1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-map-ops.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 #include <linux/hugetlb.h> 32 33 #include <asm/boot.h> 34 #include <asm/fixmap.h> 35 #include <asm/kasan.h> 36 #include <asm/kernel-pgtable.h> 37 #include <asm/memory.h> 38 #include <asm/numa.h> 39 #include <asm/sections.h> 40 #include <asm/setup.h> 41 #include <linux/sizes.h> 42 #include <asm/tlb.h> 43 #include <asm/alternative.h> 44 45 #define ARM64_ZONE_DMA_BITS 30 46 47 /* 48 * We need to be able to catch inadvertent references to memstart_addr 49 * that occur (potentially in generic code) before arm64_memblock_init() 50 * executes, which assigns it its actual value. So use a default value 51 * that cannot be mistaken for a real physical address. 52 */ 53 s64 memstart_addr __ro_after_init = -1; 54 EXPORT_SYMBOL(memstart_addr); 55 56 s64 physvirt_offset __ro_after_init; 57 EXPORT_SYMBOL(physvirt_offset); 58 59 struct page *vmemmap __ro_after_init; 60 EXPORT_SYMBOL(vmemmap); 61 62 /* 63 * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of 64 * memory as some devices, namely the Raspberry Pi 4, have peripherals with 65 * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32 66 * bit addressable memory area. 67 */ 68 phys_addr_t arm64_dma_phys_limit __ro_after_init; 69 static phys_addr_t arm64_dma32_phys_limit __ro_after_init; 70 71 #ifdef CONFIG_KEXEC_CORE 72 /* 73 * reserve_crashkernel() - reserves memory for crash kernel 74 * 75 * This function reserves memory area given in "crashkernel=" kernel command 76 * line parameter. The memory reserved is used by dump capture kernel when 77 * primary kernel is crashing. 78 */ 79 static void __init reserve_crashkernel(void) 80 { 81 unsigned long long crash_base, crash_size; 82 int ret; 83 84 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 85 &crash_size, &crash_base); 86 /* no crashkernel= or invalid value specified */ 87 if (ret || !crash_size) 88 return; 89 90 crash_size = PAGE_ALIGN(crash_size); 91 92 if (crash_base == 0) { 93 /* Current arm64 boot protocol requires 2MB alignment */ 94 crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit, 95 crash_size, SZ_2M); 96 if (crash_base == 0) { 97 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 98 crash_size); 99 return; 100 } 101 } else { 102 /* User specifies base address explicitly. */ 103 if (!memblock_is_region_memory(crash_base, crash_size)) { 104 pr_warn("cannot reserve crashkernel: region is not memory\n"); 105 return; 106 } 107 108 if (memblock_is_region_reserved(crash_base, crash_size)) { 109 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 110 return; 111 } 112 113 if (!IS_ALIGNED(crash_base, SZ_2M)) { 114 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 115 return; 116 } 117 } 118 memblock_reserve(crash_base, crash_size); 119 120 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 121 crash_base, crash_base + crash_size, crash_size >> 20); 122 123 crashk_res.start = crash_base; 124 crashk_res.end = crash_base + crash_size - 1; 125 } 126 #else 127 static void __init reserve_crashkernel(void) 128 { 129 } 130 #endif /* CONFIG_KEXEC_CORE */ 131 132 #ifdef CONFIG_CRASH_DUMP 133 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 134 const char *uname, int depth, void *data) 135 { 136 const __be32 *reg; 137 int len; 138 139 if (depth != 1 || strcmp(uname, "chosen") != 0) 140 return 0; 141 142 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 143 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 144 return 1; 145 146 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 147 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 148 149 return 1; 150 } 151 152 /* 153 * reserve_elfcorehdr() - reserves memory for elf core header 154 * 155 * This function reserves the memory occupied by an elf core header 156 * described in the device tree. This region contains all the 157 * information about primary kernel's core image and is used by a dump 158 * capture kernel to access the system memory on primary kernel. 159 */ 160 static void __init reserve_elfcorehdr(void) 161 { 162 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 163 164 if (!elfcorehdr_size) 165 return; 166 167 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 168 pr_warn("elfcorehdr is overlapped\n"); 169 return; 170 } 171 172 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 173 174 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 175 elfcorehdr_size >> 10, elfcorehdr_addr); 176 } 177 #else 178 static void __init reserve_elfcorehdr(void) 179 { 180 } 181 #endif /* CONFIG_CRASH_DUMP */ 182 183 /* 184 * Return the maximum physical address for a zone with a given address size 185 * limit. It currently assumes that for memory starting above 4G, 32-bit 186 * devices will use a DMA offset. 187 */ 188 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 189 { 190 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits); 191 return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM()); 192 } 193 194 static void __init zone_sizes_init(unsigned long min, unsigned long max) 195 { 196 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 197 198 #ifdef CONFIG_ZONE_DMA 199 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 200 #endif 201 #ifdef CONFIG_ZONE_DMA32 202 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit); 203 #endif 204 max_zone_pfns[ZONE_NORMAL] = max; 205 206 free_area_init(max_zone_pfns); 207 } 208 209 int pfn_valid(unsigned long pfn) 210 { 211 phys_addr_t addr = pfn << PAGE_SHIFT; 212 213 if ((addr >> PAGE_SHIFT) != pfn) 214 return 0; 215 216 #ifdef CONFIG_SPARSEMEM 217 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 218 return 0; 219 220 if (!valid_section(__pfn_to_section(pfn))) 221 return 0; 222 #endif 223 return memblock_is_map_memory(addr); 224 } 225 EXPORT_SYMBOL(pfn_valid); 226 227 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 228 229 /* 230 * Limit the memory size that was specified via FDT. 231 */ 232 static int __init early_mem(char *p) 233 { 234 if (!p) 235 return 1; 236 237 memory_limit = memparse(p, &p) & PAGE_MASK; 238 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 239 240 return 0; 241 } 242 early_param("mem", early_mem); 243 244 static int __init early_init_dt_scan_usablemem(unsigned long node, 245 const char *uname, int depth, void *data) 246 { 247 struct memblock_region *usablemem = data; 248 const __be32 *reg; 249 int len; 250 251 if (depth != 1 || strcmp(uname, "chosen") != 0) 252 return 0; 253 254 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 255 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 256 return 1; 257 258 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 259 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 260 261 return 1; 262 } 263 264 static void __init fdt_enforce_memory_region(void) 265 { 266 struct memblock_region reg = { 267 .size = 0, 268 }; 269 270 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 271 272 if (reg.size) 273 memblock_cap_memory_range(reg.base, reg.size); 274 } 275 276 void __init arm64_memblock_init(void) 277 { 278 const s64 linear_region_size = BIT(vabits_actual - 1); 279 280 /* Handle linux,usable-memory-range property */ 281 fdt_enforce_memory_region(); 282 283 /* Remove memory above our supported physical address size */ 284 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 285 286 /* 287 * Select a suitable value for the base of physical memory. 288 */ 289 memstart_addr = round_down(memblock_start_of_DRAM(), 290 ARM64_MEMSTART_ALIGN); 291 292 physvirt_offset = PHYS_OFFSET - PAGE_OFFSET; 293 294 vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)); 295 296 /* 297 * If we are running with a 52-bit kernel VA config on a system that 298 * does not support it, we have to offset our vmemmap and physvirt_offset 299 * s.t. we avoid the 52-bit portion of the direct linear map 300 */ 301 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) { 302 vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT; 303 physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48); 304 } 305 306 /* 307 * Remove the memory that we will not be able to cover with the 308 * linear mapping. Take care not to clip the kernel which may be 309 * high in memory. 310 */ 311 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 312 __pa_symbol(_end)), ULLONG_MAX); 313 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 314 /* ensure that memstart_addr remains sufficiently aligned */ 315 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 316 ARM64_MEMSTART_ALIGN); 317 memblock_remove(0, memstart_addr); 318 } 319 320 /* 321 * Apply the memory limit if it was set. Since the kernel may be loaded 322 * high up in memory, add back the kernel region that must be accessible 323 * via the linear mapping. 324 */ 325 if (memory_limit != PHYS_ADDR_MAX) { 326 memblock_mem_limit_remove_map(memory_limit); 327 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 328 } 329 330 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 331 /* 332 * Add back the memory we just removed if it results in the 333 * initrd to become inaccessible via the linear mapping. 334 * Otherwise, this is a no-op 335 */ 336 u64 base = phys_initrd_start & PAGE_MASK; 337 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 338 339 /* 340 * We can only add back the initrd memory if we don't end up 341 * with more memory than we can address via the linear mapping. 342 * It is up to the bootloader to position the kernel and the 343 * initrd reasonably close to each other (i.e., within 32 GB of 344 * each other) so that all granule/#levels combinations can 345 * always access both. 346 */ 347 if (WARN(base < memblock_start_of_DRAM() || 348 base + size > memblock_start_of_DRAM() + 349 linear_region_size, 350 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 351 phys_initrd_size = 0; 352 } else { 353 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 354 memblock_add(base, size); 355 memblock_reserve(base, size); 356 } 357 } 358 359 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 360 extern u16 memstart_offset_seed; 361 u64 range = linear_region_size - 362 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 363 364 /* 365 * If the size of the linear region exceeds, by a sufficient 366 * margin, the size of the region that the available physical 367 * memory spans, randomize the linear region as well. 368 */ 369 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 370 range /= ARM64_MEMSTART_ALIGN; 371 memstart_addr -= ARM64_MEMSTART_ALIGN * 372 ((range * memstart_offset_seed) >> 16); 373 } 374 } 375 376 /* 377 * Register the kernel text, kernel data, initrd, and initial 378 * pagetables with memblock. 379 */ 380 memblock_reserve(__pa_symbol(_text), _end - _text); 381 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 382 /* the generic initrd code expects virtual addresses */ 383 initrd_start = __phys_to_virt(phys_initrd_start); 384 initrd_end = initrd_start + phys_initrd_size; 385 } 386 387 early_init_fdt_scan_reserved_mem(); 388 389 if (IS_ENABLED(CONFIG_ZONE_DMA)) { 390 zone_dma_bits = ARM64_ZONE_DMA_BITS; 391 arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS); 392 } 393 394 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 395 arm64_dma32_phys_limit = max_zone_phys(32); 396 else 397 arm64_dma32_phys_limit = PHYS_MASK + 1; 398 399 reserve_crashkernel(); 400 401 reserve_elfcorehdr(); 402 403 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 404 405 dma_contiguous_reserve(arm64_dma32_phys_limit); 406 } 407 408 void __init bootmem_init(void) 409 { 410 unsigned long min, max; 411 412 min = PFN_UP(memblock_start_of_DRAM()); 413 max = PFN_DOWN(memblock_end_of_DRAM()); 414 415 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 416 417 max_pfn = max_low_pfn = max; 418 min_low_pfn = min; 419 420 arm64_numa_init(); 421 422 /* 423 * must be done after arm64_numa_init() which calls numa_init() to 424 * initialize node_online_map that gets used in hugetlb_cma_reserve() 425 * while allocating required CMA size across online nodes. 426 */ 427 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 428 arm64_hugetlb_cma_reserve(); 429 #endif 430 431 dma_pernuma_cma_reserve(); 432 433 /* 434 * sparse_init() tries to allocate memory from memblock, so must be 435 * done after the fixed reservations 436 */ 437 sparse_init(); 438 zone_sizes_init(min, max); 439 440 memblock_dump_all(); 441 } 442 443 #ifndef CONFIG_SPARSEMEM_VMEMMAP 444 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 445 { 446 struct page *start_pg, *end_pg; 447 unsigned long pg, pgend; 448 449 /* 450 * Convert start_pfn/end_pfn to a struct page pointer. 451 */ 452 start_pg = pfn_to_page(start_pfn - 1) + 1; 453 end_pg = pfn_to_page(end_pfn - 1) + 1; 454 455 /* 456 * Convert to physical addresses, and round start upwards and end 457 * downwards. 458 */ 459 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 460 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 461 462 /* 463 * If there are free pages between these, free the section of the 464 * memmap array. 465 */ 466 if (pg < pgend) 467 memblock_free(pg, pgend - pg); 468 } 469 470 /* 471 * The mem_map array can get very big. Free the unused area of the memory map. 472 */ 473 static void __init free_unused_memmap(void) 474 { 475 unsigned long start, end, prev_end = 0; 476 int i; 477 478 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 479 #ifdef CONFIG_SPARSEMEM 480 /* 481 * Take care not to free memmap entries that don't exist due 482 * to SPARSEMEM sections which aren't present. 483 */ 484 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 485 #endif 486 /* 487 * If we had a previous bank, and there is a space between the 488 * current bank and the previous, free it. 489 */ 490 if (prev_end && prev_end < start) 491 free_memmap(prev_end, start); 492 493 /* 494 * Align up here since the VM subsystem insists that the 495 * memmap entries are valid from the bank end aligned to 496 * MAX_ORDER_NR_PAGES. 497 */ 498 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES); 499 } 500 501 #ifdef CONFIG_SPARSEMEM 502 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 503 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 504 #endif 505 } 506 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 507 508 /* 509 * mem_init() marks the free areas in the mem_map and tells us how much memory 510 * is free. This is done after various parts of the system have claimed their 511 * memory after the kernel image. 512 */ 513 void __init mem_init(void) 514 { 515 if (swiotlb_force == SWIOTLB_FORCE || 516 max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit)) 517 swiotlb_init(1); 518 else 519 swiotlb_force = SWIOTLB_NO_FORCE; 520 521 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); 522 523 #ifndef CONFIG_SPARSEMEM_VMEMMAP 524 free_unused_memmap(); 525 #endif 526 /* this will put all unused low memory onto the freelists */ 527 memblock_free_all(); 528 529 mem_init_print_info(NULL); 530 531 /* 532 * Check boundaries twice: Some fundamental inconsistencies can be 533 * detected at build time already. 534 */ 535 #ifdef CONFIG_COMPAT 536 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 537 #endif 538 539 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 540 extern int sysctl_overcommit_memory; 541 /* 542 * On a machine this small we won't get anywhere without 543 * overcommit, so turn it on by default. 544 */ 545 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 546 } 547 } 548 549 void free_initmem(void) 550 { 551 free_reserved_area(lm_alias(__init_begin), 552 lm_alias(__init_end), 553 POISON_FREE_INITMEM, "unused kernel"); 554 /* 555 * Unmap the __init region but leave the VM area in place. This 556 * prevents the region from being reused for kernel modules, which 557 * is not supported by kallsyms. 558 */ 559 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 560 } 561 562 void dump_mem_limit(void) 563 { 564 if (memory_limit != PHYS_ADDR_MAX) { 565 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 566 } else { 567 pr_emerg("Memory Limit: none\n"); 568 } 569 } 570