xref: /openbmc/linux/arch/arm64/mm/init.c (revision 2f0f2441b4a10948e2ec042b48fef13680387f7c)
1 /*
2  * Based on arch/arm/mm/init.c
3  *
4  * Copyright (C) 1995-2005 Russell King
5  * Copyright (C) 2012 ARM Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include <linux/kernel.h>
21 #include <linux/export.h>
22 #include <linux/errno.h>
23 #include <linux/swap.h>
24 #include <linux/init.h>
25 #include <linux/cache.h>
26 #include <linux/mman.h>
27 #include <linux/nodemask.h>
28 #include <linux/initrd.h>
29 #include <linux/gfp.h>
30 #include <linux/memblock.h>
31 #include <linux/sort.h>
32 #include <linux/of.h>
33 #include <linux/of_fdt.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dma-contiguous.h>
36 #include <linux/efi.h>
37 #include <linux/swiotlb.h>
38 #include <linux/vmalloc.h>
39 #include <linux/mm.h>
40 #include <linux/kexec.h>
41 #include <linux/crash_dump.h>
42 
43 #include <asm/boot.h>
44 #include <asm/fixmap.h>
45 #include <asm/kasan.h>
46 #include <asm/kernel-pgtable.h>
47 #include <asm/memory.h>
48 #include <asm/numa.h>
49 #include <asm/sections.h>
50 #include <asm/setup.h>
51 #include <linux/sizes.h>
52 #include <asm/tlb.h>
53 #include <asm/alternative.h>
54 
55 /*
56  * We need to be able to catch inadvertent references to memstart_addr
57  * that occur (potentially in generic code) before arm64_memblock_init()
58  * executes, which assigns it its actual value. So use a default value
59  * that cannot be mistaken for a real physical address.
60  */
61 s64 memstart_addr __ro_after_init = -1;
62 EXPORT_SYMBOL(memstart_addr);
63 
64 phys_addr_t arm64_dma_phys_limit __ro_after_init;
65 
66 #ifdef CONFIG_KEXEC_CORE
67 /*
68  * reserve_crashkernel() - reserves memory for crash kernel
69  *
70  * This function reserves memory area given in "crashkernel=" kernel command
71  * line parameter. The memory reserved is used by dump capture kernel when
72  * primary kernel is crashing.
73  */
74 static void __init reserve_crashkernel(void)
75 {
76 	unsigned long long crash_base, crash_size;
77 	int ret;
78 
79 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
80 				&crash_size, &crash_base);
81 	/* no crashkernel= or invalid value specified */
82 	if (ret || !crash_size)
83 		return;
84 
85 	crash_size = PAGE_ALIGN(crash_size);
86 
87 	if (crash_base == 0) {
88 		/* Current arm64 boot protocol requires 2MB alignment */
89 		crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT,
90 				crash_size, SZ_2M);
91 		if (crash_base == 0) {
92 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
93 				crash_size);
94 			return;
95 		}
96 	} else {
97 		/* User specifies base address explicitly. */
98 		if (!memblock_is_region_memory(crash_base, crash_size)) {
99 			pr_warn("cannot reserve crashkernel: region is not memory\n");
100 			return;
101 		}
102 
103 		if (memblock_is_region_reserved(crash_base, crash_size)) {
104 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
105 			return;
106 		}
107 
108 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
109 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
110 			return;
111 		}
112 	}
113 	memblock_reserve(crash_base, crash_size);
114 
115 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
116 		crash_base, crash_base + crash_size, crash_size >> 20);
117 
118 	crashk_res.start = crash_base;
119 	crashk_res.end = crash_base + crash_size - 1;
120 }
121 #else
122 static void __init reserve_crashkernel(void)
123 {
124 }
125 #endif /* CONFIG_KEXEC_CORE */
126 
127 #ifdef CONFIG_CRASH_DUMP
128 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
129 		const char *uname, int depth, void *data)
130 {
131 	const __be32 *reg;
132 	int len;
133 
134 	if (depth != 1 || strcmp(uname, "chosen") != 0)
135 		return 0;
136 
137 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
138 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
139 		return 1;
140 
141 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
142 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
143 
144 	return 1;
145 }
146 
147 /*
148  * reserve_elfcorehdr() - reserves memory for elf core header
149  *
150  * This function reserves the memory occupied by an elf core header
151  * described in the device tree. This region contains all the
152  * information about primary kernel's core image and is used by a dump
153  * capture kernel to access the system memory on primary kernel.
154  */
155 static void __init reserve_elfcorehdr(void)
156 {
157 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
158 
159 	if (!elfcorehdr_size)
160 		return;
161 
162 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
163 		pr_warn("elfcorehdr is overlapped\n");
164 		return;
165 	}
166 
167 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
168 
169 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
170 		elfcorehdr_size >> 10, elfcorehdr_addr);
171 }
172 #else
173 static void __init reserve_elfcorehdr(void)
174 {
175 }
176 #endif /* CONFIG_CRASH_DUMP */
177 /*
178  * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It
179  * currently assumes that for memory starting above 4G, 32-bit devices will
180  * use a DMA offset.
181  */
182 static phys_addr_t __init max_zone_dma_phys(void)
183 {
184 	phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32);
185 	return min(offset + (1ULL << 32), memblock_end_of_DRAM());
186 }
187 
188 #ifdef CONFIG_NUMA
189 
190 static void __init zone_sizes_init(unsigned long min, unsigned long max)
191 {
192 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
193 
194 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
195 		max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys());
196 	max_zone_pfns[ZONE_NORMAL] = max;
197 
198 	free_area_init_nodes(max_zone_pfns);
199 }
200 
201 #else
202 
203 static void __init zone_sizes_init(unsigned long min, unsigned long max)
204 {
205 	struct memblock_region *reg;
206 	unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES];
207 	unsigned long max_dma = min;
208 
209 	memset(zone_size, 0, sizeof(zone_size));
210 
211 	/* 4GB maximum for 32-bit only capable devices */
212 #ifdef CONFIG_ZONE_DMA32
213 	max_dma = PFN_DOWN(arm64_dma_phys_limit);
214 	zone_size[ZONE_DMA32] = max_dma - min;
215 #endif
216 	zone_size[ZONE_NORMAL] = max - max_dma;
217 
218 	memcpy(zhole_size, zone_size, sizeof(zhole_size));
219 
220 	for_each_memblock(memory, reg) {
221 		unsigned long start = memblock_region_memory_base_pfn(reg);
222 		unsigned long end = memblock_region_memory_end_pfn(reg);
223 
224 		if (start >= max)
225 			continue;
226 
227 #ifdef CONFIG_ZONE_DMA32
228 		if (start < max_dma) {
229 			unsigned long dma_end = min(end, max_dma);
230 			zhole_size[ZONE_DMA32] -= dma_end - start;
231 		}
232 #endif
233 		if (end > max_dma) {
234 			unsigned long normal_end = min(end, max);
235 			unsigned long normal_start = max(start, max_dma);
236 			zhole_size[ZONE_NORMAL] -= normal_end - normal_start;
237 		}
238 	}
239 
240 	free_area_init_node(0, zone_size, min, zhole_size);
241 }
242 
243 #endif /* CONFIG_NUMA */
244 
245 int pfn_valid(unsigned long pfn)
246 {
247 	phys_addr_t addr = pfn << PAGE_SHIFT;
248 
249 	if ((addr >> PAGE_SHIFT) != pfn)
250 		return 0;
251 
252 #ifdef CONFIG_SPARSEMEM
253 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
254 		return 0;
255 
256 	if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn))))
257 		return 0;
258 #endif
259 	return memblock_is_map_memory(addr);
260 }
261 EXPORT_SYMBOL(pfn_valid);
262 
263 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
264 
265 /*
266  * Limit the memory size that was specified via FDT.
267  */
268 static int __init early_mem(char *p)
269 {
270 	if (!p)
271 		return 1;
272 
273 	memory_limit = memparse(p, &p) & PAGE_MASK;
274 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
275 
276 	return 0;
277 }
278 early_param("mem", early_mem);
279 
280 static int __init early_init_dt_scan_usablemem(unsigned long node,
281 		const char *uname, int depth, void *data)
282 {
283 	struct memblock_region *usablemem = data;
284 	const __be32 *reg;
285 	int len;
286 
287 	if (depth != 1 || strcmp(uname, "chosen") != 0)
288 		return 0;
289 
290 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
291 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
292 		return 1;
293 
294 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
295 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
296 
297 	return 1;
298 }
299 
300 static void __init fdt_enforce_memory_region(void)
301 {
302 	struct memblock_region reg = {
303 		.size = 0,
304 	};
305 
306 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
307 
308 	if (reg.size)
309 		memblock_cap_memory_range(reg.base, reg.size);
310 }
311 
312 void __init arm64_memblock_init(void)
313 {
314 	const s64 linear_region_size = -(s64)PAGE_OFFSET;
315 
316 	/* Handle linux,usable-memory-range property */
317 	fdt_enforce_memory_region();
318 
319 	/* Remove memory above our supported physical address size */
320 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
321 
322 	/*
323 	 * Ensure that the linear region takes up exactly half of the kernel
324 	 * virtual address space. This way, we can distinguish a linear address
325 	 * from a kernel/module/vmalloc address by testing a single bit.
326 	 */
327 	BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1));
328 
329 	/*
330 	 * Select a suitable value for the base of physical memory.
331 	 */
332 	memstart_addr = round_down(memblock_start_of_DRAM(),
333 				   ARM64_MEMSTART_ALIGN);
334 
335 	/*
336 	 * Remove the memory that we will not be able to cover with the
337 	 * linear mapping. Take care not to clip the kernel which may be
338 	 * high in memory.
339 	 */
340 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
341 			__pa_symbol(_end)), ULLONG_MAX);
342 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
343 		/* ensure that memstart_addr remains sufficiently aligned */
344 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
345 					 ARM64_MEMSTART_ALIGN);
346 		memblock_remove(0, memstart_addr);
347 	}
348 
349 	/*
350 	 * Apply the memory limit if it was set. Since the kernel may be loaded
351 	 * high up in memory, add back the kernel region that must be accessible
352 	 * via the linear mapping.
353 	 */
354 	if (memory_limit != PHYS_ADDR_MAX) {
355 		memblock_mem_limit_remove_map(memory_limit);
356 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
357 	}
358 
359 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
360 		/*
361 		 * Add back the memory we just removed if it results in the
362 		 * initrd to become inaccessible via the linear mapping.
363 		 * Otherwise, this is a no-op
364 		 */
365 		u64 base = phys_initrd_start & PAGE_MASK;
366 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
367 
368 		/*
369 		 * We can only add back the initrd memory if we don't end up
370 		 * with more memory than we can address via the linear mapping.
371 		 * It is up to the bootloader to position the kernel and the
372 		 * initrd reasonably close to each other (i.e., within 32 GB of
373 		 * each other) so that all granule/#levels combinations can
374 		 * always access both.
375 		 */
376 		if (WARN(base < memblock_start_of_DRAM() ||
377 			 base + size > memblock_start_of_DRAM() +
378 				       linear_region_size,
379 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
380 			phys_initrd_size = 0;
381 		} else {
382 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
383 			memblock_add(base, size);
384 			memblock_reserve(base, size);
385 		}
386 	}
387 
388 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
389 		extern u16 memstart_offset_seed;
390 		u64 range = linear_region_size -
391 			    (memblock_end_of_DRAM() - memblock_start_of_DRAM());
392 
393 		/*
394 		 * If the size of the linear region exceeds, by a sufficient
395 		 * margin, the size of the region that the available physical
396 		 * memory spans, randomize the linear region as well.
397 		 */
398 		if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) {
399 			range /= ARM64_MEMSTART_ALIGN;
400 			memstart_addr -= ARM64_MEMSTART_ALIGN *
401 					 ((range * memstart_offset_seed) >> 16);
402 		}
403 	}
404 
405 	/*
406 	 * Register the kernel text, kernel data, initrd, and initial
407 	 * pagetables with memblock.
408 	 */
409 	memblock_reserve(__pa_symbol(_text), _end - _text);
410 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
411 		/* the generic initrd code expects virtual addresses */
412 		initrd_start = __phys_to_virt(phys_initrd_start);
413 		initrd_end = initrd_start + phys_initrd_size;
414 	}
415 
416 	early_init_fdt_scan_reserved_mem();
417 
418 	/* 4GB maximum for 32-bit only capable devices */
419 	if (IS_ENABLED(CONFIG_ZONE_DMA32))
420 		arm64_dma_phys_limit = max_zone_dma_phys();
421 	else
422 		arm64_dma_phys_limit = PHYS_MASK + 1;
423 
424 	reserve_crashkernel();
425 
426 	reserve_elfcorehdr();
427 
428 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
429 
430 	dma_contiguous_reserve(arm64_dma_phys_limit);
431 }
432 
433 void __init bootmem_init(void)
434 {
435 	unsigned long min, max;
436 
437 	min = PFN_UP(memblock_start_of_DRAM());
438 	max = PFN_DOWN(memblock_end_of_DRAM());
439 
440 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
441 
442 	max_pfn = max_low_pfn = max;
443 	min_low_pfn = min;
444 
445 	arm64_numa_init();
446 	/*
447 	 * Sparsemem tries to allocate bootmem in memory_present(), so must be
448 	 * done after the fixed reservations.
449 	 */
450 	memblocks_present();
451 
452 	sparse_init();
453 	zone_sizes_init(min, max);
454 
455 	memblock_dump_all();
456 }
457 
458 #ifndef CONFIG_SPARSEMEM_VMEMMAP
459 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn)
460 {
461 	struct page *start_pg, *end_pg;
462 	unsigned long pg, pgend;
463 
464 	/*
465 	 * Convert start_pfn/end_pfn to a struct page pointer.
466 	 */
467 	start_pg = pfn_to_page(start_pfn - 1) + 1;
468 	end_pg = pfn_to_page(end_pfn - 1) + 1;
469 
470 	/*
471 	 * Convert to physical addresses, and round start upwards and end
472 	 * downwards.
473 	 */
474 	pg = (unsigned long)PAGE_ALIGN(__pa(start_pg));
475 	pgend = (unsigned long)__pa(end_pg) & PAGE_MASK;
476 
477 	/*
478 	 * If there are free pages between these, free the section of the
479 	 * memmap array.
480 	 */
481 	if (pg < pgend)
482 		memblock_free(pg, pgend - pg);
483 }
484 
485 /*
486  * The mem_map array can get very big. Free the unused area of the memory map.
487  */
488 static void __init free_unused_memmap(void)
489 {
490 	unsigned long start, prev_end = 0;
491 	struct memblock_region *reg;
492 
493 	for_each_memblock(memory, reg) {
494 		start = __phys_to_pfn(reg->base);
495 
496 #ifdef CONFIG_SPARSEMEM
497 		/*
498 		 * Take care not to free memmap entries that don't exist due
499 		 * to SPARSEMEM sections which aren't present.
500 		 */
501 		start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
502 #endif
503 		/*
504 		 * If we had a previous bank, and there is a space between the
505 		 * current bank and the previous, free it.
506 		 */
507 		if (prev_end && prev_end < start)
508 			free_memmap(prev_end, start);
509 
510 		/*
511 		 * Align up here since the VM subsystem insists that the
512 		 * memmap entries are valid from the bank end aligned to
513 		 * MAX_ORDER_NR_PAGES.
514 		 */
515 		prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size),
516 				 MAX_ORDER_NR_PAGES);
517 	}
518 
519 #ifdef CONFIG_SPARSEMEM
520 	if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION))
521 		free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
522 #endif
523 }
524 #endif	/* !CONFIG_SPARSEMEM_VMEMMAP */
525 
526 /*
527  * mem_init() marks the free areas in the mem_map and tells us how much memory
528  * is free.  This is done after various parts of the system have claimed their
529  * memory after the kernel image.
530  */
531 void __init mem_init(void)
532 {
533 	if (swiotlb_force == SWIOTLB_FORCE ||
534 	    max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT))
535 		swiotlb_init(1);
536 	else
537 		swiotlb_force = SWIOTLB_NO_FORCE;
538 
539 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
540 
541 #ifndef CONFIG_SPARSEMEM_VMEMMAP
542 	free_unused_memmap();
543 #endif
544 	/* this will put all unused low memory onto the freelists */
545 	memblock_free_all();
546 
547 	mem_init_print_info(NULL);
548 
549 	/*
550 	 * Check boundaries twice: Some fundamental inconsistencies can be
551 	 * detected at build time already.
552 	 */
553 #ifdef CONFIG_COMPAT
554 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
555 #endif
556 
557 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
558 		extern int sysctl_overcommit_memory;
559 		/*
560 		 * On a machine this small we won't get anywhere without
561 		 * overcommit, so turn it on by default.
562 		 */
563 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
564 	}
565 }
566 
567 void free_initmem(void)
568 {
569 	free_reserved_area(lm_alias(__init_begin),
570 			   lm_alias(__init_end),
571 			   0, "unused kernel");
572 	/*
573 	 * Unmap the __init region but leave the VM area in place. This
574 	 * prevents the region from being reused for kernel modules, which
575 	 * is not supported by kallsyms.
576 	 */
577 	unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin));
578 }
579 
580 #ifdef CONFIG_BLK_DEV_INITRD
581 void __init free_initrd_mem(unsigned long start, unsigned long end)
582 {
583 	free_reserved_area((void *)start, (void *)end, 0, "initrd");
584 	memblock_free(__virt_to_phys(start), end - start);
585 }
586 #endif
587 
588 /*
589  * Dump out memory limit information on panic.
590  */
591 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p)
592 {
593 	if (memory_limit != PHYS_ADDR_MAX) {
594 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
595 	} else {
596 		pr_emerg("Memory Limit: none\n");
597 	}
598 	return 0;
599 }
600 
601 static struct notifier_block mem_limit_notifier = {
602 	.notifier_call = dump_mem_limit,
603 };
604 
605 static int __init register_mem_limit_dumper(void)
606 {
607 	atomic_notifier_chain_register(&panic_notifier_list,
608 				       &mem_limit_notifier);
609 	return 0;
610 }
611 __initcall(register_mem_limit_dumper);
612