xref: /openbmc/linux/arch/arm64/mm/init.c (revision 82df5b73)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dma-contiguous.h>
26 #include <linux/efi.h>
27 #include <linux/swiotlb.h>
28 #include <linux/vmalloc.h>
29 #include <linux/mm.h>
30 #include <linux/kexec.h>
31 #include <linux/crash_dump.h>
32 #include <linux/hugetlb.h>
33 
34 #include <asm/boot.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/memory.h>
39 #include <asm/numa.h>
40 #include <asm/sections.h>
41 #include <asm/setup.h>
42 #include <linux/sizes.h>
43 #include <asm/tlb.h>
44 #include <asm/alternative.h>
45 
46 #define ARM64_ZONE_DMA_BITS	30
47 
48 /*
49  * We need to be able to catch inadvertent references to memstart_addr
50  * that occur (potentially in generic code) before arm64_memblock_init()
51  * executes, which assigns it its actual value. So use a default value
52  * that cannot be mistaken for a real physical address.
53  */
54 s64 memstart_addr __ro_after_init = -1;
55 EXPORT_SYMBOL(memstart_addr);
56 
57 s64 physvirt_offset __ro_after_init;
58 EXPORT_SYMBOL(physvirt_offset);
59 
60 struct page *vmemmap __ro_after_init;
61 EXPORT_SYMBOL(vmemmap);
62 
63 /*
64  * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
65  * memory as some devices, namely the Raspberry Pi 4, have peripherals with
66  * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
67  * bit addressable memory area.
68  */
69 phys_addr_t arm64_dma_phys_limit __ro_after_init;
70 static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
71 
72 #ifdef CONFIG_KEXEC_CORE
73 /*
74  * reserve_crashkernel() - reserves memory for crash kernel
75  *
76  * This function reserves memory area given in "crashkernel=" kernel command
77  * line parameter. The memory reserved is used by dump capture kernel when
78  * primary kernel is crashing.
79  */
80 static void __init reserve_crashkernel(void)
81 {
82 	unsigned long long crash_base, crash_size;
83 	int ret;
84 
85 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
86 				&crash_size, &crash_base);
87 	/* no crashkernel= or invalid value specified */
88 	if (ret || !crash_size)
89 		return;
90 
91 	crash_size = PAGE_ALIGN(crash_size);
92 
93 	if (crash_base == 0) {
94 		/* Current arm64 boot protocol requires 2MB alignment */
95 		crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
96 				crash_size, SZ_2M);
97 		if (crash_base == 0) {
98 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
99 				crash_size);
100 			return;
101 		}
102 	} else {
103 		/* User specifies base address explicitly. */
104 		if (!memblock_is_region_memory(crash_base, crash_size)) {
105 			pr_warn("cannot reserve crashkernel: region is not memory\n");
106 			return;
107 		}
108 
109 		if (memblock_is_region_reserved(crash_base, crash_size)) {
110 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
111 			return;
112 		}
113 
114 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
115 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
116 			return;
117 		}
118 	}
119 	memblock_reserve(crash_base, crash_size);
120 
121 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
122 		crash_base, crash_base + crash_size, crash_size >> 20);
123 
124 	crashk_res.start = crash_base;
125 	crashk_res.end = crash_base + crash_size - 1;
126 }
127 #else
128 static void __init reserve_crashkernel(void)
129 {
130 }
131 #endif /* CONFIG_KEXEC_CORE */
132 
133 #ifdef CONFIG_CRASH_DUMP
134 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
135 		const char *uname, int depth, void *data)
136 {
137 	const __be32 *reg;
138 	int len;
139 
140 	if (depth != 1 || strcmp(uname, "chosen") != 0)
141 		return 0;
142 
143 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
144 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
145 		return 1;
146 
147 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
148 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
149 
150 	return 1;
151 }
152 
153 /*
154  * reserve_elfcorehdr() - reserves memory for elf core header
155  *
156  * This function reserves the memory occupied by an elf core header
157  * described in the device tree. This region contains all the
158  * information about primary kernel's core image and is used by a dump
159  * capture kernel to access the system memory on primary kernel.
160  */
161 static void __init reserve_elfcorehdr(void)
162 {
163 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
164 
165 	if (!elfcorehdr_size)
166 		return;
167 
168 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
169 		pr_warn("elfcorehdr is overlapped\n");
170 		return;
171 	}
172 
173 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
174 
175 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
176 		elfcorehdr_size >> 10, elfcorehdr_addr);
177 }
178 #else
179 static void __init reserve_elfcorehdr(void)
180 {
181 }
182 #endif /* CONFIG_CRASH_DUMP */
183 
184 /*
185  * Return the maximum physical address for a zone with a given address size
186  * limit. It currently assumes that for memory starting above 4G, 32-bit
187  * devices will use a DMA offset.
188  */
189 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
190 {
191 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
192 	return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
193 }
194 
195 static void __init zone_sizes_init(unsigned long min, unsigned long max)
196 {
197 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
198 
199 #ifdef CONFIG_ZONE_DMA
200 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
201 #endif
202 #ifdef CONFIG_ZONE_DMA32
203 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
204 #endif
205 	max_zone_pfns[ZONE_NORMAL] = max;
206 
207 	free_area_init(max_zone_pfns);
208 }
209 
210 int pfn_valid(unsigned long pfn)
211 {
212 	phys_addr_t addr = pfn << PAGE_SHIFT;
213 
214 	if ((addr >> PAGE_SHIFT) != pfn)
215 		return 0;
216 
217 #ifdef CONFIG_SPARSEMEM
218 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
219 		return 0;
220 
221 	if (!valid_section(__pfn_to_section(pfn)))
222 		return 0;
223 #endif
224 	return memblock_is_map_memory(addr);
225 }
226 EXPORT_SYMBOL(pfn_valid);
227 
228 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
229 
230 /*
231  * Limit the memory size that was specified via FDT.
232  */
233 static int __init early_mem(char *p)
234 {
235 	if (!p)
236 		return 1;
237 
238 	memory_limit = memparse(p, &p) & PAGE_MASK;
239 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
240 
241 	return 0;
242 }
243 early_param("mem", early_mem);
244 
245 static int __init early_init_dt_scan_usablemem(unsigned long node,
246 		const char *uname, int depth, void *data)
247 {
248 	struct memblock_region *usablemem = data;
249 	const __be32 *reg;
250 	int len;
251 
252 	if (depth != 1 || strcmp(uname, "chosen") != 0)
253 		return 0;
254 
255 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
256 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
257 		return 1;
258 
259 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
260 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
261 
262 	return 1;
263 }
264 
265 static void __init fdt_enforce_memory_region(void)
266 {
267 	struct memblock_region reg = {
268 		.size = 0,
269 	};
270 
271 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
272 
273 	if (reg.size)
274 		memblock_cap_memory_range(reg.base, reg.size);
275 }
276 
277 void __init arm64_memblock_init(void)
278 {
279 	const s64 linear_region_size = BIT(vabits_actual - 1);
280 
281 	/* Handle linux,usable-memory-range property */
282 	fdt_enforce_memory_region();
283 
284 	/* Remove memory above our supported physical address size */
285 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
286 
287 	/*
288 	 * Select a suitable value for the base of physical memory.
289 	 */
290 	memstart_addr = round_down(memblock_start_of_DRAM(),
291 				   ARM64_MEMSTART_ALIGN);
292 
293 	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
294 
295 	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
296 
297 	/*
298 	 * If we are running with a 52-bit kernel VA config on a system that
299 	 * does not support it, we have to offset our vmemmap and physvirt_offset
300 	 * s.t. we avoid the 52-bit portion of the direct linear map
301 	 */
302 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
303 		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
304 		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
305 	}
306 
307 	/*
308 	 * Remove the memory that we will not be able to cover with the
309 	 * linear mapping. Take care not to clip the kernel which may be
310 	 * high in memory.
311 	 */
312 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
313 			__pa_symbol(_end)), ULLONG_MAX);
314 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
315 		/* ensure that memstart_addr remains sufficiently aligned */
316 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
317 					 ARM64_MEMSTART_ALIGN);
318 		memblock_remove(0, memstart_addr);
319 	}
320 
321 	/*
322 	 * Apply the memory limit if it was set. Since the kernel may be loaded
323 	 * high up in memory, add back the kernel region that must be accessible
324 	 * via the linear mapping.
325 	 */
326 	if (memory_limit != PHYS_ADDR_MAX) {
327 		memblock_mem_limit_remove_map(memory_limit);
328 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
329 	}
330 
331 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
332 		/*
333 		 * Add back the memory we just removed if it results in the
334 		 * initrd to become inaccessible via the linear mapping.
335 		 * Otherwise, this is a no-op
336 		 */
337 		u64 base = phys_initrd_start & PAGE_MASK;
338 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
339 
340 		/*
341 		 * We can only add back the initrd memory if we don't end up
342 		 * with more memory than we can address via the linear mapping.
343 		 * It is up to the bootloader to position the kernel and the
344 		 * initrd reasonably close to each other (i.e., within 32 GB of
345 		 * each other) so that all granule/#levels combinations can
346 		 * always access both.
347 		 */
348 		if (WARN(base < memblock_start_of_DRAM() ||
349 			 base + size > memblock_start_of_DRAM() +
350 				       linear_region_size,
351 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
352 			phys_initrd_size = 0;
353 		} else {
354 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
355 			memblock_add(base, size);
356 			memblock_reserve(base, size);
357 		}
358 	}
359 
360 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
361 		extern u16 memstart_offset_seed;
362 		u64 range = linear_region_size -
363 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
364 
365 		/*
366 		 * If the size of the linear region exceeds, by a sufficient
367 		 * margin, the size of the region that the available physical
368 		 * memory spans, randomize the linear region as well.
369 		 */
370 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
371 			range /= ARM64_MEMSTART_ALIGN;
372 			memstart_addr -= ARM64_MEMSTART_ALIGN *
373 					 ((range * memstart_offset_seed) >> 16);
374 		}
375 	}
376 
377 	/*
378 	 * Register the kernel text, kernel data, initrd, and initial
379 	 * pagetables with memblock.
380 	 */
381 	memblock_reserve(__pa_symbol(_text), _end - _text);
382 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
383 		/* the generic initrd code expects virtual addresses */
384 		initrd_start = __phys_to_virt(phys_initrd_start);
385 		initrd_end = initrd_start + phys_initrd_size;
386 	}
387 
388 	early_init_fdt_scan_reserved_mem();
389 
390 	if (IS_ENABLED(CONFIG_ZONE_DMA)) {
391 		zone_dma_bits = ARM64_ZONE_DMA_BITS;
392 		arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
393 	}
394 
395 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
396 		arm64_dma32_phys_limit = max_zone_phys(32);
397 	else
398 		arm64_dma32_phys_limit = PHYS_MASK + 1;
399 
400 	reserve_crashkernel();
401 
402 	reserve_elfcorehdr();
403 
404 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
405 
406 	dma_contiguous_reserve(arm64_dma32_phys_limit);
407 
408 #ifdef CONFIG_ARM64_4K_PAGES
409 	hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
410 #endif
411 
412 }
413 
414 void __init bootmem_init(void)
415 {
416 	unsigned long min, max;
417 
418 	min = PFN_UP(memblock_start_of_DRAM());
419 	max = PFN_DOWN(memblock_end_of_DRAM());
420 
421 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
422 
423 	max_pfn = max_low_pfn = max;
424 	min_low_pfn = min;
425 
426 	arm64_numa_init();
427 	/*
428 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
429 	 * done after the fixed reservations.
430 	 */
431 	memblocks_present();
432 
433 	sparse_init();
434 	zone_sizes_init(min, max);
435 
436 	memblock_dump_all();
437 }
438 
439 #ifndef CONFIG_SPARSEMEM_VMEMMAP
440 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
441 {
442 	struct page *start_pg, *end_pg;
443 	unsigned long pg, pgend;
444 
445 	/*
446 	 * Convert start_pfn/end_pfn to a struct page pointer.
447 	 */
448 	start_pg = pfn_to_page(start_pfn - 1) + 1;
449 	end_pg = pfn_to_page(end_pfn - 1) + 1;
450 
451 	/*
452 	 * Convert to physical addresses, and round start upwards and end
453 	 * downwards.
454 	 */
455 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
456 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
457 
458 	/*
459 	 * If there are free pages between these, free the section of the
460 	 * memmap array.
461 	 */
462 	if (pg < pgend)
463 		memblock_free(pg, pgend - pg);
464 }
465 
466 /*
467  * The mem_map array can get very big. Free the unused area of the memory map.
468  */
469 static void __init free_unused_memmap(void)
470 {
471 	unsigned long start, prev_end = 0;
472 	struct memblock_region *reg;
473 
474 	for_each_memblock(memory, reg) {
475 		start = __phys_to_pfn(reg->base);
476 
477 #ifdef CONFIG_SPARSEMEM
478 		/*
479 		 * Take care not to free memmap entries that don't exist due
480 		 * to SPARSEMEM sections which aren't present.
481 		 */
482 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
483 #endif
484 		/*
485 		 * If we had a previous bank, and there is a space between the
486 		 * current bank and the previous, free it.
487 		 */
488 		if (prev_end && prev_end < start)
489 			free_memmap(prev_end, start);
490 
491 		/*
492 		 * Align up here since the VM subsystem insists that the
493 		 * memmap entries are valid from the bank end aligned to
494 		 * MAX_ORDER_NR_PAGES.
495 		 */
496 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
497 				 MAX_ORDER_NR_PAGES);
498 	}
499 
500 #ifdef CONFIG_SPARSEMEM
501 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
502 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
503 #endif
504 }
505 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
506 
507 /*
508  * mem_init() marks the free areas in the mem_map and tells us how much memory
509  * is free.  This is done after various parts of the system have claimed their
510  * memory after the kernel image.
511  */
512 void __init mem_init(void)
513 {
514 	if (swiotlb_force == SWIOTLB_FORCE ||
515 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
516 		swiotlb_init(1);
517 	else
518 		swiotlb_force = SWIOTLB_NO_FORCE;
519 
520 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
521 
522 #ifndef CONFIG_SPARSEMEM_VMEMMAP
523 	free_unused_memmap();
524 #endif
525 	/* this will put all unused low memory onto the freelists */
526 	memblock_free_all();
527 
528 	mem_init_print_info(NULL);
529 
530 	/*
531 	 * Check boundaries twice: Some fundamental inconsistencies can be
532 	 * detected at build time already.
533 	 */
534 #ifdef CONFIG_COMPAT
535 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
536 #endif
537 
538 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
539 		extern int sysctl_overcommit_memory;
540 		/*
541 		 * On a machine this small we won't get anywhere without
542 		 * overcommit, so turn it on by default.
543 		 */
544 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
545 	}
546 }
547 
548 void free_initmem(void)
549 {
550 	free_reserved_area(lm_alias(__init_begin),
551 			   lm_alias(__init_end),
552 			   POISON_FREE_INITMEM, "unused kernel");
553 	/*
554 	 * Unmap the __init region but leave the VM area in place. This
555 	 * prevents the region from being reused for kernel modules, which
556 	 * is not supported by kallsyms.
557 	 */
558 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
559 }
560 
561 /*
562  * Dump out memory limit information on panic.
563  */
564 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
565 {
566 	if (memory_limit != PHYS_ADDR_MAX) {
567 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
568 	} else {
569 		pr_emerg("Memory Limit: none\n");
570 	}
571 	return 0;
572 }
573 
574 static struct notifier_block mem_limit_notifier = {
575 	.notifier_call = dump_mem_limit,
576 };
577 
578 static int __init register_mem_limit_dumper(void)
579 {
580 	atomic_notifier_chain_register(&panic_notifier_list,
581 				       &mem_limit_notifier);
582 	return 0;
583 }
584 __initcall(register_mem_limit_dumper);
585