static int __init keepinitrd_setup(char *__unused)
637 {
638 	keep_initrd = 1;
639 	return 1;
640 }
641 
642 __setup("keepinitrd", keepinitrd_setup);
643 #endif
644 
645 /*
646  * Dump out memory limit information on panic.
647  */
648 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
649 {
650 	if (memory_limit != PHYS_ADDR_MAX) {
651 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
652 	} else {
653 		pr_emerg("Memory Limit: none\n");
654 	}
655 	return 0;
656 }
657 
658 static struct notifier_block mem_limit_notifier = {
659 	.notifier_call = dump_mem_limit,
660 };
661 
662 static int __init register_mem_limit_dumper(void)
663 {
664 	atomic_notifier_chain_register(&panic_notifier_list,
665 				       &mem_limit_notifier);
666 	return 0;
667 }
668 __initcall(register_mem_limit_dumper);
669