1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-map-ops.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 #include <linux/hugetlb.h> 32 #include <linux/acpi_iort.h> 33 #include <linux/kmemleak.h> 34 35 #include <asm/boot.h> 36 #include <asm/fixmap.h> 37 #include <asm/kasan.h> 38 #include <asm/kernel-pgtable.h> 39 #include <asm/kvm_host.h> 40 #include <asm/memory.h> 41 #include <asm/numa.h> 42 #include <asm/sections.h> 43 #include <asm/setup.h> 44 #include <linux/sizes.h> 45 #include <asm/tlb.h> 46 #include <asm/alternative.h> 47 #include <asm/xen/swiotlb-xen.h> 48 49 /* 50 * We need to be able to catch inadvertent references to memstart_addr 51 * that occur (potentially in generic code) before arm64_memblock_init() 52 * executes, which assigns it its actual value. So use a default value 53 * that cannot be mistaken for a real physical address. 54 */ 55 s64 memstart_addr __ro_after_init = -1; 56 EXPORT_SYMBOL(memstart_addr); 57 58 /* 59 * If the corresponding config options are enabled, we create both ZONE_DMA 60 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory 61 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). 62 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, 63 * otherwise it is empty. 64 */ 65 phys_addr_t __ro_after_init arm64_dma_phys_limit; 66 67 /* Current arm64 boot protocol requires 2MB alignment */ 68 #define CRASH_ALIGN SZ_2M 69 70 #define CRASH_ADDR_LOW_MAX arm64_dma_phys_limit 71 #define CRASH_ADDR_HIGH_MAX (PHYS_MASK + 1) 72 #define CRASH_HIGH_SEARCH_BASE SZ_4G 73 74 #define DEFAULT_CRASH_KERNEL_LOW_SIZE (128UL << 20) 75 76 /* 77 * To make optimal use of block mappings when laying out the linear 78 * mapping, round down the base of physical memory to a size that can 79 * be mapped efficiently, i.e., either PUD_SIZE (4k granule) or PMD_SIZE 80 * (64k granule), or a multiple that can be mapped using contiguous bits 81 * in the page tables: 32 * PMD_SIZE (16k granule) 82 */ 83 #if defined(CONFIG_ARM64_4K_PAGES) 84 #define ARM64_MEMSTART_SHIFT PUD_SHIFT 85 #elif defined(CONFIG_ARM64_16K_PAGES) 86 #define ARM64_MEMSTART_SHIFT CONT_PMD_SHIFT 87 #else 88 #define ARM64_MEMSTART_SHIFT PMD_SHIFT 89 #endif 90 91 /* 92 * sparsemem vmemmap imposes an additional requirement on the alignment of 93 * memstart_addr, due to the fact that the base of the vmemmap region 94 * has a direct correspondence, and needs to appear sufficiently aligned 95 * in the virtual address space. 96 */ 97 #if ARM64_MEMSTART_SHIFT < SECTION_SIZE_BITS 98 #define ARM64_MEMSTART_ALIGN (1UL << SECTION_SIZE_BITS) 99 #else 100 #define ARM64_MEMSTART_ALIGN (1UL << ARM64_MEMSTART_SHIFT) 101 #endif 102 103 static int __init reserve_crashkernel_low(unsigned long long low_size) 104 { 105 unsigned long long low_base; 106 107 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); 108 if (!low_base) { 109 pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size); 110 return -ENOMEM; 111 } 112 113 pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n", 114 low_base, low_base + low_size, low_size >> 20); 115 116 crashk_low_res.start = low_base; 117 crashk_low_res.end = low_base + low_size - 1; 118 insert_resource(&iomem_resource, &crashk_low_res); 119 120 return 0; 121 } 122 123 /* 124 * reserve_crashkernel() - reserves memory for crash kernel 125 * 126 * This function reserves memory area given in "crashkernel=" kernel command 127 * line parameter. The memory reserved is used by dump capture kernel when 128 * primary kernel is crashing. 129 */ 130 static void __init reserve_crashkernel(void) 131 { 132 unsigned long long crash_low_size = 0, search_base = 0; 133 unsigned long long crash_max = CRASH_ADDR_LOW_MAX; 134 unsigned long long crash_base, crash_size; 135 char *cmdline = boot_command_line; 136 bool fixed_base = false; 137 bool high = false; 138 int ret; 139 140 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 141 return; 142 143 /* crashkernel=X[@offset] */ 144 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), 145 &crash_size, &crash_base); 146 if (ret == -ENOENT) { 147 ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base); 148 if (ret || !crash_size) 149 return; 150 151 /* 152 * crashkernel=Y,low can be specified or not, but invalid value 153 * is not allowed. 154 */ 155 ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base); 156 if (ret == -ENOENT) 157 crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE; 158 else if (ret) 159 return; 160 161 search_base = CRASH_HIGH_SEARCH_BASE; 162 crash_max = CRASH_ADDR_HIGH_MAX; 163 high = true; 164 } else if (ret || !crash_size) { 165 /* The specified value is invalid */ 166 return; 167 } 168 169 crash_size = PAGE_ALIGN(crash_size); 170 171 /* User specifies base address explicitly. */ 172 if (crash_base) { 173 fixed_base = true; 174 search_base = crash_base; 175 crash_max = crash_base + crash_size; 176 } 177 178 retry: 179 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, 180 search_base, crash_max); 181 if (!crash_base) { 182 /* 183 * For crashkernel=size[KMG]@offset[KMG], print out failure 184 * message if can't reserve the specified region. 185 */ 186 if (fixed_base) { 187 pr_warn("crashkernel reservation failed - memory is in use.\n"); 188 return; 189 } 190 191 /* 192 * For crashkernel=size[KMG], if the first attempt was for 193 * low memory, fall back to high memory, the minimum required 194 * low memory will be reserved later. 195 */ 196 if (!high && crash_max == CRASH_ADDR_LOW_MAX) { 197 crash_max = CRASH_ADDR_HIGH_MAX; 198 search_base = CRASH_ADDR_LOW_MAX; 199 crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE; 200 goto retry; 201 } 202 203 /* 204 * For crashkernel=size[KMG],high, if the first attempt was 205 * for high memory, fall back to low memory. 206 */ 207 if (high && crash_max == CRASH_ADDR_HIGH_MAX) { 208 crash_max = CRASH_ADDR_LOW_MAX; 209 search_base = 0; 210 goto retry; 211 } 212 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 213 crash_size); 214 return; 215 } 216 217 if ((crash_base >= CRASH_ADDR_LOW_MAX) && crash_low_size && 218 reserve_crashkernel_low(crash_low_size)) { 219 memblock_phys_free(crash_base, crash_size); 220 return; 221 } 222 223 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 224 crash_base, crash_base + crash_size, crash_size >> 20); 225 226 /* 227 * The crashkernel memory will be removed from the kernel linear 228 * map. Inform kmemleak so that it won't try to access it. 229 */ 230 kmemleak_ignore_phys(crash_base); 231 if (crashk_low_res.end) 232 kmemleak_ignore_phys(crashk_low_res.start); 233 234 crashk_res.start = crash_base; 235 crashk_res.end = crash_base + crash_size - 1; 236 insert_resource(&iomem_resource, &crashk_res); 237 } 238 239 /* 240 * Return the maximum physical address for a zone accessible by the given bits 241 * limit. If DRAM starts above 32-bit, expand the zone to the maximum 242 * available memory, otherwise cap it at 32-bit. 243 */ 244 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 245 { 246 phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits); 247 phys_addr_t phys_start = memblock_start_of_DRAM(); 248 249 if (phys_start > U32_MAX) 250 zone_mask = PHYS_ADDR_MAX; 251 else if (phys_start > zone_mask) 252 zone_mask = U32_MAX; 253 254 return min(zone_mask, memblock_end_of_DRAM() - 1) + 1; 255 } 256 257 static void __init zone_sizes_init(void) 258 { 259 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 260 unsigned int __maybe_unused acpi_zone_dma_bits; 261 unsigned int __maybe_unused dt_zone_dma_bits; 262 phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32); 263 264 #ifdef CONFIG_ZONE_DMA 265 acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address()); 266 dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL)); 267 zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits); 268 arm64_dma_phys_limit = max_zone_phys(zone_dma_bits); 269 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 270 #endif 271 #ifdef CONFIG_ZONE_DMA32 272 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 273 if (!arm64_dma_phys_limit) 274 arm64_dma_phys_limit = dma32_phys_limit; 275 #endif 276 if (!arm64_dma_phys_limit) 277 arm64_dma_phys_limit = PHYS_MASK + 1; 278 max_zone_pfns[ZONE_NORMAL] = max_pfn; 279 280 free_area_init(max_zone_pfns); 281 } 282 283 int pfn_is_map_memory(unsigned long pfn) 284 { 285 phys_addr_t addr = PFN_PHYS(pfn); 286 287 /* avoid false positives for bogus PFNs, see comment in pfn_valid() */ 288 if (PHYS_PFN(addr) != pfn) 289 return 0; 290 291 return memblock_is_map_memory(addr); 292 } 293 EXPORT_SYMBOL(pfn_is_map_memory); 294 295 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX; 296 297 /* 298 * Limit the memory size that was specified via FDT. 299 */ 300 static int __init early_mem(char *p) 301 { 302 if (!p) 303 return 1; 304 305 memory_limit = memparse(p, &p) & PAGE_MASK; 306 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 307 308 return 0; 309 } 310 early_param("mem", early_mem); 311 312 void __init arm64_memblock_init(void) 313 { 314 s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual); 315 316 /* 317 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may 318 * be limited in their ability to support a linear map that exceeds 51 319 * bits of VA space, depending on the placement of the ID map. Given 320 * that the placement of the ID map may be randomized, let's simply 321 * limit the kernel's linear map to 51 bits as well if we detect this 322 * configuration. 323 */ 324 if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 && 325 is_hyp_mode_available() && !is_kernel_in_hyp_mode()) { 326 pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n"); 327 linear_region_size = min_t(u64, linear_region_size, BIT(51)); 328 } 329 330 /* Remove memory above our supported physical address size */ 331 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 332 333 /* 334 * Select a suitable value for the base of physical memory. 335 */ 336 memstart_addr = round_down(memblock_start_of_DRAM(), 337 ARM64_MEMSTART_ALIGN); 338 339 if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size) 340 pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n"); 341 342 /* 343 * Remove the memory that we will not be able to cover with the 344 * linear mapping. Take care not to clip the kernel which may be 345 * high in memory. 346 */ 347 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 348 __pa_symbol(_end)), ULLONG_MAX); 349 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 350 /* ensure that memstart_addr remains sufficiently aligned */ 351 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 352 ARM64_MEMSTART_ALIGN); 353 memblock_remove(0, memstart_addr); 354 } 355 356 /* 357 * If we are running with a 52-bit kernel VA config on a system that 358 * does not support it, we have to place the available physical 359 * memory in the 48-bit addressable part of the linear region, i.e., 360 * we have to move it upward. Since memstart_addr represents the 361 * physical address of PAGE_OFFSET, we have to *subtract* from it. 362 */ 363 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) 364 memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52); 365 366 /* 367 * Apply the memory limit if it was set. Since the kernel may be loaded 368 * high up in memory, add back the kernel region that must be accessible 369 * via the linear mapping. 370 */ 371 if (memory_limit != PHYS_ADDR_MAX) { 372 memblock_mem_limit_remove_map(memory_limit); 373 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 374 } 375 376 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 377 /* 378 * Add back the memory we just removed if it results in the 379 * initrd to become inaccessible via the linear mapping. 380 * Otherwise, this is a no-op 381 */ 382 u64 base = phys_initrd_start & PAGE_MASK; 383 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 384 385 /* 386 * We can only add back the initrd memory if we don't end up 387 * with more memory than we can address via the linear mapping. 388 * It is up to the bootloader to position the kernel and the 389 * initrd reasonably close to each other (i.e., within 32 GB of 390 * each other) so that all granule/#levels combinations can 391 * always access both. 392 */ 393 if (WARN(base < memblock_start_of_DRAM() || 394 base + size > memblock_start_of_DRAM() + 395 linear_region_size, 396 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 397 phys_initrd_size = 0; 398 } else { 399 memblock_add(base, size); 400 memblock_clear_nomap(base, size); 401 memblock_reserve(base, size); 402 } 403 } 404 405 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 406 extern u16 memstart_offset_seed; 407 u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 408 int parange = cpuid_feature_extract_unsigned_field( 409 mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT); 410 s64 range = linear_region_size - 411 BIT(id_aa64mmfr0_parange_to_phys_shift(parange)); 412 413 /* 414 * If the size of the linear region exceeds, by a sufficient 415 * margin, the size of the region that the physical memory can 416 * span, randomize the linear region as well. 417 */ 418 if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) { 419 range /= ARM64_MEMSTART_ALIGN; 420 memstart_addr -= ARM64_MEMSTART_ALIGN * 421 ((range * memstart_offset_seed) >> 16); 422 } 423 } 424 425 /* 426 * Register the kernel text, kernel data, initrd, and initial 427 * pagetables with memblock. 428 */ 429 memblock_reserve(__pa_symbol(_stext), _end - _stext); 430 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 431 /* the generic initrd code expects virtual addresses */ 432 initrd_start = __phys_to_virt(phys_initrd_start); 433 initrd_end = initrd_start + phys_initrd_size; 434 } 435 436 early_init_fdt_scan_reserved_mem(); 437 438 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 439 } 440 441 void __init bootmem_init(void) 442 { 443 unsigned long min, max; 444 445 min = PFN_UP(memblock_start_of_DRAM()); 446 max = PFN_DOWN(memblock_end_of_DRAM()); 447 448 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 449 450 max_pfn = max_low_pfn = max; 451 min_low_pfn = min; 452 453 arch_numa_init(); 454 455 /* 456 * must be done after arch_numa_init() which calls numa_init() to 457 * initialize node_online_map that gets used in hugetlb_cma_reserve() 458 * while allocating required CMA size across online nodes. 459 */ 460 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 461 arm64_hugetlb_cma_reserve(); 462 #endif 463 464 kvm_hyp_reserve(); 465 466 /* 467 * sparse_init() tries to allocate memory from memblock, so must be 468 * done after the fixed reservations 469 */ 470 sparse_init(); 471 zone_sizes_init(); 472 473 /* 474 * Reserve the CMA area after arm64_dma_phys_limit was initialised. 475 */ 476 dma_contiguous_reserve(arm64_dma_phys_limit); 477 478 /* 479 * request_standard_resources() depends on crashkernel's memory being 480 * reserved, so do it here. 481 */ 482 reserve_crashkernel(); 483 484 memblock_dump_all(); 485 } 486 487 /* 488 * mem_init() marks the free areas in the mem_map and tells us how much memory 489 * is free. This is done after various parts of the system have claimed their 490 * memory after the kernel image. 491 */ 492 void __init mem_init(void) 493 { 494 bool swiotlb = max_pfn > PFN_DOWN(arm64_dma_phys_limit); 495 496 if (IS_ENABLED(CONFIG_DMA_BOUNCE_UNALIGNED_KMALLOC)) 497 swiotlb = true; 498 499 swiotlb_init(swiotlb, SWIOTLB_VERBOSE); 500 501 /* this will put all unused low memory onto the freelists */ 502 memblock_free_all(); 503 504 /* 505 * Check boundaries twice: Some fundamental inconsistencies can be 506 * detected at build time already. 507 */ 508 #ifdef CONFIG_COMPAT 509 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 510 #endif 511 512 /* 513 * Selected page table levels should match when derived from 514 * scratch using the virtual address range and page size. 515 */ 516 BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) != 517 CONFIG_PGTABLE_LEVELS); 518 519 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 520 extern int sysctl_overcommit_memory; 521 /* 522 * On a machine this small we won't get anywhere without 523 * overcommit, so turn it on by default. 524 */ 525 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 526 } 527 } 528 529 void free_initmem(void) 530 { 531 free_reserved_area(lm_alias(__init_begin), 532 lm_alias(__init_end), 533 POISON_FREE_INITMEM, "unused kernel"); 534 /* 535 * Unmap the __init region but leave the VM area in place. This 536 * prevents the region from being reused for kernel modules, which 537 * is not supported by kallsyms. 538 */ 539 vunmap_range((u64)__init_begin, (u64)__init_end); 540 } 541 542 void dump_mem_limit(void) 543 { 544 if (memory_limit != PHYS_ADDR_MAX) { 545 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 546 } else { 547 pr_emerg("Memory Limit: none\n"); 548 } 549 } 550