xref: /openbmc/linux/arch/arm64/mm/init.c (revision 5927145e)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/bootmem.h>
26 #include <linux/cache.h>
27 #include <linux/mman.h>
28 #include <linux/nodemask.h>
29 #include <linux/initrd.h>
30 #include <linux/gfp.h>
31 #include <linux/memblock.h>
32 #include <linux/sort.h>
33 #include <linux/of.h>
34 #include <linux/of_fdt.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/dma-contiguous.h>
37 #include <linux/efi.h>
38 #include <linux/swiotlb.h>
39 #include <linux/vmalloc.h>
40 #include <linux/mm.h>
41 #include <linux/kexec.h>
42 #include <linux/crash_dump.h>
43 
44 #include <asm/boot.h>
45 #include <asm/fixmap.h>
46 #include <asm/kasan.h>
47 #include <asm/kernel-pgtable.h>
48 #include <asm/memory.h>
49 #include <asm/numa.h>
50 #include <asm/sections.h>
51 #include <asm/setup.h>
52 #include <asm/sizes.h>
53 #include <asm/tlb.h>
54 #include <asm/alternative.h>
55 
56 /*
57  * We need to be able to catch inadvertent references to memstart_addr
58  * that occur (potentially in generic code) before arm64_memblock_init()
59  * executes, which assigns it its actual value. So use a default value
60  * that cannot be mistaken for a real physical address.
61  */
62 s64 memstart_addr __ro_after_init = -1;
63 phys_addr_t arm64_dma_phys_limit __ro_after_init;
64 
65 #ifdef CONFIG_BLK_DEV_INITRD
66 static int __init early_initrd(char *p)
67 {
68 	unsigned long start, size;
69 	char *endp;
70 
71 	start = memparse(p, &endp);
72 	if (*endp == ',') {
73 		size = memparse(endp + 1, NULL);
74 
75 		initrd_start = start;
76 		initrd_end = start + size;
77 	}
78 	return 0;
79 }
80 early_param("initrd", early_initrd);
81 #endif
82 
83 #ifdef CONFIG_KEXEC_CORE
84 /*
85  * reserve_crashkernel() - reserves memory for crash kernel
86  *
87  * This function reserves memory area given in "crashkernel=" kernel command
88  * line parameter. The memory reserved is used by dump capture kernel when
89  * primary kernel is crashing.
90  */
91 static void __init reserve_crashkernel(void)
92 {
93 	unsigned long long crash_base, crash_size;
94 	int ret;
95 
96 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
97 				&crash_size, &crash_base);
98 	/* no crashkernel= or invalid value specified */
99 	if (ret || !crash_size)
100 		return;
101 
102 	crash_size = PAGE_ALIGN(crash_size);
103 
104 	if (crash_base == 0) {
105 		/* Current arm64 boot protocol requires 2MB alignment */
106 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
107 				crash_size, SZ_2M);
108 		if (crash_base == 0) {
109 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
110 				crash_size);
111 			return;
112 		}
113 	} else {
114 		/* User specifies base address explicitly. */
115 		if (!memblock_is_region_memory(crash_base, crash_size)) {
116 			pr_warn("cannot reserve crashkernel: region is not memory\n");
117 			return;
118 		}
119 
120 		if (memblock_is_region_reserved(crash_base, crash_size)) {
121 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
122 			return;
123 		}
124 
125 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
126 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
127 			return;
128 		}
129 	}
130 	memblock_reserve(crash_base, crash_size);
131 
132 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
133 		crash_base, crash_base + crash_size, crash_size >> 20);
134 
135 	crashk_res.start = crash_base;
136 	crashk_res.end = crash_base + crash_size - 1;
137 }
138 
139 static void __init kexec_reserve_crashkres_pages(void)
140 {
141 #ifdef CONFIG_HIBERNATION
142 	phys_addr_t addr;
143 	struct page *page;
144 
145 	if (!crashk_res.end)
146 		return;
147 
148 	/*
149 	 * To reduce the size of hibernation image, all the pages are
150 	 * marked as Reserved initially.
151 	 */
152 	for (addr = crashk_res.start; addr < (crashk_res.end + 1);
153 			addr += PAGE_SIZE) {
154 		page = phys_to_page(addr);
155 		SetPageReserved(page);
156 	}
157 #endif
158 }
159 #else
160 static void __init reserve_crashkernel(void)
161 {
162 }
163 
164 static void __init kexec_reserve_crashkres_pages(void)
165 {
166 }
167 #endif /* CONFIG_KEXEC_CORE */
168 
169 #ifdef CONFIG_CRASH_DUMP
170 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
171 		const char *uname, int depth, void *data)
172 {
173 	const __be32 *reg;
174 	int len;
175 
176 	if (depth != 1 || strcmp(uname, "chosen") != 0)
177 		return 0;
178 
179 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
180 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
181 		return 1;
182 
183 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
184 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
185 
186 	return 1;
187 }
188 
189 /*
190  * reserve_elfcorehdr() - reserves memory for elf core header
191  *
192  * This function reserves the memory occupied by an elf core header
193  * described in the device tree. This region contains all the
194  * information about primary kernel's core image and is used by a dump
195  * capture kernel to access the system memory on primary kernel.
196  */
197 static void __init reserve_elfcorehdr(void)
198 {
199 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
200 
201 	if (!elfcorehdr_size)
202 		return;
203 
204 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
205 		pr_warn("elfcorehdr is overlapped\n");
206 		return;
207 	}
208 
209 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
210 
211 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
212 		elfcorehdr_size >> 10, elfcorehdr_addr);
213 }
214 #else
215 static void __init reserve_elfcorehdr(void)
216 {
217 }
218 #endif /* CONFIG_CRASH_DUMP */
219 /*
220  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
221  * currently assumes that for memory starting above 4G, 32-bit devices will
222  * use a DMA offset.
223  */
224 static phys_addr_t __init max_zone_dma_phys(void)
225 {
226 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
227 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
228 }
229 
230 #ifdef CONFIG_NUMA
231 
232 static void __init zone_sizes_init(unsigned long min, unsigned long max)
233 {
234 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
235 
236 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
237 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
238 	max_zone_pfns[ZONE_NORMAL] = max;
239 
240 	free_area_init_nodes(max_zone_pfns);
241 }
242 
243 #else
244 
245 static void __init zone_sizes_init(unsigned long min, unsigned long max)
246 {
247 	struct memblock_region *reg;
248 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
249 	unsigned long max_dma = min;
250 
251 	memset(zone_size, 0, sizeof(zone_size));
252 
253 	/* 4GB maximum for 32-bit only capable devices */
254 #ifdef CONFIG_ZONE_DMA32
255 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
256 	zone_size[ZONE_DMA32] = max_dma - min;
257 #endif
258 	zone_size[ZONE_NORMAL] = max - max_dma;
259 
260 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
261 
262 	for_each_memblock(memory, reg) {
263 		unsigned long start = memblock_region_memory_base_pfn(reg);
264 		unsigned long end = memblock_region_memory_end_pfn(reg);
265 
266 		if (start >= max)
267 			continue;
268 
269 #ifdef CONFIG_ZONE_DMA32
270 		if (start < max_dma) {
271 			unsigned long dma_end = min(end, max_dma);
272 			zhole_size[ZONE_DMA32] -= dma_end - start;
273 		}
274 #endif
275 		if (end > max_dma) {
276 			unsigned long normal_end = min(end, max);
277 			unsigned long normal_start = max(start, max_dma);
278 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
279 		}
280 	}
281 
282 	free_area_init_node(0, zone_size, min, zhole_size);
283 }
284 
285 #endif /* CONFIG_NUMA */
286 
287 #ifdef CONFIG_HAVE_ARCH_PFN_VALID
288 int pfn_valid(unsigned long pfn)
289 {
290 	return memblock_is_map_memory(pfn << PAGE_SHIFT);
291 }
292 EXPORT_SYMBOL(pfn_valid);
293 #endif
294 
295 #ifndef CONFIG_SPARSEMEM
296 static void __init arm64_memory_present(void)
297 {
298 }
299 #else
300 static void __init arm64_memory_present(void)
301 {
302 	struct memblock_region *reg;
303 
304 	for_each_memblock(memory, reg) {
305 		int nid = memblock_get_region_node(reg);
306 
307 		memory_present(nid, memblock_region_memory_base_pfn(reg),
308 				memblock_region_memory_end_pfn(reg));
309 	}
310 }
311 #endif
312 
313 static phys_addr_t memory_limit = (phys_addr_t)ULLONG_MAX;
314 
315 /*
316  * Limit the memory size that was specified via FDT.
317  */
318 static int __init early_mem(char *p)
319 {
320 	if (!p)
321 		return 1;
322 
323 	memory_limit = memparse(p, &p) & PAGE_MASK;
324 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
325 
326 	return 0;
327 }
328 early_param("mem", early_mem);
329 
330 static int __init early_init_dt_scan_usablemem(unsigned long node,
331 		const char *uname, int depth, void *data)
332 {
333 	struct memblock_region *usablemem = data;
334 	const __be32 *reg;
335 	int len;
336 
337 	if (depth != 1 || strcmp(uname, "chosen") != 0)
338 		return 0;
339 
340 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
341 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
342 		return 1;
343 
344 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
345 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
346 
347 	return 1;
348 }
349 
350 static void __init fdt_enforce_memory_region(void)
351 {
352 	struct memblock_region reg = {
353 		.size = 0,
354 	};
355 
356 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
357 
358 	if (reg.size)
359 		memblock_cap_memory_range(reg.base, reg.size);
360 }
361 
362 void __init arm64_memblock_init(void)
363 {
364 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
365 
366 	/* Handle linux,usable-memory-range property */
367 	fdt_enforce_memory_region();
368 
369 	/* Remove memory above our supported physical address size */
370 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
371 
372 	/*
373 	 * Ensure that the linear region takes up exactly half of the kernel
374 	 * virtual address space. This way, we can distinguish a linear address
375 	 * from a kernel/module/vmalloc address by testing a single bit.
376 	 */
377 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
378 
379 	/*
380 	 * Select a suitable value for the base of physical memory.
381 	 */
382 	memstart_addr = round_down(memblock_start_of_DRAM(),
383 				   ARM64_MEMSTART_ALIGN);
384 
385 	/*
386 	 * Remove the memory that we will not be able to cover with the
387 	 * linear mapping. Take care not to clip the kernel which may be
388 	 * high in memory.
389 	 */
390 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
391 			__pa_symbol(_end)), ULLONG_MAX);
392 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
393 		/* ensure that memstart_addr remains sufficiently aligned */
394 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
395 					 ARM64_MEMSTART_ALIGN);
396 		memblock_remove(0, memstart_addr);
397 	}
398 
399 	/*
400 	 * Apply the memory limit if it was set. Since the kernel may be loaded
401 	 * high up in memory, add back the kernel region that must be accessible
402 	 * via the linear mapping.
403 	 */
404 	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
405 		memblock_mem_limit_remove_map(memory_limit);
406 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
407 	}
408 
409 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
410 		/*
411 		 * Add back the memory we just removed if it results in the
412 		 * initrd to become inaccessible via the linear mapping.
413 		 * Otherwise, this is a no-op
414 		 */
415 		u64 base = initrd_start & PAGE_MASK;
416 		u64 size = PAGE_ALIGN(initrd_end) - base;
417 
418 		/*
419 		 * We can only add back the initrd memory if we don't end up
420 		 * with more memory than we can address via the linear mapping.
421 		 * It is up to the bootloader to position the kernel and the
422 		 * initrd reasonably close to each other (i.e., within 32 GB of
423 		 * each other) so that all granule/#levels combinations can
424 		 * always access both.
425 		 */
426 		if (WARN(base < memblock_start_of_DRAM() ||
427 			 base + size > memblock_start_of_DRAM() +
428 				       linear_region_size,
429 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
430 			initrd_start = 0;
431 		} else {
432 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
433 			memblock_add(base, size);
434 			memblock_reserve(base, size);
435 		}
436 	}
437 
438 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
439 		extern u16 memstart_offset_seed;
440 		u64 range = linear_region_size -
441 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
442 
443 		/*
444 		 * If the size of the linear region exceeds, by a sufficient
445 		 * margin, the size of the region that the available physical
446 		 * memory spans, randomize the linear region as well.
447 		 */
448 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
449 			range = range / ARM64_MEMSTART_ALIGN + 1;
450 			memstart_addr -= ARM64_MEMSTART_ALIGN *
451 					 ((range * memstart_offset_seed) >> 16);
452 		}
453 	}
454 
455 	/*
456 	 * Register the kernel text, kernel data, initrd, and initial
457 	 * pagetables with memblock.
458 	 */
459 	memblock_reserve(__pa_symbol(_text), _end - _text);
460 #ifdef CONFIG_BLK_DEV_INITRD
461 	if (initrd_start) {
462 		memblock_reserve(initrd_start, initrd_end - initrd_start);
463 
464 		/* the generic initrd code expects virtual addresses */
465 		initrd_start = __phys_to_virt(initrd_start);
466 		initrd_end = __phys_to_virt(initrd_end);
467 	}
468 #endif
469 
470 	early_init_fdt_scan_reserved_mem();
471 
472 	/* 4GB maximum for 32-bit only capable devices */
473 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
474 		arm64_dma_phys_limit = max_zone_dma_phys();
475 	else
476 		arm64_dma_phys_limit = PHYS_MASK + 1;
477 
478 	reserve_crashkernel();
479 
480 	reserve_elfcorehdr();
481 
482 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
483 
484 	dma_contiguous_reserve(arm64_dma_phys_limit);
485 
486 	memblock_allow_resize();
487 }
488 
489 void __init bootmem_init(void)
490 {
491 	unsigned long min, max;
492 
493 	min = PFN_UP(memblock_start_of_DRAM());
494 	max = PFN_DOWN(memblock_end_of_DRAM());
495 
496 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
497 
498 	max_pfn = max_low_pfn = max;
499 
500 	arm64_numa_init();
501 	/*
502 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
503 	 * done after the fixed reservations.
504 	 */
505 	arm64_memory_present();
506 
507 	sparse_init();
508 	zone_sizes_init(min, max);
509 
510 	memblock_dump_all();
511 }
512 
513 #ifndef CONFIG_SPARSEMEM_VMEMMAP
514 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
515 {
516 	struct page *start_pg, *end_pg;
517 	unsigned long pg, pgend;
518 
519 	/*
520 	 * Convert start_pfn/end_pfn to a struct page pointer.
521 	 */
522 	start_pg = pfn_to_page(start_pfn - 1) + 1;
523 	end_pg = pfn_to_page(end_pfn - 1) + 1;
524 
525 	/*
526 	 * Convert to physical addresses, and round start upwards and end
527 	 * downwards.
528 	 */
529 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
530 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
531 
532 	/*
533 	 * If there are free pages between these, free the section of the
534 	 * memmap array.
535 	 */
536 	if (pg < pgend)
537 		free_bootmem(pg, pgend - pg);
538 }
539 
540 /*
541  * The mem_map array can get very big. Free the unused area of the memory map.
542  */
543 static void __init free_unused_memmap(void)
544 {
545 	unsigned long start, prev_end = 0;
546 	struct memblock_region *reg;
547 
548 	for_each_memblock(memory, reg) {
549 		start = __phys_to_pfn(reg->base);
550 
551 #ifdef CONFIG_SPARSEMEM
552 		/*
553 		 * Take care not to free memmap entries that don't exist due
554 		 * to SPARSEMEM sections which aren't present.
555 		 */
556 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
557 #endif
558 		/*
559 		 * If we had a previous bank, and there is a space between the
560 		 * current bank and the previous, free it.
561 		 */
562 		if (prev_end && prev_end < start)
563 			free_memmap(prev_end, start);
564 
565 		/*
566 		 * Align up here since the VM subsystem insists that the
567 		 * memmap entries are valid from the bank end aligned to
568 		 * MAX_ORDER_NR_PAGES.
569 		 */
570 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
571 				 MAX_ORDER_NR_PAGES);
572 	}
573 
574 #ifdef CONFIG_SPARSEMEM
575 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
576 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
577 #endif
578 }
579 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
580 
581 /*
582  * mem_init() marks the free areas in the mem_map and tells us how much memory
583  * is free.  This is done after various parts of the system have claimed their
584  * memory after the kernel image.
585  */
586 void __init mem_init(void)
587 {
588 	if (swiotlb_force == SWIOTLB_FORCE ||
589 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
590 		swiotlb_init(1);
591 	else
592 		swiotlb_force = SWIOTLB_NO_FORCE;
593 
594 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
595 
596 #ifndef CONFIG_SPARSEMEM_VMEMMAP
597 	free_unused_memmap();
598 #endif
599 	/* this will put all unused low memory onto the freelists */
600 	free_all_bootmem();
601 
602 	kexec_reserve_crashkres_pages();
603 
604 	mem_init_print_info(NULL);
605 
606 	/*
607 	 * Check boundaries twice: Some fundamental inconsistencies can be
608 	 * detected at build time already.
609 	 */
610 #ifdef CONFIG_COMPAT
611 	BUILD_BUG_ON(TASK_SIZE_32			> TASK_SIZE_64);
612 #endif
613 
614 	/*
615 	 * Make sure we chose the upper bound of sizeof(struct page)
616 	 * correctly.
617 	 */
618 	BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
619 
620 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
621 		extern int sysctl_overcommit_memory;
622 		/*
623 		 * On a machine this small we won't get anywhere without
624 		 * overcommit, so turn it on by default.
625 		 */
626 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
627 	}
628 }
629 
630 void free_initmem(void)
631 {
632 	free_reserved_area(lm_alias(__init_begin),
633 			   lm_alias(__init_end),
634 			   0, "unused kernel");
635 	/*
636 	 * Unmap the __init region but leave the VM area in place. This
637 	 * prevents the region from being reused for kernel modules, which
638 	 * is not supported by kallsyms.
639 	 */
640 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
641 }
642 
643 #ifdef CONFIG_BLK_DEV_INITRD
644 
645 static int keep_initrd __initdata;
646 
647 void __init free_initrd_mem(unsigned long start, unsigned long end)
648 {
649 	if (!keep_initrd)
650 		free_reserved_area((void *)start, (void *)end, 0, "initrd");
651 }
652 
653 static int __init keepinitrd_setup(char *__unused)
654 {
655 	keep_initrd = 1;
656 	return 1;
657 }
658 
659 __setup("keepinitrd", keepinitrd_setup);
660 #endif
661 
662 /*
663  * Dump out memory limit information on panic.
664  */
665 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
666 {
667 	if (memory_limit != (phys_addr_t)ULLONG_MAX) {
668 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
669 	} else {
670 		pr_emerg("Memory Limit: none\n");
671 	}
672 	return 0;
673 }
674 
675 static struct notifier_block mem_limit_notifier = {
676 	.notifier_call = dump_mem_limit,
677 };
678 
679 static int __init register_mem_limit_dumper(void)
680 {
681 	atomic_notifier_chain_register(&panic_notifier_list,
682 				       &mem_limit_notifier);
683 	return 0;
684 }
685 __initcall(register_mem_limit_dumper);
686