1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-map-ops.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 #include <linux/hugetlb.h> 32 #include <linux/acpi_iort.h> 33 #include <linux/kmemleak.h> 34 35 #include <asm/boot.h> 36 #include <asm/fixmap.h> 37 #include <asm/kasan.h> 38 #include <asm/kernel-pgtable.h> 39 #include <asm/kvm_host.h> 40 #include <asm/memory.h> 41 #include <asm/numa.h> 42 #include <asm/sections.h> 43 #include <asm/setup.h> 44 #include <linux/sizes.h> 45 #include <asm/tlb.h> 46 #include <asm/alternative.h> 47 #include <asm/xen/swiotlb-xen.h> 48 49 /* 50 * We need to be able to catch inadvertent references to memstart_addr 51 * that occur (potentially in generic code) before arm64_memblock_init() 52 * executes, which assigns it its actual value. So use a default value 53 * that cannot be mistaken for a real physical address. 54 */ 55 s64 memstart_addr __ro_after_init = -1; 56 EXPORT_SYMBOL(memstart_addr); 57 58 /* 59 * If the corresponding config options are enabled, we create both ZONE_DMA 60 * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory 61 * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4). 62 * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory, 63 * otherwise it is empty. 64 */ 65 phys_addr_t __ro_after_init arm64_dma_phys_limit; 66 67 /* Current arm64 boot protocol requires 2MB alignment */ 68 #define CRASH_ALIGN SZ_2M 69 70 #define CRASH_ADDR_LOW_MAX arm64_dma_phys_limit 71 #define CRASH_ADDR_HIGH_MAX (PHYS_MASK + 1) 72 73 #define DEFAULT_CRASH_KERNEL_LOW_SIZE (128UL << 20) 74 75 static int __init reserve_crashkernel_low(unsigned long long low_size) 76 { 77 unsigned long long low_base; 78 79 low_base = memblock_phys_alloc_range(low_size, CRASH_ALIGN, 0, CRASH_ADDR_LOW_MAX); 80 if (!low_base) { 81 pr_err("cannot allocate crashkernel low memory (size:0x%llx).\n", low_size); 82 return -ENOMEM; 83 } 84 85 pr_info("crashkernel low memory reserved: 0x%08llx - 0x%08llx (%lld MB)\n", 86 low_base, low_base + low_size, low_size >> 20); 87 88 crashk_low_res.start = low_base; 89 crashk_low_res.end = low_base + low_size - 1; 90 insert_resource(&iomem_resource, &crashk_low_res); 91 92 return 0; 93 } 94 95 /* 96 * reserve_crashkernel() - reserves memory for crash kernel 97 * 98 * This function reserves memory area given in "crashkernel=" kernel command 99 * line parameter. The memory reserved is used by dump capture kernel when 100 * primary kernel is crashing. 101 */ 102 static void __init reserve_crashkernel(void) 103 { 104 unsigned long long crash_base, crash_size; 105 unsigned long long crash_low_size = 0; 106 unsigned long long crash_max = CRASH_ADDR_LOW_MAX; 107 char *cmdline = boot_command_line; 108 int ret; 109 bool fixed_base = false; 110 111 if (!IS_ENABLED(CONFIG_KEXEC_CORE)) 112 return; 113 114 /* crashkernel=X[@offset] */ 115 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(), 116 &crash_size, &crash_base); 117 if (ret == -ENOENT) { 118 ret = parse_crashkernel_high(cmdline, 0, &crash_size, &crash_base); 119 if (ret || !crash_size) 120 return; 121 122 /* 123 * crashkernel=Y,low can be specified or not, but invalid value 124 * is not allowed. 125 */ 126 ret = parse_crashkernel_low(cmdline, 0, &crash_low_size, &crash_base); 127 if (ret == -ENOENT) 128 crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE; 129 else if (ret) 130 return; 131 132 crash_max = CRASH_ADDR_HIGH_MAX; 133 } else if (ret || !crash_size) { 134 /* The specified value is invalid */ 135 return; 136 } 137 138 crash_size = PAGE_ALIGN(crash_size); 139 140 /* User specifies base address explicitly. */ 141 if (crash_base) { 142 fixed_base = true; 143 crash_max = crash_base + crash_size; 144 } 145 146 retry: 147 crash_base = memblock_phys_alloc_range(crash_size, CRASH_ALIGN, 148 crash_base, crash_max); 149 if (!crash_base) { 150 /* 151 * If the first attempt was for low memory, fall back to 152 * high memory, the minimum required low memory will be 153 * reserved later. 154 */ 155 if (!fixed_base && (crash_max == CRASH_ADDR_LOW_MAX)) { 156 crash_max = CRASH_ADDR_HIGH_MAX; 157 crash_low_size = DEFAULT_CRASH_KERNEL_LOW_SIZE; 158 goto retry; 159 } 160 161 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 162 crash_size); 163 return; 164 } 165 166 if ((crash_base > CRASH_ADDR_LOW_MAX - crash_low_size) && 167 crash_low_size && reserve_crashkernel_low(crash_low_size)) { 168 memblock_phys_free(crash_base, crash_size); 169 return; 170 } 171 172 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 173 crash_base, crash_base + crash_size, crash_size >> 20); 174 175 /* 176 * The crashkernel memory will be removed from the kernel linear 177 * map. Inform kmemleak so that it won't try to access it. 178 */ 179 kmemleak_ignore_phys(crash_base); 180 if (crashk_low_res.end) 181 kmemleak_ignore_phys(crashk_low_res.start); 182 183 crashk_res.start = crash_base; 184 crashk_res.end = crash_base + crash_size - 1; 185 insert_resource(&iomem_resource, &crashk_res); 186 } 187 188 /* 189 * Return the maximum physical address for a zone accessible by the given bits 190 * limit. If DRAM starts above 32-bit, expand the zone to the maximum 191 * available memory, otherwise cap it at 32-bit. 192 */ 193 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 194 { 195 phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits); 196 phys_addr_t phys_start = memblock_start_of_DRAM(); 197 198 if (phys_start > U32_MAX) 199 zone_mask = PHYS_ADDR_MAX; 200 else if (phys_start > zone_mask) 201 zone_mask = U32_MAX; 202 203 return min(zone_mask, memblock_end_of_DRAM() - 1) + 1; 204 } 205 206 static void __init zone_sizes_init(void) 207 { 208 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 209 unsigned int __maybe_unused acpi_zone_dma_bits; 210 unsigned int __maybe_unused dt_zone_dma_bits; 211 phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32); 212 213 #ifdef CONFIG_ZONE_DMA 214 acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address()); 215 dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL)); 216 zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits); 217 arm64_dma_phys_limit = max_zone_phys(zone_dma_bits); 218 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 219 #endif 220 #ifdef CONFIG_ZONE_DMA32 221 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit); 222 if (!arm64_dma_phys_limit) 223 arm64_dma_phys_limit = dma32_phys_limit; 224 #endif 225 if (!arm64_dma_phys_limit) 226 arm64_dma_phys_limit = PHYS_MASK + 1; 227 max_zone_pfns[ZONE_NORMAL] = max_pfn; 228 229 free_area_init(max_zone_pfns); 230 } 231 232 int pfn_is_map_memory(unsigned long pfn) 233 { 234 phys_addr_t addr = PFN_PHYS(pfn); 235 236 /* avoid false positives for bogus PFNs, see comment in pfn_valid() */ 237 if (PHYS_PFN(addr) != pfn) 238 return 0; 239 240 return memblock_is_map_memory(addr); 241 } 242 EXPORT_SYMBOL(pfn_is_map_memory); 243 244 static phys_addr_t memory_limit __ro_after_init = PHYS_ADDR_MAX; 245 246 /* 247 * Limit the memory size that was specified via FDT. 248 */ 249 static int __init early_mem(char *p) 250 { 251 if (!p) 252 return 1; 253 254 memory_limit = memparse(p, &p) & PAGE_MASK; 255 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 256 257 return 0; 258 } 259 early_param("mem", early_mem); 260 261 void __init arm64_memblock_init(void) 262 { 263 s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual); 264 265 /* 266 * Corner case: 52-bit VA capable systems running KVM in nVHE mode may 267 * be limited in their ability to support a linear map that exceeds 51 268 * bits of VA space, depending on the placement of the ID map. Given 269 * that the placement of the ID map may be randomized, let's simply 270 * limit the kernel's linear map to 51 bits as well if we detect this 271 * configuration. 272 */ 273 if (IS_ENABLED(CONFIG_KVM) && vabits_actual == 52 && 274 is_hyp_mode_available() && !is_kernel_in_hyp_mode()) { 275 pr_info("Capping linear region to 51 bits for KVM in nVHE mode on LVA capable hardware.\n"); 276 linear_region_size = min_t(u64, linear_region_size, BIT(51)); 277 } 278 279 /* Remove memory above our supported physical address size */ 280 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 281 282 /* 283 * Select a suitable value for the base of physical memory. 284 */ 285 memstart_addr = round_down(memblock_start_of_DRAM(), 286 ARM64_MEMSTART_ALIGN); 287 288 if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size) 289 pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n"); 290 291 /* 292 * Remove the memory that we will not be able to cover with the 293 * linear mapping. Take care not to clip the kernel which may be 294 * high in memory. 295 */ 296 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 297 __pa_symbol(_end)), ULLONG_MAX); 298 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 299 /* ensure that memstart_addr remains sufficiently aligned */ 300 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 301 ARM64_MEMSTART_ALIGN); 302 memblock_remove(0, memstart_addr); 303 } 304 305 /* 306 * If we are running with a 52-bit kernel VA config on a system that 307 * does not support it, we have to place the available physical 308 * memory in the 48-bit addressable part of the linear region, i.e., 309 * we have to move it upward. Since memstart_addr represents the 310 * physical address of PAGE_OFFSET, we have to *subtract* from it. 311 */ 312 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) 313 memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52); 314 315 /* 316 * Apply the memory limit if it was set. Since the kernel may be loaded 317 * high up in memory, add back the kernel region that must be accessible 318 * via the linear mapping. 319 */ 320 if (memory_limit != PHYS_ADDR_MAX) { 321 memblock_mem_limit_remove_map(memory_limit); 322 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 323 } 324 325 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 326 /* 327 * Add back the memory we just removed if it results in the 328 * initrd to become inaccessible via the linear mapping. 329 * Otherwise, this is a no-op 330 */ 331 u64 base = phys_initrd_start & PAGE_MASK; 332 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 333 334 /* 335 * We can only add back the initrd memory if we don't end up 336 * with more memory than we can address via the linear mapping. 337 * It is up to the bootloader to position the kernel and the 338 * initrd reasonably close to each other (i.e., within 32 GB of 339 * each other) so that all granule/#levels combinations can 340 * always access both. 341 */ 342 if (WARN(base < memblock_start_of_DRAM() || 343 base + size > memblock_start_of_DRAM() + 344 linear_region_size, 345 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 346 phys_initrd_size = 0; 347 } else { 348 memblock_add(base, size); 349 memblock_clear_nomap(base, size); 350 memblock_reserve(base, size); 351 } 352 } 353 354 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 355 extern u16 memstart_offset_seed; 356 u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1); 357 int parange = cpuid_feature_extract_unsigned_field( 358 mmfr0, ID_AA64MMFR0_EL1_PARANGE_SHIFT); 359 s64 range = linear_region_size - 360 BIT(id_aa64mmfr0_parange_to_phys_shift(parange)); 361 362 /* 363 * If the size of the linear region exceeds, by a sufficient 364 * margin, the size of the region that the physical memory can 365 * span, randomize the linear region as well. 366 */ 367 if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) { 368 range /= ARM64_MEMSTART_ALIGN; 369 memstart_addr -= ARM64_MEMSTART_ALIGN * 370 ((range * memstart_offset_seed) >> 16); 371 } 372 } 373 374 /* 375 * Register the kernel text, kernel data, initrd, and initial 376 * pagetables with memblock. 377 */ 378 memblock_reserve(__pa_symbol(_stext), _end - _stext); 379 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 380 /* the generic initrd code expects virtual addresses */ 381 initrd_start = __phys_to_virt(phys_initrd_start); 382 initrd_end = initrd_start + phys_initrd_size; 383 } 384 385 early_init_fdt_scan_reserved_mem(); 386 387 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 388 } 389 390 void __init bootmem_init(void) 391 { 392 unsigned long min, max; 393 394 min = PFN_UP(memblock_start_of_DRAM()); 395 max = PFN_DOWN(memblock_end_of_DRAM()); 396 397 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 398 399 max_pfn = max_low_pfn = max; 400 min_low_pfn = min; 401 402 arch_numa_init(); 403 404 /* 405 * must be done after arch_numa_init() which calls numa_init() to 406 * initialize node_online_map that gets used in hugetlb_cma_reserve() 407 * while allocating required CMA size across online nodes. 408 */ 409 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 410 arm64_hugetlb_cma_reserve(); 411 #endif 412 413 dma_pernuma_cma_reserve(); 414 415 kvm_hyp_reserve(); 416 417 /* 418 * sparse_init() tries to allocate memory from memblock, so must be 419 * done after the fixed reservations 420 */ 421 sparse_init(); 422 zone_sizes_init(); 423 424 /* 425 * Reserve the CMA area after arm64_dma_phys_limit was initialised. 426 */ 427 dma_contiguous_reserve(arm64_dma_phys_limit); 428 429 /* 430 * request_standard_resources() depends on crashkernel's memory being 431 * reserved, so do it here. 432 */ 433 reserve_crashkernel(); 434 435 memblock_dump_all(); 436 } 437 438 /* 439 * mem_init() marks the free areas in the mem_map and tells us how much memory 440 * is free. This is done after various parts of the system have claimed their 441 * memory after the kernel image. 442 */ 443 void __init mem_init(void) 444 { 445 swiotlb_init(max_pfn > PFN_DOWN(arm64_dma_phys_limit), SWIOTLB_VERBOSE); 446 447 /* this will put all unused low memory onto the freelists */ 448 memblock_free_all(); 449 450 /* 451 * Check boundaries twice: Some fundamental inconsistencies can be 452 * detected at build time already. 453 */ 454 #ifdef CONFIG_COMPAT 455 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 456 #endif 457 458 /* 459 * Selected page table levels should match when derived from 460 * scratch using the virtual address range and page size. 461 */ 462 BUILD_BUG_ON(ARM64_HW_PGTABLE_LEVELS(CONFIG_ARM64_VA_BITS) != 463 CONFIG_PGTABLE_LEVELS); 464 465 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 466 extern int sysctl_overcommit_memory; 467 /* 468 * On a machine this small we won't get anywhere without 469 * overcommit, so turn it on by default. 470 */ 471 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 472 } 473 } 474 475 void free_initmem(void) 476 { 477 free_reserved_area(lm_alias(__init_begin), 478 lm_alias(__init_end), 479 POISON_FREE_INITMEM, "unused kernel"); 480 /* 481 * Unmap the __init region but leave the VM area in place. This 482 * prevents the region from being reused for kernel modules, which 483 * is not supported by kallsyms. 484 */ 485 vunmap_range((u64)__init_begin, (u64)__init_end); 486 } 487 488 void dump_mem_limit(void) 489 { 490 if (memory_limit != PHYS_ADDR_MAX) { 491 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 492 } else { 493 pr_emerg("Memory Limit: none\n"); 494 } 495 } 496