1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-map-ops.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 #include <linux/hugetlb.h> 32 33 #include <asm/boot.h> 34 #include <asm/fixmap.h> 35 #include <asm/kasan.h> 36 #include <asm/kernel-pgtable.h> 37 #include <asm/memory.h> 38 #include <asm/numa.h> 39 #include <asm/sections.h> 40 #include <asm/setup.h> 41 #include <linux/sizes.h> 42 #include <asm/tlb.h> 43 #include <asm/alternative.h> 44 45 #define ARM64_ZONE_DMA_BITS 30 46 47 /* 48 * We need to be able to catch inadvertent references to memstart_addr 49 * that occur (potentially in generic code) before arm64_memblock_init() 50 * executes, which assigns it its actual value. So use a default value 51 * that cannot be mistaken for a real physical address. 52 */ 53 s64 memstart_addr __ro_after_init = -1; 54 EXPORT_SYMBOL(memstart_addr); 55 56 /* 57 * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of 58 * memory as some devices, namely the Raspberry Pi 4, have peripherals with 59 * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32 60 * bit addressable memory area. 61 */ 62 phys_addr_t arm64_dma_phys_limit __ro_after_init; 63 static phys_addr_t arm64_dma32_phys_limit __ro_after_init; 64 65 #ifdef CONFIG_KEXEC_CORE 66 /* 67 * reserve_crashkernel() - reserves memory for crash kernel 68 * 69 * This function reserves memory area given in "crashkernel=" kernel command 70 * line parameter. The memory reserved is used by dump capture kernel when 71 * primary kernel is crashing. 72 */ 73 static void __init reserve_crashkernel(void) 74 { 75 unsigned long long crash_base, crash_size; 76 int ret; 77 78 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 79 &crash_size, &crash_base); 80 /* no crashkernel= or invalid value specified */ 81 if (ret || !crash_size) 82 return; 83 84 crash_size = PAGE_ALIGN(crash_size); 85 86 if (crash_base == 0) { 87 /* Current arm64 boot protocol requires 2MB alignment */ 88 crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit, 89 crash_size, SZ_2M); 90 if (crash_base == 0) { 91 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 92 crash_size); 93 return; 94 } 95 } else { 96 /* User specifies base address explicitly. */ 97 if (!memblock_is_region_memory(crash_base, crash_size)) { 98 pr_warn("cannot reserve crashkernel: region is not memory\n"); 99 return; 100 } 101 102 if (memblock_is_region_reserved(crash_base, crash_size)) { 103 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 104 return; 105 } 106 107 if (!IS_ALIGNED(crash_base, SZ_2M)) { 108 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 109 return; 110 } 111 } 112 memblock_reserve(crash_base, crash_size); 113 114 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 115 crash_base, crash_base + crash_size, crash_size >> 20); 116 117 crashk_res.start = crash_base; 118 crashk_res.end = crash_base + crash_size - 1; 119 } 120 #else 121 static void __init reserve_crashkernel(void) 122 { 123 } 124 #endif /* CONFIG_KEXEC_CORE */ 125 126 #ifdef CONFIG_CRASH_DUMP 127 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 128 const char *uname, int depth, void *data) 129 { 130 const __be32 *reg; 131 int len; 132 133 if (depth != 1 || strcmp(uname, "chosen") != 0) 134 return 0; 135 136 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 137 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 138 return 1; 139 140 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 141 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 142 143 return 1; 144 } 145 146 /* 147 * reserve_elfcorehdr() - reserves memory for elf core header 148 * 149 * This function reserves the memory occupied by an elf core header 150 * described in the device tree. This region contains all the 151 * information about primary kernel's core image and is used by a dump 152 * capture kernel to access the system memory on primary kernel. 153 */ 154 static void __init reserve_elfcorehdr(void) 155 { 156 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 157 158 if (!elfcorehdr_size) 159 return; 160 161 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 162 pr_warn("elfcorehdr is overlapped\n"); 163 return; 164 } 165 166 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 167 168 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 169 elfcorehdr_size >> 10, elfcorehdr_addr); 170 } 171 #else 172 static void __init reserve_elfcorehdr(void) 173 { 174 } 175 #endif /* CONFIG_CRASH_DUMP */ 176 177 /* 178 * Return the maximum physical address for a zone with a given address size 179 * limit. It currently assumes that for memory starting above 4G, 32-bit 180 * devices will use a DMA offset. 181 */ 182 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 183 { 184 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits); 185 return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM()); 186 } 187 188 static void __init zone_sizes_init(unsigned long min, unsigned long max) 189 { 190 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 191 192 #ifdef CONFIG_ZONE_DMA 193 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 194 #endif 195 #ifdef CONFIG_ZONE_DMA32 196 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit); 197 #endif 198 max_zone_pfns[ZONE_NORMAL] = max; 199 200 free_area_init(max_zone_pfns); 201 } 202 203 int pfn_valid(unsigned long pfn) 204 { 205 phys_addr_t addr = pfn << PAGE_SHIFT; 206 207 if ((addr >> PAGE_SHIFT) != pfn) 208 return 0; 209 210 #ifdef CONFIG_SPARSEMEM 211 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 212 return 0; 213 214 if (!valid_section(__pfn_to_section(pfn))) 215 return 0; 216 #endif 217 return memblock_is_map_memory(addr); 218 } 219 EXPORT_SYMBOL(pfn_valid); 220 221 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 222 223 /* 224 * Limit the memory size that was specified via FDT. 225 */ 226 static int __init early_mem(char *p) 227 { 228 if (!p) 229 return 1; 230 231 memory_limit = memparse(p, &p) & PAGE_MASK; 232 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 233 234 return 0; 235 } 236 early_param("mem", early_mem); 237 238 static int __init early_init_dt_scan_usablemem(unsigned long node, 239 const char *uname, int depth, void *data) 240 { 241 struct memblock_region *usablemem = data; 242 const __be32 *reg; 243 int len; 244 245 if (depth != 1 || strcmp(uname, "chosen") != 0) 246 return 0; 247 248 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 249 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 250 return 1; 251 252 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 253 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 254 255 return 1; 256 } 257 258 static void __init fdt_enforce_memory_region(void) 259 { 260 struct memblock_region reg = { 261 .size = 0, 262 }; 263 264 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 265 266 if (reg.size) 267 memblock_cap_memory_range(reg.base, reg.size); 268 } 269 270 void __init arm64_memblock_init(void) 271 { 272 const s64 linear_region_size = BIT(vabits_actual - 1); 273 274 /* Handle linux,usable-memory-range property */ 275 fdt_enforce_memory_region(); 276 277 /* Remove memory above our supported physical address size */ 278 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 279 280 /* 281 * Select a suitable value for the base of physical memory. 282 */ 283 memstart_addr = round_down(memblock_start_of_DRAM(), 284 ARM64_MEMSTART_ALIGN); 285 286 /* 287 * Remove the memory that we will not be able to cover with the 288 * linear mapping. Take care not to clip the kernel which may be 289 * high in memory. 290 */ 291 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 292 __pa_symbol(_end)), ULLONG_MAX); 293 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 294 /* ensure that memstart_addr remains sufficiently aligned */ 295 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 296 ARM64_MEMSTART_ALIGN); 297 memblock_remove(0, memstart_addr); 298 } 299 300 /* 301 * If we are running with a 52-bit kernel VA config on a system that 302 * does not support it, we have to place the available physical 303 * memory in the 48-bit addressable part of the linear region, i.e., 304 * we have to move it upward. Since memstart_addr represents the 305 * physical address of PAGE_OFFSET, we have to *subtract* from it. 306 */ 307 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) 308 memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52); 309 310 /* 311 * Apply the memory limit if it was set. Since the kernel may be loaded 312 * high up in memory, add back the kernel region that must be accessible 313 * via the linear mapping. 314 */ 315 if (memory_limit != PHYS_ADDR_MAX) { 316 memblock_mem_limit_remove_map(memory_limit); 317 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 318 } 319 320 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 321 /* 322 * Add back the memory we just removed if it results in the 323 * initrd to become inaccessible via the linear mapping. 324 * Otherwise, this is a no-op 325 */ 326 u64 base = phys_initrd_start & PAGE_MASK; 327 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 328 329 /* 330 * We can only add back the initrd memory if we don't end up 331 * with more memory than we can address via the linear mapping. 332 * It is up to the bootloader to position the kernel and the 333 * initrd reasonably close to each other (i.e., within 32 GB of 334 * each other) so that all granule/#levels combinations can 335 * always access both. 336 */ 337 if (WARN(base < memblock_start_of_DRAM() || 338 base + size > memblock_start_of_DRAM() + 339 linear_region_size, 340 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 341 phys_initrd_size = 0; 342 } else { 343 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 344 memblock_add(base, size); 345 memblock_reserve(base, size); 346 } 347 } 348 349 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 350 extern u16 memstart_offset_seed; 351 u64 range = linear_region_size - 352 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 353 354 /* 355 * If the size of the linear region exceeds, by a sufficient 356 * margin, the size of the region that the available physical 357 * memory spans, randomize the linear region as well. 358 */ 359 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 360 range /= ARM64_MEMSTART_ALIGN; 361 memstart_addr -= ARM64_MEMSTART_ALIGN * 362 ((range * memstart_offset_seed) >> 16); 363 } 364 } 365 366 /* 367 * Register the kernel text, kernel data, initrd, and initial 368 * pagetables with memblock. 369 */ 370 memblock_reserve(__pa_symbol(_text), _end - _text); 371 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 372 /* the generic initrd code expects virtual addresses */ 373 initrd_start = __phys_to_virt(phys_initrd_start); 374 initrd_end = initrd_start + phys_initrd_size; 375 } 376 377 early_init_fdt_scan_reserved_mem(); 378 379 if (IS_ENABLED(CONFIG_ZONE_DMA)) { 380 zone_dma_bits = ARM64_ZONE_DMA_BITS; 381 arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS); 382 } 383 384 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 385 arm64_dma32_phys_limit = max_zone_phys(32); 386 else 387 arm64_dma32_phys_limit = PHYS_MASK + 1; 388 389 reserve_crashkernel(); 390 391 reserve_elfcorehdr(); 392 393 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 394 395 dma_contiguous_reserve(arm64_dma32_phys_limit); 396 } 397 398 void __init bootmem_init(void) 399 { 400 unsigned long min, max; 401 402 min = PFN_UP(memblock_start_of_DRAM()); 403 max = PFN_DOWN(memblock_end_of_DRAM()); 404 405 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 406 407 max_pfn = max_low_pfn = max; 408 min_low_pfn = min; 409 410 arm64_numa_init(); 411 412 /* 413 * must be done after arm64_numa_init() which calls numa_init() to 414 * initialize node_online_map that gets used in hugetlb_cma_reserve() 415 * while allocating required CMA size across online nodes. 416 */ 417 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA) 418 arm64_hugetlb_cma_reserve(); 419 #endif 420 421 dma_pernuma_cma_reserve(); 422 423 /* 424 * sparse_init() tries to allocate memory from memblock, so must be 425 * done after the fixed reservations 426 */ 427 sparse_init(); 428 zone_sizes_init(min, max); 429 430 memblock_dump_all(); 431 } 432 433 #ifndef CONFIG_SPARSEMEM_VMEMMAP 434 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 435 { 436 struct page *start_pg, *end_pg; 437 unsigned long pg, pgend; 438 439 /* 440 * Convert start_pfn/end_pfn to a struct page pointer. 441 */ 442 start_pg = pfn_to_page(start_pfn - 1) + 1; 443 end_pg = pfn_to_page(end_pfn - 1) + 1; 444 445 /* 446 * Convert to physical addresses, and round start upwards and end 447 * downwards. 448 */ 449 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 450 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 451 452 /* 453 * If there are free pages between these, free the section of the 454 * memmap array. 455 */ 456 if (pg < pgend) 457 memblock_free(pg, pgend - pg); 458 } 459 460 /* 461 * The mem_map array can get very big. Free the unused area of the memory map. 462 */ 463 static void __init free_unused_memmap(void) 464 { 465 unsigned long start, end, prev_end = 0; 466 int i; 467 468 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) { 469 #ifdef CONFIG_SPARSEMEM 470 /* 471 * Take care not to free memmap entries that don't exist due 472 * to SPARSEMEM sections which aren't present. 473 */ 474 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 475 #endif 476 /* 477 * If we had a previous bank, and there is a space between the 478 * current bank and the previous, free it. 479 */ 480 if (prev_end && prev_end < start) 481 free_memmap(prev_end, start); 482 483 /* 484 * Align up here since the VM subsystem insists that the 485 * memmap entries are valid from the bank end aligned to 486 * MAX_ORDER_NR_PAGES. 487 */ 488 prev_end = ALIGN(end, MAX_ORDER_NR_PAGES); 489 } 490 491 #ifdef CONFIG_SPARSEMEM 492 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 493 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 494 #endif 495 } 496 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 497 498 /* 499 * mem_init() marks the free areas in the mem_map and tells us how much memory 500 * is free. This is done after various parts of the system have claimed their 501 * memory after the kernel image. 502 */ 503 void __init mem_init(void) 504 { 505 if (swiotlb_force == SWIOTLB_FORCE || 506 max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit)) 507 swiotlb_init(1); 508 else 509 swiotlb_force = SWIOTLB_NO_FORCE; 510 511 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); 512 513 #ifndef CONFIG_SPARSEMEM_VMEMMAP 514 free_unused_memmap(); 515 #endif 516 /* this will put all unused low memory onto the freelists */ 517 memblock_free_all(); 518 519 mem_init_print_info(NULL); 520 521 /* 522 * Check boundaries twice: Some fundamental inconsistencies can be 523 * detected at build time already. 524 */ 525 #ifdef CONFIG_COMPAT 526 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 527 #endif 528 529 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 530 extern int sysctl_overcommit_memory; 531 /* 532 * On a machine this small we won't get anywhere without 533 * overcommit, so turn it on by default. 534 */ 535 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 536 } 537 } 538 539 void free_initmem(void) 540 { 541 free_reserved_area(lm_alias(__init_begin), 542 lm_alias(__init_end), 543 POISON_FREE_INITMEM, "unused kernel"); 544 /* 545 * Unmap the __init region but leave the VM area in place. This 546 * prevents the region from being reused for kernel modules, which 547 * is not supported by kallsyms. 548 */ 549 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 550 } 551 552 void dump_mem_limit(void) 553 { 554 if (memory_limit != PHYS_ADDR_MAX) { 555 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 556 } else { 557 pr_emerg("Memory Limit: none\n"); 558 } 559 } 560