1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dma-contiguous.h> 25 #include <linux/efi.h> 26 #include <linux/swiotlb.h> 27 #include <linux/vmalloc.h> 28 #include <linux/mm.h> 29 #include <linux/kexec.h> 30 #include <linux/crash_dump.h> 31 32 #include <asm/boot.h> 33 #include <asm/fixmap.h> 34 #include <asm/kasan.h> 35 #include <asm/kernel-pgtable.h> 36 #include <asm/memory.h> 37 #include <asm/numa.h> 38 #include <asm/sections.h> 39 #include <asm/setup.h> 40 #include <linux/sizes.h> 41 #include <asm/tlb.h> 42 #include <asm/alternative.h> 43 44 /* 45 * We need to be able to catch inadvertent references to memstart_addr 46 * that occur (potentially in generic code) before arm64_memblock_init() 47 * executes, which assigns it its actual value. So use a default value 48 * that cannot be mistaken for a real physical address. 49 */ 50 s64 memstart_addr __ro_after_init = -1; 51 EXPORT_SYMBOL(memstart_addr); 52 53 s64 physvirt_offset __ro_after_init; 54 EXPORT_SYMBOL(physvirt_offset); 55 56 struct page *vmemmap __ro_after_init; 57 EXPORT_SYMBOL(vmemmap); 58 59 phys_addr_t arm64_dma_phys_limit __ro_after_init; 60 61 #ifdef CONFIG_KEXEC_CORE 62 /* 63 * reserve_crashkernel() - reserves memory for crash kernel 64 * 65 * This function reserves memory area given in "crashkernel=" kernel command 66 * line parameter. The memory reserved is used by dump capture kernel when 67 * primary kernel is crashing. 68 */ 69 static void __init reserve_crashkernel(void) 70 { 71 unsigned long long crash_base, crash_size; 72 int ret; 73 74 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 75 &crash_size, &crash_base); 76 /* no crashkernel= or invalid value specified */ 77 if (ret || !crash_size) 78 return; 79 80 crash_size = PAGE_ALIGN(crash_size); 81 82 if (crash_base == 0) { 83 /* Current arm64 boot protocol requires 2MB alignment */ 84 crash_base = memblock_find_in_range(0, ARCH_LOW_ADDRESS_LIMIT, 85 crash_size, SZ_2M); 86 if (crash_base == 0) { 87 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 88 crash_size); 89 return; 90 } 91 } else { 92 /* User specifies base address explicitly. */ 93 if (!memblock_is_region_memory(crash_base, crash_size)) { 94 pr_warn("cannot reserve crashkernel: region is not memory\n"); 95 return; 96 } 97 98 if (memblock_is_region_reserved(crash_base, crash_size)) { 99 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 100 return; 101 } 102 103 if (!IS_ALIGNED(crash_base, SZ_2M)) { 104 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 105 return; 106 } 107 } 108 memblock_reserve(crash_base, crash_size); 109 110 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 111 crash_base, crash_base + crash_size, crash_size >> 20); 112 113 crashk_res.start = crash_base; 114 crashk_res.end = crash_base + crash_size - 1; 115 } 116 #else 117 static void __init reserve_crashkernel(void) 118 { 119 } 120 #endif /* CONFIG_KEXEC_CORE */ 121 122 #ifdef CONFIG_CRASH_DUMP 123 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 124 const char *uname, int depth, void *data) 125 { 126 const __be32 *reg; 127 int len; 128 129 if (depth != 1 || strcmp(uname, "chosen") != 0) 130 return 0; 131 132 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 133 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 134 return 1; 135 136 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 137 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 138 139 return 1; 140 } 141 142 /* 143 * reserve_elfcorehdr() - reserves memory for elf core header 144 * 145 * This function reserves the memory occupied by an elf core header 146 * described in the device tree. This region contains all the 147 * information about primary kernel's core image and is used by a dump 148 * capture kernel to access the system memory on primary kernel. 149 */ 150 static void __init reserve_elfcorehdr(void) 151 { 152 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 153 154 if (!elfcorehdr_size) 155 return; 156 157 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 158 pr_warn("elfcorehdr is overlapped\n"); 159 return; 160 } 161 162 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 163 164 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 165 elfcorehdr_size >> 10, elfcorehdr_addr); 166 } 167 #else 168 static void __init reserve_elfcorehdr(void) 169 { 170 } 171 #endif /* CONFIG_CRASH_DUMP */ 172 /* 173 * Return the maximum physical address for ZONE_DMA32 (DMA_BIT_MASK(32)). It 174 * currently assumes that for memory starting above 4G, 32-bit devices will 175 * use a DMA offset. 176 */ 177 static phys_addr_t __init max_zone_dma_phys(void) 178 { 179 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, 32); 180 return min(offset + (1ULL << 32), memblock_end_of_DRAM()); 181 } 182 183 #ifdef CONFIG_NUMA 184 185 static void __init zone_sizes_init(unsigned long min, unsigned long max) 186 { 187 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 188 189 #ifdef CONFIG_ZONE_DMA32 190 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(max_zone_dma_phys()); 191 #endif 192 max_zone_pfns[ZONE_NORMAL] = max; 193 194 free_area_init_nodes(max_zone_pfns); 195 } 196 197 #else 198 199 static void __init zone_sizes_init(unsigned long min, unsigned long max) 200 { 201 struct memblock_region *reg; 202 unsigned long zone_size[MAX_NR_ZONES], zhole_size[MAX_NR_ZONES]; 203 unsigned long max_dma = min; 204 205 memset(zone_size, 0, sizeof(zone_size)); 206 207 /* 4GB maximum for 32-bit only capable devices */ 208 #ifdef CONFIG_ZONE_DMA32 209 max_dma = PFN_DOWN(arm64_dma_phys_limit); 210 zone_size[ZONE_DMA32] = max_dma - min; 211 #endif 212 zone_size[ZONE_NORMAL] = max - max_dma; 213 214 memcpy(zhole_size, zone_size, sizeof(zhole_size)); 215 216 for_each_memblock(memory, reg) { 217 unsigned long start = memblock_region_memory_base_pfn(reg); 218 unsigned long end = memblock_region_memory_end_pfn(reg); 219 220 if (start >= max) 221 continue; 222 223 #ifdef CONFIG_ZONE_DMA32 224 if (start < max_dma) { 225 unsigned long dma_end = min(end, max_dma); 226 zhole_size[ZONE_DMA32] -= dma_end - start; 227 } 228 #endif 229 if (end > max_dma) { 230 unsigned long normal_end = min(end, max); 231 unsigned long normal_start = max(start, max_dma); 232 zhole_size[ZONE_NORMAL] -= normal_end - normal_start; 233 } 234 } 235 236 free_area_init_node(0, zone_size, min, zhole_size); 237 } 238 239 #endif /* CONFIG_NUMA */ 240 241 int pfn_valid(unsigned long pfn) 242 { 243 phys_addr_t addr = pfn << PAGE_SHIFT; 244 245 if ((addr >> PAGE_SHIFT) != pfn) 246 return 0; 247 248 #ifdef CONFIG_SPARSEMEM 249 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 250 return 0; 251 252 if (!valid_section(__nr_to_section(pfn_to_section_nr(pfn)))) 253 return 0; 254 #endif 255 return memblock_is_map_memory(addr); 256 } 257 EXPORT_SYMBOL(pfn_valid); 258 259 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 260 261 /* 262 * Limit the memory size that was specified via FDT. 263 */ 264 static int __init early_mem(char *p) 265 { 266 if (!p) 267 return 1; 268 269 memory_limit = memparse(p, &p) & PAGE_MASK; 270 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 271 272 return 0; 273 } 274 early_param("mem", early_mem); 275 276 static int __init early_init_dt_scan_usablemem(unsigned long node, 277 const char *uname, int depth, void *data) 278 { 279 struct memblock_region *usablemem = data; 280 const __be32 *reg; 281 int len; 282 283 if (depth != 1 || strcmp(uname, "chosen") != 0) 284 return 0; 285 286 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 287 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 288 return 1; 289 290 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 291 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 292 293 return 1; 294 } 295 296 static void __init fdt_enforce_memory_region(void) 297 { 298 struct memblock_region reg = { 299 .size = 0, 300 }; 301 302 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 303 304 if (reg.size) 305 memblock_cap_memory_range(reg.base, reg.size); 306 } 307 308 void __init arm64_memblock_init(void) 309 { 310 const s64 linear_region_size = BIT(vabits_actual - 1); 311 312 /* Handle linux,usable-memory-range property */ 313 fdt_enforce_memory_region(); 314 315 /* Remove memory above our supported physical address size */ 316 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 317 318 /* 319 * Select a suitable value for the base of physical memory. 320 */ 321 memstart_addr = round_down(memblock_start_of_DRAM(), 322 ARM64_MEMSTART_ALIGN); 323 324 physvirt_offset = PHYS_OFFSET - PAGE_OFFSET; 325 326 vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)); 327 328 /* 329 * If we are running with a 52-bit kernel VA config on a system that 330 * does not support it, we have to offset our vmemmap and physvirt_offset 331 * s.t. we avoid the 52-bit portion of the direct linear map 332 */ 333 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) { 334 vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT; 335 physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48); 336 } 337 338 /* 339 * Remove the memory that we will not be able to cover with the 340 * linear mapping. Take care not to clip the kernel which may be 341 * high in memory. 342 */ 343 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 344 __pa_symbol(_end)), ULLONG_MAX); 345 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 346 /* ensure that memstart_addr remains sufficiently aligned */ 347 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 348 ARM64_MEMSTART_ALIGN); 349 memblock_remove(0, memstart_addr); 350 } 351 352 /* 353 * Apply the memory limit if it was set. Since the kernel may be loaded 354 * high up in memory, add back the kernel region that must be accessible 355 * via the linear mapping. 356 */ 357 if (memory_limit != PHYS_ADDR_MAX) { 358 memblock_mem_limit_remove_map(memory_limit); 359 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 360 } 361 362 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 363 /* 364 * Add back the memory we just removed if it results in the 365 * initrd to become inaccessible via the linear mapping. 366 * Otherwise, this is a no-op 367 */ 368 u64 base = phys_initrd_start & PAGE_MASK; 369 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 370 371 /* 372 * We can only add back the initrd memory if we don't end up 373 * with more memory than we can address via the linear mapping. 374 * It is up to the bootloader to position the kernel and the 375 * initrd reasonably close to each other (i.e., within 32 GB of 376 * each other) so that all granule/#levels combinations can 377 * always access both. 378 */ 379 if (WARN(base < memblock_start_of_DRAM() || 380 base + size > memblock_start_of_DRAM() + 381 linear_region_size, 382 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 383 phys_initrd_size = 0; 384 } else { 385 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 386 memblock_add(base, size); 387 memblock_reserve(base, size); 388 } 389 } 390 391 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 392 extern u16 memstart_offset_seed; 393 u64 range = linear_region_size - 394 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 395 396 /* 397 * If the size of the linear region exceeds, by a sufficient 398 * margin, the size of the region that the available physical 399 * memory spans, randomize the linear region as well. 400 */ 401 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 402 range /= ARM64_MEMSTART_ALIGN; 403 memstart_addr -= ARM64_MEMSTART_ALIGN * 404 ((range * memstart_offset_seed) >> 16); 405 } 406 } 407 408 /* 409 * Register the kernel text, kernel data, initrd, and initial 410 * pagetables with memblock. 411 */ 412 memblock_reserve(__pa_symbol(_text), _end - _text); 413 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 414 /* the generic initrd code expects virtual addresses */ 415 initrd_start = __phys_to_virt(phys_initrd_start); 416 initrd_end = initrd_start + phys_initrd_size; 417 } 418 419 early_init_fdt_scan_reserved_mem(); 420 421 /* 4GB maximum for 32-bit only capable devices */ 422 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 423 arm64_dma_phys_limit = max_zone_dma_phys(); 424 else 425 arm64_dma_phys_limit = PHYS_MASK + 1; 426 427 reserve_crashkernel(); 428 429 reserve_elfcorehdr(); 430 431 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 432 433 dma_contiguous_reserve(arm64_dma_phys_limit); 434 } 435 436 void __init bootmem_init(void) 437 { 438 unsigned long min, max; 439 440 min = PFN_UP(memblock_start_of_DRAM()); 441 max = PFN_DOWN(memblock_end_of_DRAM()); 442 443 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 444 445 max_pfn = max_low_pfn = max; 446 min_low_pfn = min; 447 448 arm64_numa_init(); 449 /* 450 * Sparsemem tries to allocate bootmem in memory_present(), so must be 451 * done after the fixed reservations. 452 */ 453 memblocks_present(); 454 455 sparse_init(); 456 zone_sizes_init(min, max); 457 458 memblock_dump_all(); 459 } 460 461 #ifndef CONFIG_SPARSEMEM_VMEMMAP 462 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 463 { 464 struct page *start_pg, *end_pg; 465 unsigned long pg, pgend; 466 467 /* 468 * Convert start_pfn/end_pfn to a struct page pointer. 469 */ 470 start_pg = pfn_to_page(start_pfn - 1) + 1; 471 end_pg = pfn_to_page(end_pfn - 1) + 1; 472 473 /* 474 * Convert to physical addresses, and round start upwards and end 475 * downwards. 476 */ 477 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 478 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 479 480 /* 481 * If there are free pages between these, free the section of the 482 * memmap array. 483 */ 484 if (pg < pgend) 485 memblock_free(pg, pgend - pg); 486 } 487 488 /* 489 * The mem_map array can get very big. Free the unused area of the memory map. 490 */ 491 static void __init free_unused_memmap(void) 492 { 493 unsigned long start, prev_end = 0; 494 struct memblock_region *reg; 495 496 for_each_memblock(memory, reg) { 497 start = __phys_to_pfn(reg->base); 498 499 #ifdef CONFIG_SPARSEMEM 500 /* 501 * Take care not to free memmap entries that don't exist due 502 * to SPARSEMEM sections which aren't present. 503 */ 504 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 505 #endif 506 /* 507 * If we had a previous bank, and there is a space between the 508 * current bank and the previous, free it. 509 */ 510 if (prev_end && prev_end < start) 511 free_memmap(prev_end, start); 512 513 /* 514 * Align up here since the VM subsystem insists that the 515 * memmap entries are valid from the bank end aligned to 516 * MAX_ORDER_NR_PAGES. 517 */ 518 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 519 MAX_ORDER_NR_PAGES); 520 } 521 522 #ifdef CONFIG_SPARSEMEM 523 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 524 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 525 #endif 526 } 527 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 528 529 /* 530 * mem_init() marks the free areas in the mem_map and tells us how much memory 531 * is free. This is done after various parts of the system have claimed their 532 * memory after the kernel image. 533 */ 534 void __init mem_init(void) 535 { 536 if (swiotlb_force == SWIOTLB_FORCE || 537 max_pfn > (arm64_dma_phys_limit >> PAGE_SHIFT)) 538 swiotlb_init(1); 539 else 540 swiotlb_force = SWIOTLB_NO_FORCE; 541 542 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); 543 544 #ifndef CONFIG_SPARSEMEM_VMEMMAP 545 free_unused_memmap(); 546 #endif 547 /* this will put all unused low memory onto the freelists */ 548 memblock_free_all(); 549 550 mem_init_print_info(NULL); 551 552 /* 553 * Check boundaries twice: Some fundamental inconsistencies can be 554 * detected at build time already. 555 */ 556 #ifdef CONFIG_COMPAT 557 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 558 #endif 559 560 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 561 extern int sysctl_overcommit_memory; 562 /* 563 * On a machine this small we won't get anywhere without 564 * overcommit, so turn it on by default. 565 */ 566 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 567 } 568 } 569 570 void free_initmem(void) 571 { 572 free_reserved_area(lm_alias(__init_begin), 573 lm_alias(__init_end), 574 0, "unused kernel"); 575 /* 576 * Unmap the __init region but leave the VM area in place. This 577 * prevents the region from being reused for kernel modules, which 578 * is not supported by kallsyms. 579 */ 580 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 581 } 582 583 #ifdef CONFIG_BLK_DEV_INITRD 584 void __init free_initrd_mem(unsigned long start, unsigned long end) 585 { 586 unsigned long aligned_start, aligned_end; 587 588 aligned_start = __virt_to_phys(start) & PAGE_MASK; 589 aligned_end = PAGE_ALIGN(__virt_to_phys(end)); 590 memblock_free(aligned_start, aligned_end - aligned_start); 591 free_reserved_area((void *)start, (void *)end, 0, "initrd"); 592 } 593 #endif 594 595 /* 596 * Dump out memory limit information on panic. 597 */ 598 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 599 { 600 if (memory_limit != PHYS_ADDR_MAX) { 601 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 602 } else { 603 pr_emerg("Memory Limit: none\n"); 604 } 605 return 0; 606 } 607 608 static struct notifier_block mem_limit_notifier = { 609 .notifier_call = dump_mem_limit, 610 }; 611 612 static int __init register_mem_limit_dumper(void) 613 { 614 atomic_notifier_chain_register(&panic_notifier_list, 615 &mem_limit_notifier); 616 return 0; 617 } 618 __initcall(register_mem_limit_dumper); 619