1 /* 2 * Based on arch/arm/mm/init.c 3 * 4 * Copyright (C) 1995-2005 Russell King 5 * Copyright (C) 2012 ARM Ltd. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program. If not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include <linux/kernel.h> 21 #include <linux/export.h> 22 #include <linux/errno.h> 23 #include <linux/swap.h> 24 #include <linux/init.h> 25 #include <linux/cache.h> 26 #include <linux/mman.h> 27 #include <linux/nodemask.h> 28 #include <linux/initrd.h> 29 #include <linux/gfp.h> 30 #include <linux/memblock.h> 31 #include <linux/sort.h> 32 #include <linux/of.h> 33 #include <linux/of_fdt.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/dma-contiguous.h> 36 #include <linux/efi.h> 37 #include <linux/swiotlb.h> 38 #include <linux/vmalloc.h> 39 #include <linux/mm.h> 40 #include <linux/kexec.h> 41 #include <linux/crash_dump.h> 42 43 #include <asm/boot.h> 44 #include <asm/fixmap.h> 45 #include <asm/kasan.h> 46 #include <asm/kernel-pgtable.h> 47 #include <asm/memory.h> 48 #include <asm/numa.h> 49 #include <asm/sections.h> 50 #include <asm/setup.h> 51 #include <asm/sizes.h> 52 #include <asm/tlb.h> 53 #include <asm/alternative.h> 54 55 /* 56 * We need to be able to catch inadvertent references to memstart_addr 57 * that occur (potentially in generic code) before arm64_memblock_init() 58 * executes, which assigns it its actual value. So use a default value 59 * that cannot be mistaken for a real physical address. 60 */ 61 s64 memstart_addr __ro_after_init = -1; 62 EXPORT_SYMBOL(memstart_addr); 63 64 phys_addr_t arm64_dma_phys_limit __ro_after_init; 65 66 #ifdef CONFIG_KEXEC_CORE 67 /* 68 * reserve_crashkernel() - reserves memory for crash kernel 69 * 70 * This function reserves memory area given in "crashkernel=" kernel command 71 * line parameter. The memory reserved is used by dump capture kernel when 72 * primary kernel is crashing. 73 */ 74 static void __init reserve_crashkernel(void) 75 { 76 unsigned long long crash_base, crash_size; 77 int ret; 78 79 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 80 &crash_size, &crash_base); 81 /* no crashkernel= or invalid value specified */ 82 if (ret || !crash_size) 83 return; 84 85 crash_size = PAGE_ALIGN(crash_size); 86 87 if (crash_base == 0) { 88 /* Current arm64 boot protocol requires 2MB alignment */ 89 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, 90 crash_size, SZ_2M); 91 if (crash_base == 0) { 92 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 93 crash_size); 94 return; 95 } 96 } else { 97 /* User specifies base address explicitly. */ 98 if (!memblock_is_region_memory(crash_base, crash_size)) { 99 pr_warn("cannot reserve crashkernel: region is not memory\n"); 100 return; 101 } 102 103 if (memblock_is_region_reserved(crash_base, crash_size)) { 104 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 105 return; 106 } 107 108 if (!IS_ALIGNED(crash_base, SZ_2M)) { 109 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 110 return; 111 } 112 } 113 memblock_reserve(crash_base, crash_size); 114 115 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 116 crash_base, crash_base + crash_size, crash_size >> 20); 117 118 crashk_res.start = crash_base; 119 crashk_res.end = crash_base + crash_size - 1; 120 } 121 122 static void __init kexec_reserve_crashkres_pages(void) 123 { 124 #ifdef CONFIG_HIBERNATION 125 phys_addr_t addr; 126 struct page *page; 127 128 if (!crashk_res.end) 129 return; 130 131 /* 132 * To reduce the size of hibernation image, all the pages are 133 * marked as Reserved initially. 134 */ 135 for (addr = crashk_res.start; addr < (crashk_res.end + 1); 136 addr += PAGE_SIZE) { 137 page = phys_to_page(addr); 138 SetPageReserved(page); 139 } 140 #endif 141 } 142 #else 143 static void __init reserve_crashkernel(void) 144 { 145 } 146 147 static void __init kexec_reserve_crashkres_pages(void) 148 { 149 } 150 #endif /* CONFIG_KEXEC_CORE */ 151 152 #ifdef CONFIG_CRASH_DUMP 153 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 154 const char *uname, int depth, void *data) 155 { 156 const __be32 *reg; 157 int len; 158 159 if (depth != 1 || strcmp(uname, "chosen") != 0) 160 return 0; 161 162 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 163 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 164 return 1; 165 166 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 167 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 168 169 return 1; 170 } 171 172 /* 173 * reserve_elfcorehdr() - reserves memory for elf core header 174 * 175 * This function reserves the memory occupied by an elf core header 176 * described in the device tree. This region contains all the 177 * information about primary kernel's core image and is used by a dump 178 * capture kernel to access the system memory on primary kernel. 179 */ 180 static void __init reserve_elfcorehdr(void) 181 { 182 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 183 184 if (!elfcorehdr_size) 185 return; 186 187 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 188 pr_warn("elfcorehdr is overlapped\n"); 189 return; 190 } 191 192 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 193 194 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 195 elfcorehdr_size >> 10, elfcorehdr_addr); 196 } 197 #else 198 static void __init reserve_elfcorehdr(void) 199 { 200 } 201 #endif /* CONFIG_CRASH_DUMP */ 202 /* 203 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It 204 * currently assumes that for memory starting above 4G, 32-bit devices will 205 * use a DMA offset. 206 */ 207 static phys_addr_t __init max_zone_dma_phys(void) 208 { 209 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); 210 return min(offset + (1ULL << 32), memblock_end_of_DRAM()); 211 } 212 213 #ifdef CONFIG_NUMA 214 215 static void __init zone_sizes_init(unsigned long min, unsigned long max) 216 { 217 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 218 219 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 220 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); 221 max_zone_pfns[ZONE_NORMAL] = max; 222 223 free_area_init_nodes(max_zone_pfns); 224 } 225 226 #else 227 228 static void __init zone_sizes_init(unsigned long min, unsigned long max) 229 { 230 struct memblock_region *reg; 231 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 232 unsigned long max_dma = min; 233 234 memset(zone_size, 0, sizeof(zone_size)); 235 236 /* 4GB maximum for 32-bit only capable devices */ 237 #ifdef CONFIG_ZONE_DMA32 238 max_dma = PFN_DOWN(arm64_dma_phys_limit); 239 zone_size[ZONE_DMA32] = max_dma - min; 240 #endif 241 zone_size[ZONE_NORMAL] = max - max_dma; 242 243 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 244 245 for_each_memblock(memory, reg) { 246 unsigned long start = memblock_region_memory_base_pfn(reg); 247 unsigned long end = memblock_region_memory_end_pfn(reg); 248 249 if (start >= max) 250 continue; 251 252 #ifdef CONFIG_ZONE_DMA32 253 if (start < max_dma) { 254 unsigned long dma_end = min(end, max_dma); 255 zhole_size[ZONE_DMA32] -= dma_end - start; 256 } 257 #endif 258 if (end > max_dma) { 259 unsigned long normal_end = min(end, max); 260 unsigned long normal_start = max(start, max_dma); 261 zhole_size[ZONE_NORMAL] -= normal_end - normal_start; 262 } 263 } 264 265 free_area_init_node(0, zone_size, min, zhole_size); 266 } 267 268 #endif /* CONFIG_NUMA */ 269 270 int pfn_valid(unsigned long pfn) 271 { 272 phys_addr_t addr = pfn << PAGE_SHIFT; 273 274 if ((addr >> PAGE_SHIFT) != pfn) 275 return 0; 276 277 #ifdef CONFIG_SPARSEMEM 278 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 279 return 0; 280 281 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn)))) 282 return 0; 283 #endif 284 return memblock_is_map_memory(addr); 285 } 286 EXPORT_SYMBOL(pfn_valid); 287 288 #ifndef CONFIG_SPARSEMEM 289 static void __init arm64_memory_present(void) 290 { 291 } 292 #else 293 static void __init arm64_memory_present(void) 294 { 295 struct memblock_region *reg; 296 297 for_each_memblock(memory, reg) { 298 int nid = memblock_get_region_node(reg); 299 300 memory_present(nid, memblock_region_memory_base_pfn(reg), 301 memblock_region_memory_end_pfn(reg)); 302 } 303 } 304 #endif 305 306 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 307 308 /* 309 * Limit the memory size that was specified via FDT. 310 */ 311 static int __init early_mem(char *p) 312 { 313 if (!p) 314 return 1; 315 316 memory_limit = memparse(p, &p) & PAGE_MASK; 317 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 318 319 return 0; 320 } 321 early_param("mem", early_mem); 322 323 static int __init early_init_dt_scan_usablemem(unsigned long node, 324 const char *uname, int depth, void *data) 325 { 326 struct memblock_region *usablemem = data; 327 const __be32 *reg; 328 int len; 329 330 if (depth != 1 || strcmp(uname, "chosen") != 0) 331 return 0; 332 333 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 334 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 335 return 1; 336 337 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 338 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 339 340 return 1; 341 } 342 343 static void __init fdt_enforce_memory_region(void) 344 { 345 struct memblock_region reg = { 346 .size = 0, 347 }; 348 349 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 350 351 if (reg.size) 352 memblock_cap_memory_range(reg.base, reg.size); 353 } 354 355 void __init arm64_memblock_init(void) 356 { 357 const s64 linear_region_size = -(s64)PAGE_OFFSET; 358 359 /* Handle linux,usable-memory-range property */ 360 fdt_enforce_memory_region(); 361 362 /* Remove memory above our supported physical address size */ 363 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 364 365 /* 366 * Ensure that the linear region takes up exactly half of the kernel 367 * virtual address space. This way, we can distinguish a linear address 368 * from a kernel/module/vmalloc address by testing a single bit. 369 */ 370 BUILD_BUG_ON(linear_region_size != BIT(VA_BITS - 1)); 371 372 /* 373 * Select a suitable value for the base of physical memory. 374 */ 375 memstart_addr = round_down(memblock_start_of_DRAM(), 376 ARM64_MEMSTART_ALIGN); 377 378 /* 379 * Remove the memory that we will not be able to cover with the 380 * linear mapping. Take care not to clip the kernel which may be 381 * high in memory. 382 */ 383 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 384 __pa_symbol(_end)), ULLONG_MAX); 385 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 386 /* ensure that memstart_addr remains sufficiently aligned */ 387 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 388 ARM64_MEMSTART_ALIGN); 389 memblock_remove(0, memstart_addr); 390 } 391 392 /* 393 * Apply the memory limit if it was set. Since the kernel may be loaded 394 * high up in memory, add back the kernel region that must be accessible 395 * via the linear mapping. 396 */ 397 if (memory_limit != PHYS_ADDR_MAX) { 398 memblock_mem_limit_remove_map(memory_limit); 399 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 400 } 401 402 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 403 /* 404 * Add back the memory we just removed if it results in the 405 * initrd to become inaccessible via the linear mapping. 406 * Otherwise, this is a no-op 407 */ 408 u64 base = phys_initrd_start & PAGE_MASK; 409 u64 size = PAGE_ALIGN(phys_initrd_size); 410 411 /* 412 * We can only add back the initrd memory if we don't end up 413 * with more memory than we can address via the linear mapping. 414 * It is up to the bootloader to position the kernel and the 415 * initrd reasonably close to each other (i.e., within 32 GB of 416 * each other) so that all granule/#levels combinations can 417 * always access both. 418 */ 419 if (WARN(base < memblock_start_of_DRAM() || 420 base + size > memblock_start_of_DRAM() + 421 linear_region_size, 422 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 423 initrd_start = 0; 424 } else { 425 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 426 memblock_add(base, size); 427 memblock_reserve(base, size); 428 } 429 } 430 431 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 432 extern u16 memstart_offset_seed; 433 u64 range = linear_region_size - 434 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 435 436 /* 437 * If the size of the linear region exceeds, by a sufficient 438 * margin, the size of the region that the available physical 439 * memory spans, randomize the linear region as well. 440 */ 441 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 442 range /= ARM64_MEMSTART_ALIGN; 443 memstart_addr -= ARM64_MEMSTART_ALIGN * 444 ((range * memstart_offset_seed) >> 16); 445 } 446 } 447 448 /* 449 * Register the kernel text, kernel data, initrd, and initial 450 * pagetables with memblock. 451 */ 452 memblock_reserve(__pa_symbol(_text), _end - _text); 453 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 454 /* the generic initrd code expects virtual addresses */ 455 initrd_start = __phys_to_virt(phys_initrd_start); 456 initrd_end = initrd_start + phys_initrd_size; 457 } 458 459 early_init_fdt_scan_reserved_mem(); 460 461 /* 4GB maximum for 32-bit only capable devices */ 462 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 463 arm64_dma_phys_limit = max_zone_dma_phys(); 464 else 465 arm64_dma_phys_limit = PHYS_MASK + 1; 466 467 reserve_crashkernel(); 468 469 reserve_elfcorehdr(); 470 471 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 472 473 dma_contiguous_reserve(arm64_dma_phys_limit); 474 } 475 476 void __init bootmem_init(void) 477 { 478 unsigned long min, max; 479 480 min = PFN_UP(memblock_start_of_DRAM()); 481 max = PFN_DOWN(memblock_end_of_DRAM()); 482 483 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 484 485 max_pfn = max_low_pfn = max; 486 487 arm64_numa_init(); 488 /* 489 * Sparsemem tries to allocate bootmem in memory_present(), so must be 490 * done after the fixed reservations. 491 */ 492 arm64_memory_present(); 493 494 sparse_init(); 495 zone_sizes_init(min, max); 496 497 memblock_dump_all(); 498 } 499 500 #ifndef CONFIG_SPARSEMEM_VMEMMAP 501 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 502 { 503 struct page *start_pg, *end_pg; 504 unsigned long pg, pgend; 505 506 /* 507 * Convert start_pfn/end_pfn to a struct page pointer. 508 */ 509 start_pg = pfn_to_page(start_pfn - 1) + 1; 510 end_pg = pfn_to_page(end_pfn - 1) + 1; 511 512 /* 513 * Convert to physical addresses, and round start upwards and end 514 * downwards. 515 */ 516 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 517 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 518 519 /* 520 * If there are free pages between these, free the section of the 521 * memmap array. 522 */ 523 if (pg < pgend) 524 memblock_free(pg, pgend - pg); 525 } 526 527 /* 528 * The mem_map array can get very big. Free the unused area of the memory map. 529 */ 530 static void __init free_unused_memmap(void) 531 { 532 unsigned long start, prev_end = 0; 533 struct memblock_region *reg; 534 535 for_each_memblock(memory, reg) { 536 start = __phys_to_pfn(reg->base); 537 538 #ifdef CONFIG_SPARSEMEM 539 /* 540 * Take care not to free memmap entries that don't exist due 541 * to SPARSEMEM sections which aren't present. 542 */ 543 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 544 #endif 545 /* 546 * If we had a previous bank, and there is a space between the 547 * current bank and the previous, free it. 548 */ 549 if (prev_end && prev_end < start) 550 free_memmap(prev_end, start); 551 552 /* 553 * Align up here since the VM subsystem insists that the 554 * memmap entries are valid from the bank end aligned to 555 * MAX_ORDER_NR_PAGES. 556 */ 557 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 558 MAX_ORDER_NR_PAGES); 559 } 560 561 #ifdef CONFIG_SPARSEMEM 562 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 563 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 564 #endif 565 } 566 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 567 568 /* 569 * mem_init() marks the free areas in the mem_map and tells us how much memory 570 * is free. This is done after various parts of the system have claimed their 571 * memory after the kernel image. 572 */ 573 void __init mem_init(void) 574 { 575 if (swiotlb_force == SWIOTLB_FORCE || 576 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 577 swiotlb_init(1); 578 else 579 swiotlb_force = SWIOTLB_NO_FORCE; 580 581 set_max_mapnr(pfn_to_page(max_pfn) - mem_map); 582 583 #ifndef CONFIG_SPARSEMEM_VMEMMAP 584 free_unused_memmap(); 585 #endif 586 /* this will put all unused low memory onto the freelists */ 587 memblock_free_all(); 588 589 kexec_reserve_crashkres_pages(); 590 591 mem_init_print_info(NULL); 592 593 /* 594 * Check boundaries twice: Some fundamental inconsistencies can be 595 * detected at build time already. 596 */ 597 #ifdef CONFIG_COMPAT 598 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 599 #endif 600 601 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 602 extern int sysctl_overcommit_memory; 603 /* 604 * On a machine this small we won't get anywhere without 605 * overcommit, so turn it on by default. 606 */ 607 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 608 } 609 } 610 611 void free_initmem(void) 612 { 613 free_reserved_area(lm_alias(__init_begin), 614 lm_alias(__init_end), 615 0, "unused kernel"); 616 /* 617 * Unmap the __init region but leave the VM area in place. This 618 * prevents the region from being reused for kernel modules, which 619 * is not supported by kallsyms. 620 */ 621 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 622 } 623 624 #ifdef CONFIG_BLK_DEV_INITRD 625 626 static int keep_initrd __initdata; 627 628 void __init free_initrd_mem(unsigned long start, unsigned long end) 629 { 630 if (!keep_initrd) { 631 free_reserved_area((void *)start, (void *)end, 0, "initrd"); 632 memblock_free(__virt_to_phys(start), end - start); 633 } 634 } 635 636 static int __init keepinitrd_setup(char *__unused) 637 { 638 keep_initrd = 1; 639 return 1; 640 } 641 642 __setup("keepinitrd", keepinitrd_setup); 643 #endif 644 645 /* 646 * Dump out memory limit information on panic. 647 */ 648 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 649 { 650 if (memory_limit != PHYS_ADDR_MAX) { 651 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 652 } else { 653 pr_emerg("Memory Limit: none\n"); 654 } 655 return 0; 656 } 657 658 static struct notifier_block mem_limit_notifier = { 659 .notifier_call = dump_mem_limit, 660 }; 661 662 static int __init register_mem_limit_dumper(void) 663 { 664 atomic_notifier_chain_register(&panic_notifier_list, 665 &mem_limit_notifier); 666 return 0; 667 } 668 __initcall(register_mem_limit_dumper); 669