xref: /openbmc/linux/arch/arm64/mm/init.c (revision 53809828)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mman.h>
27 #include <linux/nodemask.h>
28 #include <linux/initrd.h>
29 #include <linux/gfp.h>
30 #include <linux/memblock.h>
31 #include <linux/sort.h>
32 #include <linux/of.h>
33 #include <linux/of_fdt.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dma-contiguous.h>
36 #include <linux/efi.h>
37 #include <linux/swiotlb.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm.h>
40 #include <linux/kexec.h>
41 #include <linux/crash_dump.h>
42 
43 #include <asm/boot.h>
44 #include <asm/fixmap.h>
45 #include <asm/kasan.h>
46 #include <asm/kernel-pgtable.h>
47 #include <asm/memory.h>
48 #include <asm/numa.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <asm/sizes.h>
52 #include <asm/tlb.h>
53 #include <asm/alternative.h>
54 
55 /*
56  * We need to be able to catch inadvertent references to memstart_addr
57  * that occur (potentially in generic code) before arm64_memblock_init()
58  * executes, which assigns it its actual value. So use a default value
59  * that cannot be mistaken for a real physical address.
60  */
61 s64 memstart_addr __ro_after_init = -1;
62 phys_addr_t arm64_dma_phys_limit __ro_after_init;
63 
64 #ifdef CONFIG_BLK_DEV_INITRD
65 static int __init early_initrd(char *p)
66 {
67 	unsigned long start, size;
68 	char *endp;
69 
70 	start = memparse(p, &endp);
71 	if (*endp == ',') {
72 		size = memparse(endp + 1, NULL);
73 
74 		initrd_start = start;
75 		initrd_end = start + size;
76 	}
77 	return 0;
78 }
79 early_param("initrd", early_initrd);
80 #endif
81 
82 #ifdef CONFIG_KEXEC_CORE
83 /*
84  * reserve_crashkernel() - reserves memory for crash kernel
85  *
86  * This function reserves memory area given in "crashkernel=" kernel command
87  * line parameter. The memory reserved is used by dump capture kernel when
88  * primary kernel is crashing.
89  */
90 static void __init reserve_crashkernel(void)
91 {
92 	unsigned long long crash_base, crash_size;
93 	int ret;
94 
95 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
96 				&crash_size, &crash_base);
97 	/* no crashkernel= or invalid value specified */
98 	if (ret || !crash_size)
99 		return;
100 
101 	crash_size = PAGE_ALIGN(crash_size);
102 
103 	if (crash_base == 0) {
104 		/* Current arm64 boot protocol requires 2MB alignment */
105 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
106 				crash_size, SZ_2M);
107 		if (crash_base == 0) {
108 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
109 				crash_size);
110 			return;
111 		}
112 	} else {
113 		/* User specifies base address explicitly. */
114 		if (!memblock_is_region_memory(crash_base, crash_size)) {
115 			pr_warn("cannot reserve crashkernel: region is not memory\n");
116 			return;
117 		}
118 
119 		if (memblock_is_region_reserved(crash_base, crash_size)) {
120 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
121 			return;
122 		}
123 
124 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
125 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
126 			return;
127 		}
128 	}
129 	memblock_reserve(crash_base, crash_size);
130 
131 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
132 		crash_base, crash_base + crash_size, crash_size >> 20);
133 
134 	crashk_res.start = crash_base;
135 	crashk_res.end = crash_base + crash_size - 1;
136 }
137 
138 static void __init kexec_reserve_crashkres_pages(void)
139 {
140 #ifdef CONFIG_HIBERNATION
141 	phys_addr_t addr;
142 	struct page *page;
143 
144 	if (!crashk_res.end)
145 		return;
146 
147 	/*
148 	 * To reduce the size of hibernation image, all the pages are
149 	 * marked as Reserved initially.
150 	 */
151 	for (addr = crashk_res.start; addr < (crashk_res.end + 1);
152 			addr += PAGE_SIZE) {
153 		page = phys_to_page(addr);
154 		SetPageReserved(page);
155 	}
156 #endif
157 }
158 #else
159 static void __init reserve_crashkernel(void)
160 {
161 }
162 
163 static void __init kexec_reserve_crashkres_pages(void)
164 {
165 }
166 #endif /* CONFIG_KEXEC_CORE */
167 
168 #ifdef CONFIG_CRASH_DUMP
169 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
170 		const char *uname, int depth, void *data)
171 {
172 	const __be32 *reg;
173 	int len;
174 
175 	if (depth != 1 || strcmp(uname, "chosen") != 0)
176 		return 0;
177 
178 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
179 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
180 		return 1;
181 
182 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
183 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
184 
185 	return 1;
186 }
187 
188 /*
189  * reserve_elfcorehdr() - reserves memory for elf core header
190  *
191  * This function reserves the memory occupied by an elf core header
192  * described in the device tree. This region contains all the
193  * information about primary kernel's core image and is used by a dump
194  * capture kernel to access the system memory on primary kernel.
195  */
196 static void __init reserve_elfcorehdr(void)
197 {
198 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
199 
200 	if (!elfcorehdr_size)
201 		return;
202 
203 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
204 		pr_warn("elfcorehdr is overlapped\n");
205 		return;
206 	}
207 
208 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
209 
210 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
211 		elfcorehdr_size >> 10, elfcorehdr_addr);
212 }
213 #else
214 static void __init reserve_elfcorehdr(void)
215 {
216 }
217 #endif /* CONFIG_CRASH_DUMP */
218 /*
219  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
220  * currently assumes that for memory starting above 4G, 32-bit devices will
221  * use a DMA offset.
222  */
223 static phys_addr_t __init max_zone_dma_phys(void)
224 {
225 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
226 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
227 }
228 
229 #ifdef CONFIG_NUMA
230 
231 static void __init zone_sizes_init(unsigned long min, unsigned long max)
232 {
233 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
234 
235 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
236 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
237 	max_zone_pfns[ZONE_NORMAL] = max;
238 
239 	free_area_init_nodes(max_zone_pfns);
240 }
241 
242 #else
243 
244 static void __init zone_sizes_init(unsigned long min, unsigned long max)
245 {
246 	struct memblock_region *reg;
247 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
248 	unsigned long max_dma = min;
249 
250 	memset(zone_size, 0, sizeof(zone_size));
251 
252 	/* 4GB maximum for 32-bit only capable devices */
253 #ifdef CONFIG_ZONE_DMA32
254 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
255 	zone_size[ZONE_DMA32] = max_dma - min;
256 #endif
257 	zone_size[ZONE_NORMAL] = max - max_dma;
258 
259 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
260 
261 	for_each_memblock(memory, reg) {
262 		unsigned long start = memblock_region_memory_base_pfn(reg);
263 		unsigned long end = memblock_region_memory_end_pfn(reg);
264 
265 		if (start >= max)
266 			continue;
267 
268 #ifdef CONFIG_ZONE_DMA32
269 		if (start < max_dma) {
270 			unsigned long dma_end = min(end, max_dma);
271 			zhole_size[ZONE_DMA32] -= dma_end - start;
272 		}
273 #endif
274 		if (end > max_dma) {
275 			unsigned long normal_end = min(end, max);
276 			unsigned long normal_start = max(start, max_dma);
277 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
278 		}
279 	}
280 
281 	free_area_init_node(0, zone_size, min, zhole_size);
282 }
283 
284 #endif /* CONFIG_NUMA */
285 
286 int pfn_valid(unsigned long pfn)
287 {
288 	phys_addr_t addr = pfn << PAGE_SHIFT;
289 
290 	if ((addr >> PAGE_SHIFT) != pfn)
291 		return 0;
292 	return memblock_is_map_memory(addr);
293 }
294 EXPORT_SYMBOL(pfn_valid);
295 
296 #ifndef CONFIG_SPARSEMEM
297 static void __init arm64_memory_present(void)
298 {
299 }
300 #else
301 static void __init arm64_memory_present(void)
302 {
303 	struct memblock_region *reg;
304 
305 	for_each_memblock(memory, reg) {
306 		int nid = memblock_get_region_node(reg);
307 
308 		memory_present(nid, memblock_region_memory_base_pfn(reg),
309 				memblock_region_memory_end_pfn(reg));
310 	}
311 }
312 #endif
313 
314 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
315 
316 /*
317  * Limit the memory size that was specified via FDT.
318  */
319 static int __init early_mem(char *p)
320 {
321 	if (!p)
322 		return 1;
323 
324 	memory_limit = memparse(p, &p) & PAGE_MASK;
325 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
326 
327 	return 0;
328 }
329 early_param("mem", early_mem);
330 
331 static int __init early_init_dt_scan_usablemem(unsigned long node,
332 		const char *uname, int depth, void *data)
333 {
334 	struct memblock_region *usablemem = data;
335 	const __be32 *reg;
336 	int len;
337 
338 	if (depth != 1 || strcmp(uname, "chosen") != 0)
339 		return 0;
340 
341 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
342 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
343 		return 1;
344 
345 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
346 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
347 
348 	return 1;
349 }
350 
351 static void __init fdt_enforce_memory_region(void)
352 {
353 	struct memblock_region reg = {
354 		.size = 0,
355 	};
356 
357 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
358 
359 	if (reg.size)
360 		memblock_cap_memory_range(reg.base, reg.size);
361 }
362 
363 void __init arm64_memblock_init(void)
364 {
365 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
366 
367 	/* Handle linux,usable-memory-range property */
368 	fdt_enforce_memory_region();
369 
370 	/* Remove memory above our supported physical address size */
371 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
372 
373 	/*
374 	 * Ensure that the linear region takes up exactly half of the kernel
375 	 * virtual address space. This way, we can distinguish a linear address
376 	 * from a kernel/module/vmalloc address by testing a single bit.
377 	 */
378 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
379 
380 	/*
381 	 * Select a suitable value for the base of physical memory.
382 	 */
383 	memstart_addr = round_down(memblock_start_of_DRAM(),
384 				   ARM64_MEMSTART_ALIGN);
385 
386 	/*
387 	 * Remove the memory that we will not be able to cover with the
388 	 * linear mapping. Take care not to clip the kernel which may be
389 	 * high in memory.
390 	 */
391 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
392 			__pa_symbol(_end)), ULLONG_MAX);
393 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
394 		/* ensure that memstart_addr remains sufficiently aligned */
395 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
396 					 ARM64_MEMSTART_ALIGN);
397 		memblock_remove(0, memstart_addr);
398 	}
399 
400 	/*
401 	 * Apply the memory limit if it was set. Since the kernel may be loaded
402 	 * high up in memory, add back the kernel region that must be accessible
403 	 * via the linear mapping.
404 	 */
405 	if (memory_limit != PHYS_ADDR_MAX) {
406 		memblock_mem_limit_remove_map(memory_limit);
407 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
408 	}
409 
410 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && initrd_start) {
411 		/*
412 		 * Add back the memory we just removed if it results in the
413 		 * initrd to become inaccessible via the linear mapping.
414 		 * Otherwise, this is a no-op
415 		 */
416 		u64 base = initrd_start & PAGE_MASK;
417 		u64 size = PAGE_ALIGN(initrd_end) - base;
418 
419 		/*
420 		 * We can only add back the initrd memory if we don't end up
421 		 * with more memory than we can address via the linear mapping.
422 		 * It is up to the bootloader to position the kernel and the
423 		 * initrd reasonably close to each other (i.e., within 32 GB of
424 		 * each other) so that all granule/#levels combinations can
425 		 * always access both.
426 		 */
427 		if (WARN(base < memblock_start_of_DRAM() ||
428 			 base + size > memblock_start_of_DRAM() +
429 				       linear_region_size,
430 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
431 			initrd_start = 0;
432 		} else {
433 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
434 			memblock_add(base, size);
435 			memblock_reserve(base, size);
436 		}
437 	}
438 
439 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
440 		extern u16 memstart_offset_seed;
441 		u64 range = linear_region_size -
442 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
443 
444 		/*
445 		 * If the size of the linear region exceeds, by a sufficient
446 		 * margin, the size of the region that the available physical
447 		 * memory spans, randomize the linear region as well.
448 		 */
449 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
450 			range = range / ARM64_MEMSTART_ALIGN + 1;
451 			memstart_addr -= ARM64_MEMSTART_ALIGN *
452 					 ((range * memstart_offset_seed) >> 16);
453 		}
454 	}
455 
456 	/*
457 	 * Register the kernel text, kernel data, initrd, and initial
458 	 * pagetables with memblock.
459 	 */
460 	memblock_reserve(__pa_symbol(_text), _end - _text);
461 #ifdef CONFIG_BLK_DEV_INITRD
462 	if (initrd_start) {
463 		memblock_reserve(initrd_start, initrd_end - initrd_start);
464 
465 		/* the generic initrd code expects virtual addresses */
466 		initrd_start = __phys_to_virt(initrd_start);
467 		initrd_end = __phys_to_virt(initrd_end);
468 	}
469 #endif
470 
471 	early_init_fdt_scan_reserved_mem();
472 
473 	/* 4GB maximum for 32-bit only capable devices */
474 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
475 		arm64_dma_phys_limit = max_zone_dma_phys();
476 	else
477 		arm64_dma_phys_limit = PHYS_MASK + 1;
478 
479 	reserve_crashkernel();
480 
481 	reserve_elfcorehdr();
482 
483 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
484 
485 	dma_contiguous_reserve(arm64_dma_phys_limit);
486 
487 	memblock_allow_resize();
488 }
489 
490 void __init bootmem_init(void)
491 {
492 	unsigned long min, max;
493 
494 	min = PFN_UP(memblock_start_of_DRAM());
495 	max = PFN_DOWN(memblock_end_of_DRAM());
496 
497 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
498 
499 	max_pfn = max_low_pfn = max;
500 
501 	arm64_numa_init();
502 	/*
503 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
504 	 * done after the fixed reservations.
505 	 */
506 	arm64_memory_present();
507 
508 	sparse_init();
509 	zone_sizes_init(min, max);
510 
511 	memblock_dump_all();
512 }
513 
514 #ifndef CONFIG_SPARSEMEM_VMEMMAP
515 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
516 {
517 	struct page *start_pg, *end_pg;
518 	unsigned long pg, pgend;
519 
520 	/*
521 	 * Convert start_pfn/end_pfn to a struct page pointer.
522 	 */
523 	start_pg = pfn_to_page(start_pfn - 1) + 1;
524 	end_pg = pfn_to_page(end_pfn - 1) + 1;
525 
526 	/*
527 	 * Convert to physical addresses, and round start upwards and end
528 	 * downwards.
529 	 */
530 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
531 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
532 
533 	/*
534 	 * If there are free pages between these, free the section of the
535 	 * memmap array.
536 	 */
537 	if (pg < pgend)
538 		memblock_free(pg, pgend - pg);
539 }
540 
541 /*
542  * The mem_map array can get very big. Free the unused area of the memory map.
543  */
544 static void __init free_unused_memmap(void)
545 {
546 	unsigned long start, prev_end = 0;
547 	struct memblock_region *reg;
548 
549 	for_each_memblock(memory, reg) {
550 		start = __phys_to_pfn(reg->base);
551 
552 #ifdef CONFIG_SPARSEMEM
553 		/*
554 		 * Take care not to free memmap entries that don't exist due
555 		 * to SPARSEMEM sections which aren't present.
556 		 */
557 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
558 #endif
559 		/*
560 		 * If we had a previous bank, and there is a space between the
561 		 * current bank and the previous, free it.
562 		 */
563 		if (prev_end && prev_end < start)
564 			free_memmap(prev_end, start);
565 
566 		/*
567 		 * Align up here since the VM subsystem insists that the
568 		 * memmap entries are valid from the bank end aligned to
569 		 * MAX_ORDER_NR_PAGES.
570 		 */
571 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
572 				 MAX_ORDER_NR_PAGES);
573 	}
574 
575 #ifdef CONFIG_SPARSEMEM
576 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
577 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
578 #endif
579 }
580 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
581 
582 /*
583  * mem_init() marks the free areas in the mem_map and tells us how much memory
584  * is free.  This is done after various parts of the system have claimed their
585  * memory after the kernel image.
586  */
587 void __init mem_init(void)
588 {
589 	if (swiotlb_force == SWIOTLB_FORCE ||
590 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
591 		swiotlb_init(1);
592 	else
593 		swiotlb_force = SWIOTLB_NO_FORCE;
594 
595 	set_max_mapnr(pfn_to_page(max_pfn) - mem_map);
596 
597 #ifndef CONFIG_SPARSEMEM_VMEMMAP
598 	free_unused_memmap();
599 #endif
600 	/* this will put all unused low memory onto the freelists */
601 	memblock_free_all();
602 
603 	kexec_reserve_crashkres_pages();
604 
605 	mem_init_print_info(NULL);
606 
607 	/*
608 	 * Check boundaries twice: Some fundamental inconsistencies can be
609 	 * detected at build time already.
610 	 */
611 #ifdef CONFIG_COMPAT
612 	BUILD_BUG_ON(TASK_SIZE_32			> TASK_SIZE_64);
613 #endif
614 
615 #ifdef CONFIG_SPARSEMEM_VMEMMAP
616 	/*
617 	 * Make sure we chose the upper bound of sizeof(struct page)
618 	 * correctly when sizing the VMEMMAP array.
619 	 */
620 	BUILD_BUG_ON(sizeof(struct page) > (1 << STRUCT_PAGE_MAX_SHIFT));
621 #endif
622 
623 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
624 		extern int sysctl_overcommit_memory;
625 		/*
626 		 * On a machine this small we won't get anywhere without
627 		 * overcommit, so turn it on by default.
628 		 */
629 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
630 	}
631 }
632 
633 void free_initmem(void)
634 {
635 	free_reserved_area(lm_alias(__init_begin),
636 			   lm_alias(__init_end),
637 			   0, "unused kernel");
638 	/*
639 	 * Unmap the __init region but leave the VM area in place. This
640 	 * prevents the region from being reused for kernel modules, which
641 	 * is not supported by kallsyms.
642 	 */
643 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
644 }
645 
646 #ifdef CONFIG_BLK_DEV_INITRD
647 
648 static int keep_initrd __initdata;
649 
650 void __init free_initrd_mem(unsigned long start, unsigned long end)
651 {
652 	if (!keep_initrd) {
653 		free_reserved_area((void *)start, (void *)end, 0, "initrd");
654 		memblock_free(__virt_to_phys(start), end - start);
655 	}
656 }
657 
658 static int __init keepinitrd_setup(char *__unused)
659 {
660 	keep_initrd = 1;
661 	return 1;
662 }
663 
664 __setup("keepinitrd", keepinitrd_setup);
665 #endif
666 
667 /*
668  * Dump out memory limit information on panic.
669  */
670 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
671 {
672 	if (memory_limit != PHYS_ADDR_MAX) {
673 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
674 	} else {
675 		pr_emerg("Memory Limit: none\n");
676 	}
677 	return 0;
678 }
679 
680 static struct notifier_block mem_limit_notifier = {
681 	.notifier_call = dump_mem_limit,
682 };
683 
684 static int __init register_mem_limit_dumper(void)
685 {
686 	atomic_notifier_chain_register(&panic_notifier_list,
687 				       &mem_limit_notifier);
688 	return 0;
689 }
690 __initcall(register_mem_limit_dumper);
691