xref: /openbmc/linux/arch/arm64/mm/init.c (revision 7af6fbdd)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 
33 #include <asm/boot.h>
34 #include <asm/fixmap.h>
35 #include <asm/kasan.h>
36 #include <asm/kernel-pgtable.h>
37 #include <asm/memory.h>
38 #include <asm/numa.h>
39 #include <asm/sections.h>
40 #include <asm/setup.h>
41 #include <linux/sizes.h>
42 #include <asm/tlb.h>
43 #include <asm/alternative.h>
44 
45 #define ARM64_ZONE_DMA_BITS	30
46 
47 /*
48  * We need to be able to catch inadvertent references to memstart_addr
49  * that occur (potentially in generic code) before arm64_memblock_init()
50  * executes, which assigns it its actual value. So use a default value
51  * that cannot be mistaken for a real physical address.
52  */
53 s64 memstart_addr __ro_after_init = -1;
54 EXPORT_SYMBOL(memstart_addr);
55 
56 s64 physvirt_offset __ro_after_init;
57 EXPORT_SYMBOL(physvirt_offset);
58 
59 struct page *vmemmap __ro_after_init;
60 EXPORT_SYMBOL(vmemmap);
61 
62 /*
63  * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of
64  * memory as some devices, namely the Raspberry Pi 4, have peripherals with
65  * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32
66  * bit addressable memory area.
67  */
68 phys_addr_t arm64_dma_phys_limit __ro_after_init;
69 static phys_addr_t arm64_dma32_phys_limit __ro_after_init;
70 
71 #ifdef CONFIG_KEXEC_CORE
72 /*
73  * reserve_crashkernel() - reserves memory for crash kernel
74  *
75  * This function reserves memory area given in "crashkernel=" kernel command
76  * line parameter. The memory reserved is used by dump capture kernel when
77  * primary kernel is crashing.
78  */
79 static void __init reserve_crashkernel(void)
80 {
81 	unsigned long long crash_base, crash_size;
82 	int ret;
83 
84 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
85 				&crash_size, &crash_base);
86 	/* no crashkernel= or invalid value specified */
87 	if (ret || !crash_size)
88 		return;
89 
90 	crash_size = PAGE_ALIGN(crash_size);
91 
92 	if (crash_base == 0) {
93 		/* Current arm64 boot protocol requires 2MB alignment */
94 		crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit,
95 				crash_size, SZ_2M);
96 		if (crash_base == 0) {
97 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
98 				crash_size);
99 			return;
100 		}
101 	} else {
102 		/* User specifies base address explicitly. */
103 		if (!memblock_is_region_memory(crash_base, crash_size)) {
104 			pr_warn("cannot reserve crashkernel: region is not memory\n");
105 			return;
106 		}
107 
108 		if (memblock_is_region_reserved(crash_base, crash_size)) {
109 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
110 			return;
111 		}
112 
113 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
114 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
115 			return;
116 		}
117 	}
118 	memblock_reserve(crash_base, crash_size);
119 
120 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
121 		crash_base, crash_base + crash_size, crash_size >> 20);
122 
123 	crashk_res.start = crash_base;
124 	crashk_res.end = crash_base + crash_size - 1;
125 }
126 #else
127 static void __init reserve_crashkernel(void)
128 {
129 }
130 #endif /* CONFIG_KEXEC_CORE */
131 
132 #ifdef CONFIG_CRASH_DUMP
133 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
134 		const char *uname, int depth, void *data)
135 {
136 	const __be32 *reg;
137 	int len;
138 
139 	if (depth != 1 || strcmp(uname, "chosen") != 0)
140 		return 0;
141 
142 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
143 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
144 		return 1;
145 
146 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
147 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
148 
149 	return 1;
150 }
151 
152 /*
153  * reserve_elfcorehdr() - reserves memory for elf core header
154  *
155  * This function reserves the memory occupied by an elf core header
156  * described in the device tree. This region contains all the
157  * information about primary kernel's core image and is used by a dump
158  * capture kernel to access the system memory on primary kernel.
159  */
160 static void __init reserve_elfcorehdr(void)
161 {
162 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
163 
164 	if (!elfcorehdr_size)
165 		return;
166 
167 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
168 		pr_warn("elfcorehdr is overlapped\n");
169 		return;
170 	}
171 
172 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
173 
174 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
175 		elfcorehdr_size >> 10, elfcorehdr_addr);
176 }
177 #else
178 static void __init reserve_elfcorehdr(void)
179 {
180 }
181 #endif /* CONFIG_CRASH_DUMP */
182 
183 /*
184  * Return the maximum physical address for a zone with a given address size
185  * limit. It currently assumes that for memory starting above 4G, 32-bit
186  * devices will use a DMA offset.
187  */
188 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
189 {
190 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits);
191 	return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM());
192 }
193 
194 static void __init zone_sizes_init(unsigned long min, unsigned long max)
195 {
196 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
197 
198 #ifdef CONFIG_ZONE_DMA
199 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
200 #endif
201 #ifdef CONFIG_ZONE_DMA32
202 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit);
203 #endif
204 	max_zone_pfns[ZONE_NORMAL] = max;
205 
206 	free_area_init(max_zone_pfns);
207 }
208 
209 int pfn_valid(unsigned long pfn)
210 {
211 	phys_addr_t addr = pfn << PAGE_SHIFT;
212 
213 	if ((addr >> PAGE_SHIFT) != pfn)
214 		return 0;
215 
216 #ifdef CONFIG_SPARSEMEM
217 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
218 		return 0;
219 
220 	if (!valid_section(__pfn_to_section(pfn)))
221 		return 0;
222 #endif
223 	return memblock_is_map_memory(addr);
224 }
225 EXPORT_SYMBOL(pfn_valid);
226 
227 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
228 
229 /*
230  * Limit the memory size that was specified via FDT.
231  */
232 static int __init early_mem(char *p)
233 {
234 	if (!p)
235 		return 1;
236 
237 	memory_limit = memparse(p, &p) & PAGE_MASK;
238 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
239 
240 	return 0;
241 }
242 early_param("mem", early_mem);
243 
244 static int __init early_init_dt_scan_usablemem(unsigned long node,
245 		const char *uname, int depth, void *data)
246 {
247 	struct memblock_region *usablemem = data;
248 	const __be32 *reg;
249 	int len;
250 
251 	if (depth != 1 || strcmp(uname, "chosen") != 0)
252 		return 0;
253 
254 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
255 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
256 		return 1;
257 
258 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
259 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
260 
261 	return 1;
262 }
263 
264 static void __init fdt_enforce_memory_region(void)
265 {
266 	struct memblock_region reg = {
267 		.size = 0,
268 	};
269 
270 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
271 
272 	if (reg.size)
273 		memblock_cap_memory_range(reg.base, reg.size);
274 }
275 
276 void __init arm64_memblock_init(void)
277 {
278 	const s64 linear_region_size = BIT(vabits_actual - 1);
279 
280 	/* Handle linux,usable-memory-range property */
281 	fdt_enforce_memory_region();
282 
283 	/* Remove memory above our supported physical address size */
284 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
285 
286 	/*
287 	 * Select a suitable value for the base of physical memory.
288 	 */
289 	memstart_addr = round_down(memblock_start_of_DRAM(),
290 				   ARM64_MEMSTART_ALIGN);
291 
292 	physvirt_offset = PHYS_OFFSET - PAGE_OFFSET;
293 
294 	vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT));
295 
296 	/*
297 	 * If we are running with a 52-bit kernel VA config on a system that
298 	 * does not support it, we have to offset our vmemmap and physvirt_offset
299 	 * s.t. we avoid the 52-bit portion of the direct linear map
300 	 */
301 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) {
302 		vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT;
303 		physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48);
304 	}
305 
306 	/*
307 	 * Remove the memory that we will not be able to cover with the
308 	 * linear mapping. Take care not to clip the kernel which may be
309 	 * high in memory.
310 	 */
311 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
312 			__pa_symbol(_end)), ULLONG_MAX);
313 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
314 		/* ensure that memstart_addr remains sufficiently aligned */
315 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
316 					 ARM64_MEMSTART_ALIGN);
317 		memblock_remove(0, memstart_addr);
318 	}
319 
320 	/*
321 	 * Apply the memory limit if it was set. Since the kernel may be loaded
322 	 * high up in memory, add back the kernel region that must be accessible
323 	 * via the linear mapping.
324 	 */
325 	if (memory_limit != PHYS_ADDR_MAX) {
326 		memblock_mem_limit_remove_map(memory_limit);
327 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
328 	}
329 
330 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
331 		/*
332 		 * Add back the memory we just removed if it results in the
333 		 * initrd to become inaccessible via the linear mapping.
334 		 * Otherwise, this is a no-op
335 		 */
336 		u64 base = phys_initrd_start & PAGE_MASK;
337 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
338 
339 		/*
340 		 * We can only add back the initrd memory if we don't end up
341 		 * with more memory than we can address via the linear mapping.
342 		 * It is up to the bootloader to position the kernel and the
343 		 * initrd reasonably close to each other (i.e., within 32 GB of
344 		 * each other) so that all granule/#levels combinations can
345 		 * always access both.
346 		 */
347 		if (WARN(base < memblock_start_of_DRAM() ||
348 			 base + size > memblock_start_of_DRAM() +
349 				       linear_region_size,
350 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
351 			phys_initrd_size = 0;
352 		} else {
353 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
354 			memblock_add(base, size);
355 			memblock_reserve(base, size);
356 		}
357 	}
358 
359 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
360 		extern u16 memstart_offset_seed;
361 		u64 range = linear_region_size -
362 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
363 
364 		/*
365 		 * If the size of the linear region exceeds, by a sufficient
366 		 * margin, the size of the region that the available physical
367 		 * memory spans, randomize the linear region as well.
368 		 */
369 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
370 			range /= ARM64_MEMSTART_ALIGN;
371 			memstart_addr -= ARM64_MEMSTART_ALIGN *
372 					 ((range * memstart_offset_seed) >> 16);
373 		}
374 	}
375 
376 	/*
377 	 * Register the kernel text, kernel data, initrd, and initial
378 	 * pagetables with memblock.
379 	 */
380 	memblock_reserve(__pa_symbol(_text), _end - _text);
381 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
382 		/* the generic initrd code expects virtual addresses */
383 		initrd_start = __phys_to_virt(phys_initrd_start);
384 		initrd_end = initrd_start + phys_initrd_size;
385 	}
386 
387 	early_init_fdt_scan_reserved_mem();
388 
389 	if (IS_ENABLED(CONFIG_ZONE_DMA)) {
390 		zone_dma_bits = ARM64_ZONE_DMA_BITS;
391 		arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS);
392 	}
393 
394 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
395 		arm64_dma32_phys_limit = max_zone_phys(32);
396 	else
397 		arm64_dma32_phys_limit = PHYS_MASK + 1;
398 
399 	reserve_crashkernel();
400 
401 	reserve_elfcorehdr();
402 
403 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
404 
405 	dma_contiguous_reserve(arm64_dma32_phys_limit);
406 }
407 
408 void __init bootmem_init(void)
409 {
410 	unsigned long min, max;
411 
412 	min = PFN_UP(memblock_start_of_DRAM());
413 	max = PFN_DOWN(memblock_end_of_DRAM());
414 
415 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
416 
417 	max_pfn = max_low_pfn = max;
418 	min_low_pfn = min;
419 
420 	arm64_numa_init();
421 
422 	/*
423 	 * must be done after arm64_numa_init() which calls numa_init() to
424 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
425 	 * while allocating required CMA size across online nodes.
426 	 */
427 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
428 	arm64_hugetlb_cma_reserve();
429 #endif
430 
431 	dma_pernuma_cma_reserve();
432 
433 	/*
434 	 * sparse_init() tries to allocate memory from memblock, so must be
435 	 * done after the fixed reservations
436 	 */
437 	sparse_init();
438 	zone_sizes_init(min, max);
439 
440 	memblock_dump_all();
441 }
442 
443 #ifndef CONFIG_SPARSEMEM_VMEMMAP
444 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
445 {
446 	struct page *start_pg, *end_pg;
447 	unsigned long pg, pgend;
448 
449 	/*
450 	 * Convert start_pfn/end_pfn to a struct page pointer.
451 	 */
452 	start_pg = pfn_to_page(start_pfn - 1) + 1;
453 	end_pg = pfn_to_page(end_pfn - 1) + 1;
454 
455 	/*
456 	 * Convert to physical addresses, and round start upwards and end
457 	 * downwards.
458 	 */
459 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
460 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
461 
462 	/*
463 	 * If there are free pages between these, free the section of the
464 	 * memmap array.
465 	 */
466 	if (pg < pgend)
467 		memblock_free(pg, pgend - pg);
468 }
469 
470 /*
471  * The mem_map array can get very big. Free the unused area of the memory map.
472  */
473 static void __init free_unused_memmap(void)
474 {
475 	unsigned long start, end, prev_end = 0;
476 	int i;
477 
478 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
479 #ifdef CONFIG_SPARSEMEM
480 		/*
481 		 * Take care not to free memmap entries that don't exist due
482 		 * to SPARSEMEM sections which aren't present.
483 		 */
484 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
485 #endif
486 		/*
487 		 * If we had a previous bank, and there is a space between the
488 		 * current bank and the previous, free it.
489 		 */
490 		if (prev_end && prev_end < start)
491 			free_memmap(prev_end, start);
492 
493 		/*
494 		 * Align up here since the VM subsystem insists that the
495 		 * memmap entries are valid from the bank end aligned to
496 		 * MAX_ORDER_NR_PAGES.
497 		 */
498 		prev_end = ALIGN(end, MAX_ORDER_NR_PAGES);
499 	}
500 
501 #ifdef CONFIG_SPARSEMEM
502 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
503 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
504 #endif
505 }
506 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
507 
508 /*
509  * mem_init() marks the free areas in the mem_map and tells us how much memory
510  * is free.  This is done after various parts of the system have claimed their
511  * memory after the kernel image.
512  */
513 void __init mem_init(void)
514 {
515 	if (swiotlb_force == SWIOTLB_FORCE ||
516 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit))
517 		swiotlb_init(1);
518 	else
519 		swiotlb_force = SWIOTLB_NO_FORCE;
520 
521 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
522 
523 #ifndef CONFIG_SPARSEMEM_VMEMMAP
524 	free_unused_memmap();
525 #endif
526 	/* this will put all unused low memory onto the freelists */
527 	memblock_free_all();
528 
529 	mem_init_print_info(NULL);
530 
531 	/*
532 	 * Check boundaries twice: Some fundamental inconsistencies can be
533 	 * detected at build time already.
534 	 */
535 #ifdef CONFIG_COMPAT
536 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
537 #endif
538 
539 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
540 		extern int sysctl_overcommit_memory;
541 		/*
542 		 * On a machine this small we won't get anywhere without
543 		 * overcommit, so turn it on by default.
544 		 */
545 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
546 	}
547 }
548 
549 void free_initmem(void)
550 {
551 	free_reserved_area(lm_alias(__init_begin),
552 			   lm_alias(__init_end),
553 			   POISON_FREE_INITMEM, "unused kernel");
554 	/*
555 	 * Unmap the __init region but leave the VM area in place. This
556 	 * prevents the region from being reused for kernel modules, which
557 	 * is not supported by kallsyms.
558 	 */
559 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
560 }
561 
562 void dump_mem_limit(void)
563 {
564 	if (memory_limit != PHYS_ADDR_MAX) {
565 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
566 	} else {
567 		pr_emerg("Memory Limit: none\n");
568 	}
569 }
570