xref: /openbmc/linux/arch/arm64/mm/init.c (revision 06c6fad9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/init.c
4  *
5  * Copyright (C) 1995-2005 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/export.h>
11 #include <linux/errno.h>
12 #include <linux/swap.h>
13 #include <linux/init.h>
14 #include <linux/cache.h>
15 #include <linux/mman.h>
16 #include <linux/nodemask.h>
17 #include <linux/initrd.h>
18 #include <linux/gfp.h>
19 #include <linux/memblock.h>
20 #include <linux/sort.h>
21 #include <linux/of.h>
22 #include <linux/of_fdt.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-map-ops.h>
25 #include <linux/efi.h>
26 #include <linux/swiotlb.h>
27 #include <linux/vmalloc.h>
28 #include <linux/mm.h>
29 #include <linux/kexec.h>
30 #include <linux/crash_dump.h>
31 #include <linux/hugetlb.h>
32 #include <linux/acpi_iort.h>
33 
34 #include <asm/boot.h>
35 #include <asm/fixmap.h>
36 #include <asm/kasan.h>
37 #include <asm/kernel-pgtable.h>
38 #include <asm/kvm_host.h>
39 #include <asm/memory.h>
40 #include <asm/numa.h>
41 #include <asm/sections.h>
42 #include <asm/setup.h>
43 #include <linux/sizes.h>
44 #include <asm/tlb.h>
45 #include <asm/alternative.h>
46 #include <asm/xen/swiotlb-xen.h>
47 
48 /*
49  * We need to be able to catch inadvertent references to memstart_addr
50  * that occur (potentially in generic code) before arm64_memblock_init()
51  * executes, which assigns it its actual value. So use a default value
52  * that cannot be mistaken for a real physical address.
53  */
54 s64 memstart_addr __ro_after_init = -1;
55 EXPORT_SYMBOL(memstart_addr);
56 
57 /*
58  * If the corresponding config options are enabled, we create both ZONE_DMA
59  * and ZONE_DMA32. By default ZONE_DMA covers the 32-bit addressable memory
60  * unless restricted on specific platforms (e.g. 30-bit on Raspberry Pi 4).
61  * In such case, ZONE_DMA32 covers the rest of the 32-bit addressable memory,
62  * otherwise it is empty.
63  */
64 phys_addr_t arm64_dma_phys_limit __ro_after_init;
65 
66 #ifdef CONFIG_KEXEC_CORE
67 /*
68  * reserve_crashkernel() - reserves memory for crash kernel
69  *
70  * This function reserves memory area given in "crashkernel=" kernel command
71  * line parameter. The memory reserved is used by dump capture kernel when
72  * primary kernel is crashing.
73  */
74 static void __init reserve_crashkernel(void)
75 {
76 	unsigned long long crash_base, crash_size;
77 	int ret;
78 
79 	ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(),
80 				&crash_size, &crash_base);
81 	/* no crashkernel= or invalid value specified */
82 	if (ret || !crash_size)
83 		return;
84 
85 	crash_size = PAGE_ALIGN(crash_size);
86 
87 	if (crash_base == 0) {
88 		/* Current arm64 boot protocol requires 2MB alignment */
89 		crash_base = memblock_find_in_range(0, arm64_dma_phys_limit,
90 				crash_size, SZ_2M);
91 		if (crash_base == 0) {
92 			pr_warn("cannot allocate crashkernel (size:0x%llx)\n",
93 				crash_size);
94 			return;
95 		}
96 	} else {
97 		/* User specifies base address explicitly. */
98 		if (!memblock_is_region_memory(crash_base, crash_size)) {
99 			pr_warn("cannot reserve crashkernel: region is not memory\n");
100 			return;
101 		}
102 
103 		if (memblock_is_region_reserved(crash_base, crash_size)) {
104 			pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n");
105 			return;
106 		}
107 
108 		if (!IS_ALIGNED(crash_base, SZ_2M)) {
109 			pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n");
110 			return;
111 		}
112 	}
113 	memblock_reserve(crash_base, crash_size);
114 
115 	pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n",
116 		crash_base, crash_base + crash_size, crash_size >> 20);
117 
118 	crashk_res.start = crash_base;
119 	crashk_res.end = crash_base + crash_size - 1;
120 }
121 #else
122 static void __init reserve_crashkernel(void)
123 {
124 }
125 #endif /* CONFIG_KEXEC_CORE */
126 
127 #ifdef CONFIG_CRASH_DUMP
128 static int __init early_init_dt_scan_elfcorehdr(unsigned long node,
129 		const char *uname, int depth, void *data)
130 {
131 	const __be32 *reg;
132 	int len;
133 
134 	if (depth != 1 || strcmp(uname, "chosen") != 0)
135 		return 0;
136 
137 	reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len);
138 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
139 		return 1;
140 
141 	elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, &reg);
142 	elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, &reg);
143 
144 	return 1;
145 }
146 
147 /*
148  * reserve_elfcorehdr() - reserves memory for elf core header
149  *
150  * This function reserves the memory occupied by an elf core header
151  * described in the device tree. This region contains all the
152  * information about primary kernel's core image and is used by a dump
153  * capture kernel to access the system memory on primary kernel.
154  */
155 static void __init reserve_elfcorehdr(void)
156 {
157 	of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL);
158 
159 	if (!elfcorehdr_size)
160 		return;
161 
162 	if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) {
163 		pr_warn("elfcorehdr is overlapped\n");
164 		return;
165 	}
166 
167 	memblock_reserve(elfcorehdr_addr, elfcorehdr_size);
168 
169 	pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n",
170 		elfcorehdr_size >> 10, elfcorehdr_addr);
171 }
172 #else
173 static void __init reserve_elfcorehdr(void)
174 {
175 }
176 #endif /* CONFIG_CRASH_DUMP */
177 
178 /*
179  * Return the maximum physical address for a zone accessible by the given bits
180  * limit. If DRAM starts above 32-bit, expand the zone to the maximum
181  * available memory, otherwise cap it at 32-bit.
182  */
183 static phys_addr_t __init max_zone_phys(unsigned int zone_bits)
184 {
185 	phys_addr_t zone_mask = DMA_BIT_MASK(zone_bits);
186 	phys_addr_t phys_start = memblock_start_of_DRAM();
187 
188 	if (phys_start > U32_MAX)
189 		zone_mask = PHYS_ADDR_MAX;
190 	else if (phys_start > zone_mask)
191 		zone_mask = U32_MAX;
192 
193 	return min(zone_mask, memblock_end_of_DRAM() - 1) + 1;
194 }
195 
196 static void __init zone_sizes_init(unsigned long min, unsigned long max)
197 {
198 	unsigned long max_zone_pfns[MAX_NR_ZONES]  = {0};
199 	unsigned int __maybe_unused acpi_zone_dma_bits;
200 	unsigned int __maybe_unused dt_zone_dma_bits;
201 	phys_addr_t __maybe_unused dma32_phys_limit = max_zone_phys(32);
202 
203 #ifdef CONFIG_ZONE_DMA
204 	acpi_zone_dma_bits = fls64(acpi_iort_dma_get_max_cpu_address());
205 	dt_zone_dma_bits = fls64(of_dma_get_max_cpu_address(NULL));
206 	zone_dma_bits = min3(32U, dt_zone_dma_bits, acpi_zone_dma_bits);
207 	arm64_dma_phys_limit = max_zone_phys(zone_dma_bits);
208 	max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit);
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 	max_zone_pfns[ZONE_DMA32] = PFN_DOWN(dma32_phys_limit);
212 	if (!arm64_dma_phys_limit)
213 		arm64_dma_phys_limit = dma32_phys_limit;
214 #endif
215 	if (!arm64_dma_phys_limit)
216 		arm64_dma_phys_limit = PHYS_MASK + 1;
217 	max_zone_pfns[ZONE_NORMAL] = max;
218 
219 	free_area_init(max_zone_pfns);
220 }
221 
222 int pfn_valid(unsigned long pfn)
223 {
224 	phys_addr_t addr = PFN_PHYS(pfn);
225 	struct mem_section *ms;
226 
227 	/*
228 	 * Ensure the upper PAGE_SHIFT bits are clear in the
229 	 * pfn. Else it might lead to false positives when
230 	 * some of the upper bits are set, but the lower bits
231 	 * match a valid pfn.
232 	 */
233 	if (PHYS_PFN(addr) != pfn)
234 		return 0;
235 
236 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
237 		return 0;
238 
239 	ms = __pfn_to_section(pfn);
240 	if (!valid_section(ms))
241 		return 0;
242 
243 	/*
244 	 * ZONE_DEVICE memory does not have the memblock entries.
245 	 * memblock_is_map_memory() check for ZONE_DEVICE based
246 	 * addresses will always fail. Even the normal hotplugged
247 	 * memory will never have MEMBLOCK_NOMAP flag set in their
248 	 * memblock entries. Skip memblock search for all non early
249 	 * memory sections covering all of hotplug memory including
250 	 * both normal and ZONE_DEVICE based.
251 	 */
252 	if (!early_section(ms))
253 		return pfn_section_valid(ms, pfn);
254 
255 	return memblock_is_map_memory(addr);
256 }
257 EXPORT_SYMBOL(pfn_valid);
258 
259 static phys_addr_t memory_limit = PHYS_ADDR_MAX;
260 
261 /*
262  * Limit the memory size that was specified via FDT.
263  */
264 static int __init early_mem(char *p)
265 {
266 	if (!p)
267 		return 1;
268 
269 	memory_limit = memparse(p, &p) & PAGE_MASK;
270 	pr_notice("Memory limited to %lldMB\n", memory_limit >> 20);
271 
272 	return 0;
273 }
274 early_param("mem", early_mem);
275 
276 static int __init early_init_dt_scan_usablemem(unsigned long node,
277 		const char *uname, int depth, void *data)
278 {
279 	struct memblock_region *usablemem = data;
280 	const __be32 *reg;
281 	int len;
282 
283 	if (depth != 1 || strcmp(uname, "chosen") != 0)
284 		return 0;
285 
286 	reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len);
287 	if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells)))
288 		return 1;
289 
290 	usablemem->base = dt_mem_next_cell(dt_root_addr_cells, &reg);
291 	usablemem->size = dt_mem_next_cell(dt_root_size_cells, &reg);
292 
293 	return 1;
294 }
295 
296 static void __init fdt_enforce_memory_region(void)
297 {
298 	struct memblock_region reg = {
299 		.size = 0,
300 	};
301 
302 	of_scan_flat_dt(early_init_dt_scan_usablemem, &reg);
303 
304 	if (reg.size)
305 		memblock_cap_memory_range(reg.base, reg.size);
306 }
307 
308 void __init arm64_memblock_init(void)
309 {
310 	const s64 linear_region_size = PAGE_END - _PAGE_OFFSET(vabits_actual);
311 
312 	/* Handle linux,usable-memory-range property */
313 	fdt_enforce_memory_region();
314 
315 	/* Remove memory above our supported physical address size */
316 	memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX);
317 
318 	/*
319 	 * Select a suitable value for the base of physical memory.
320 	 */
321 	memstart_addr = round_down(memblock_start_of_DRAM(),
322 				   ARM64_MEMSTART_ALIGN);
323 
324 	if ((memblock_end_of_DRAM() - memstart_addr) > linear_region_size)
325 		pr_warn("Memory doesn't fit in the linear mapping, VA_BITS too small\n");
326 
327 	/*
328 	 * Remove the memory that we will not be able to cover with the
329 	 * linear mapping. Take care not to clip the kernel which may be
330 	 * high in memory.
331 	 */
332 	memblock_remove(max_t(u64, memstart_addr + linear_region_size,
333 			__pa_symbol(_end)), ULLONG_MAX);
334 	if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) {
335 		/* ensure that memstart_addr remains sufficiently aligned */
336 		memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size,
337 					 ARM64_MEMSTART_ALIGN);
338 		memblock_remove(0, memstart_addr);
339 	}
340 
341 	/*
342 	 * If we are running with a 52-bit kernel VA config on a system that
343 	 * does not support it, we have to place the available physical
344 	 * memory in the 48-bit addressable part of the linear region, i.e.,
345 	 * we have to move it upward. Since memstart_addr represents the
346 	 * physical address of PAGE_OFFSET, we have to *subtract* from it.
347 	 */
348 	if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52))
349 		memstart_addr -= _PAGE_OFFSET(48) - _PAGE_OFFSET(52);
350 
351 	/*
352 	 * Apply the memory limit if it was set. Since the kernel may be loaded
353 	 * high up in memory, add back the kernel region that must be accessible
354 	 * via the linear mapping.
355 	 */
356 	if (memory_limit != PHYS_ADDR_MAX) {
357 		memblock_mem_limit_remove_map(memory_limit);
358 		memblock_add(__pa_symbol(_text), (u64)(_end - _text));
359 	}
360 
361 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
362 		/*
363 		 * Add back the memory we just removed if it results in the
364 		 * initrd to become inaccessible via the linear mapping.
365 		 * Otherwise, this is a no-op
366 		 */
367 		u64 base = phys_initrd_start & PAGE_MASK;
368 		u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base;
369 
370 		/*
371 		 * We can only add back the initrd memory if we don't end up
372 		 * with more memory than we can address via the linear mapping.
373 		 * It is up to the bootloader to position the kernel and the
374 		 * initrd reasonably close to each other (i.e., within 32 GB of
375 		 * each other) so that all granule/#levels combinations can
376 		 * always access both.
377 		 */
378 		if (WARN(base < memblock_start_of_DRAM() ||
379 			 base + size > memblock_start_of_DRAM() +
380 				       linear_region_size,
381 			"initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) {
382 			phys_initrd_size = 0;
383 		} else {
384 			memblock_remove(base, size); /* clear MEMBLOCK_ flags */
385 			memblock_add(base, size);
386 			memblock_reserve(base, size);
387 		}
388 	}
389 
390 	if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) {
391 		extern u16 memstart_offset_seed;
392 		u64 mmfr0 = read_cpuid(ID_AA64MMFR0_EL1);
393 		int parange = cpuid_feature_extract_unsigned_field(
394 					mmfr0, ID_AA64MMFR0_PARANGE_SHIFT);
395 		s64 range = linear_region_size -
396 			    BIT(id_aa64mmfr0_parange_to_phys_shift(parange));
397 
398 		/*
399 		 * If the size of the linear region exceeds, by a sufficient
400 		 * margin, the size of the region that the physical memory can
401 		 * span, randomize the linear region as well.
402 		 */
403 		if (memstart_offset_seed > 0 && range >= (s64)ARM64_MEMSTART_ALIGN) {
404 			range /= ARM64_MEMSTART_ALIGN;
405 			memstart_addr -= ARM64_MEMSTART_ALIGN *
406 					 ((range * memstart_offset_seed) >> 16);
407 		}
408 	}
409 
410 	/*
411 	 * Register the kernel text, kernel data, initrd, and initial
412 	 * pagetables with memblock.
413 	 */
414 	memblock_reserve(__pa_symbol(_stext), _end - _stext);
415 	if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) {
416 		/* the generic initrd code expects virtual addresses */
417 		initrd_start = __phys_to_virt(phys_initrd_start);
418 		initrd_end = initrd_start + phys_initrd_size;
419 	}
420 
421 	early_init_fdt_scan_reserved_mem();
422 
423 	reserve_elfcorehdr();
424 
425 	high_memory = __va(memblock_end_of_DRAM() - 1) + 1;
426 }
427 
428 void __init bootmem_init(void)
429 {
430 	unsigned long min, max;
431 
432 	min = PFN_UP(memblock_start_of_DRAM());
433 	max = PFN_DOWN(memblock_end_of_DRAM());
434 
435 	early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT);
436 
437 	max_pfn = max_low_pfn = max;
438 	min_low_pfn = min;
439 
440 	arch_numa_init();
441 
442 	/*
443 	 * must be done after arch_numa_init() which calls numa_init() to
444 	 * initialize node_online_map that gets used in hugetlb_cma_reserve()
445 	 * while allocating required CMA size across online nodes.
446 	 */
447 #if defined(CONFIG_HUGETLB_PAGE) && defined(CONFIG_CMA)
448 	arm64_hugetlb_cma_reserve();
449 #endif
450 
451 	dma_pernuma_cma_reserve();
452 
453 	kvm_hyp_reserve();
454 
455 	/*
456 	 * sparse_init() tries to allocate memory from memblock, so must be
457 	 * done after the fixed reservations
458 	 */
459 	sparse_init();
460 	zone_sizes_init(min, max);
461 
462 	/*
463 	 * Reserve the CMA area after arm64_dma_phys_limit was initialised.
464 	 */
465 	dma_contiguous_reserve(arm64_dma_phys_limit);
466 
467 	/*
468 	 * request_standard_resources() depends on crashkernel's memory being
469 	 * reserved, so do it here.
470 	 */
471 	reserve_crashkernel();
472 
473 	memblock_dump_all();
474 }
475 
476 /*
477  * mem_init() marks the free areas in the mem_map and tells us how much memory
478  * is free.  This is done after various parts of the system have claimed their
479  * memory after the kernel image.
480  */
481 void __init mem_init(void)
482 {
483 	if (swiotlb_force == SWIOTLB_FORCE ||
484 	    max_pfn > PFN_DOWN(arm64_dma_phys_limit))
485 		swiotlb_init(1);
486 	else if (!xen_swiotlb_detect())
487 		swiotlb_force = SWIOTLB_NO_FORCE;
488 
489 	set_max_mapnr(max_pfn - PHYS_PFN_OFFSET);
490 
491 	/* this will put all unused low memory onto the freelists */
492 	memblock_free_all();
493 
494 	/*
495 	 * Check boundaries twice: Some fundamental inconsistencies can be
496 	 * detected at build time already.
497 	 */
498 #ifdef CONFIG_COMPAT
499 	BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64);
500 #endif
501 
502 	if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) {
503 		extern int sysctl_overcommit_memory;
504 		/*
505 		 * On a machine this small we won't get anywhere without
506 		 * overcommit, so turn it on by default.
507 		 */
508 		sysctl_overcommit_memory = OVERCOMMIT_ALWAYS;
509 	}
510 }
511 
512 void free_initmem(void)
513 {
514 	free_reserved_area(lm_alias(__init_begin),
515 			   lm_alias(__init_end),
516 			   POISON_FREE_INITMEM, "unused kernel");
517 	/*
518 	 * Unmap the __init region but leave the VM area in place. This
519 	 * prevents the region from being reused for kernel modules, which
520 	 * is not supported by kallsyms.
521 	 */
522 	vunmap_range((u64)__init_begin, (u64)__init_end);
523 }
524 
525 void dump_mem_limit(void)
526 {
527 	if (memory_limit != PHYS_ADDR_MAX) {
528 		pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20);
529 	} else {
530 		pr_emerg("Memory Limit: none\n");
531 	}
532 }
533