1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/init.c 4 * 5 * Copyright (C) 1995-2005 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/export.h> 11 #include <linux/errno.h> 12 #include <linux/swap.h> 13 #include <linux/init.h> 14 #include <linux/cache.h> 15 #include <linux/mman.h> 16 #include <linux/nodemask.h> 17 #include <linux/initrd.h> 18 #include <linux/gfp.h> 19 #include <linux/memblock.h> 20 #include <linux/sort.h> 21 #include <linux/of.h> 22 #include <linux/of_fdt.h> 23 #include <linux/dma-direct.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dma-contiguous.h> 26 #include <linux/efi.h> 27 #include <linux/swiotlb.h> 28 #include <linux/vmalloc.h> 29 #include <linux/mm.h> 30 #include <linux/kexec.h> 31 #include <linux/crash_dump.h> 32 #include <linux/hugetlb.h> 33 34 #include <asm/boot.h> 35 #include <asm/fixmap.h> 36 #include <asm/kasan.h> 37 #include <asm/kernel-pgtable.h> 38 #include <asm/memory.h> 39 #include <asm/numa.h> 40 #include <asm/sections.h> 41 #include <asm/setup.h> 42 #include <linux/sizes.h> 43 #include <asm/tlb.h> 44 #include <asm/alternative.h> 45 46 #define ARM64_ZONE_DMA_BITS 30 47 48 /* 49 * We need to be able to catch inadvertent references to memstart_addr 50 * that occur (potentially in generic code) before arm64_memblock_init() 51 * executes, which assigns it its actual value. So use a default value 52 * that cannot be mistaken for a real physical address. 53 */ 54 s64 memstart_addr __ro_after_init = -1; 55 EXPORT_SYMBOL(memstart_addr); 56 57 s64 physvirt_offset __ro_after_init; 58 EXPORT_SYMBOL(physvirt_offset); 59 60 struct page *vmemmap __ro_after_init; 61 EXPORT_SYMBOL(vmemmap); 62 63 /* 64 * We create both ZONE_DMA and ZONE_DMA32. ZONE_DMA covers the first 1G of 65 * memory as some devices, namely the Raspberry Pi 4, have peripherals with 66 * this limited view of the memory. ZONE_DMA32 will cover the rest of the 32 67 * bit addressable memory area. 68 */ 69 phys_addr_t arm64_dma_phys_limit __ro_after_init; 70 static phys_addr_t arm64_dma32_phys_limit __ro_after_init; 71 72 #ifdef CONFIG_KEXEC_CORE 73 /* 74 * reserve_crashkernel() - reserves memory for crash kernel 75 * 76 * This function reserves memory area given in "crashkernel=" kernel command 77 * line parameter. The memory reserved is used by dump capture kernel when 78 * primary kernel is crashing. 79 */ 80 static void __init reserve_crashkernel(void) 81 { 82 unsigned long long crash_base, crash_size; 83 int ret; 84 85 ret = parse_crashkernel(boot_command_line, memblock_phys_mem_size(), 86 &crash_size, &crash_base); 87 /* no crashkernel= or invalid value specified */ 88 if (ret || !crash_size) 89 return; 90 91 crash_size = PAGE_ALIGN(crash_size); 92 93 if (crash_base == 0) { 94 /* Current arm64 boot protocol requires 2MB alignment */ 95 crash_base = memblock_find_in_range(0, arm64_dma32_phys_limit, 96 crash_size, SZ_2M); 97 if (crash_base == 0) { 98 pr_warn("cannot allocate crashkernel (size:0x%llx)\n", 99 crash_size); 100 return; 101 } 102 } else { 103 /* User specifies base address explicitly. */ 104 if (!memblock_is_region_memory(crash_base, crash_size)) { 105 pr_warn("cannot reserve crashkernel: region is not memory\n"); 106 return; 107 } 108 109 if (memblock_is_region_reserved(crash_base, crash_size)) { 110 pr_warn("cannot reserve crashkernel: region overlaps reserved memory\n"); 111 return; 112 } 113 114 if (!IS_ALIGNED(crash_base, SZ_2M)) { 115 pr_warn("cannot reserve crashkernel: base address is not 2MB aligned\n"); 116 return; 117 } 118 } 119 memblock_reserve(crash_base, crash_size); 120 121 pr_info("crashkernel reserved: 0x%016llx - 0x%016llx (%lld MB)\n", 122 crash_base, crash_base + crash_size, crash_size >> 20); 123 124 crashk_res.start = crash_base; 125 crashk_res.end = crash_base + crash_size - 1; 126 } 127 #else 128 static void __init reserve_crashkernel(void) 129 { 130 } 131 #endif /* CONFIG_KEXEC_CORE */ 132 133 #ifdef CONFIG_CRASH_DUMP 134 static int __init early_init_dt_scan_elfcorehdr(unsigned long node, 135 const char *uname, int depth, void *data) 136 { 137 const __be32 *reg; 138 int len; 139 140 if (depth != 1 || strcmp(uname, "chosen") != 0) 141 return 0; 142 143 reg = of_get_flat_dt_prop(node, "linux,elfcorehdr", &len); 144 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 145 return 1; 146 147 elfcorehdr_addr = dt_mem_next_cell(dt_root_addr_cells, ®); 148 elfcorehdr_size = dt_mem_next_cell(dt_root_size_cells, ®); 149 150 return 1; 151 } 152 153 /* 154 * reserve_elfcorehdr() - reserves memory for elf core header 155 * 156 * This function reserves the memory occupied by an elf core header 157 * described in the device tree. This region contains all the 158 * information about primary kernel's core image and is used by a dump 159 * capture kernel to access the system memory on primary kernel. 160 */ 161 static void __init reserve_elfcorehdr(void) 162 { 163 of_scan_flat_dt(early_init_dt_scan_elfcorehdr, NULL); 164 165 if (!elfcorehdr_size) 166 return; 167 168 if (memblock_is_region_reserved(elfcorehdr_addr, elfcorehdr_size)) { 169 pr_warn("elfcorehdr is overlapped\n"); 170 return; 171 } 172 173 memblock_reserve(elfcorehdr_addr, elfcorehdr_size); 174 175 pr_info("Reserving %lldKB of memory at 0x%llx for elfcorehdr\n", 176 elfcorehdr_size >> 10, elfcorehdr_addr); 177 } 178 #else 179 static void __init reserve_elfcorehdr(void) 180 { 181 } 182 #endif /* CONFIG_CRASH_DUMP */ 183 184 /* 185 * Return the maximum physical address for a zone with a given address size 186 * limit. It currently assumes that for memory starting above 4G, 32-bit 187 * devices will use a DMA offset. 188 */ 189 static phys_addr_t __init max_zone_phys(unsigned int zone_bits) 190 { 191 phys_addr_t offset = memblock_start_of_DRAM() & GENMASK_ULL(63, zone_bits); 192 return min(offset + (1ULL << zone_bits), memblock_end_of_DRAM()); 193 } 194 195 static void __init zone_sizes_init(unsigned long min, unsigned long max) 196 { 197 unsigned long max_zone_pfns[MAX_NR_ZONES] = {0}; 198 199 #ifdef CONFIG_ZONE_DMA 200 max_zone_pfns[ZONE_DMA] = PFN_DOWN(arm64_dma_phys_limit); 201 #endif 202 #ifdef CONFIG_ZONE_DMA32 203 max_zone_pfns[ZONE_DMA32] = PFN_DOWN(arm64_dma32_phys_limit); 204 #endif 205 max_zone_pfns[ZONE_NORMAL] = max; 206 207 free_area_init(max_zone_pfns); 208 } 209 210 int pfn_valid(unsigned long pfn) 211 { 212 phys_addr_t addr = pfn << PAGE_SHIFT; 213 214 if ((addr >> PAGE_SHIFT) != pfn) 215 return 0; 216 217 #ifdef CONFIG_SPARSEMEM 218 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 219 return 0; 220 221 if (!valid_section(__pfn_to_section(pfn))) 222 return 0; 223 #endif 224 return memblock_is_map_memory(addr); 225 } 226 EXPORT_SYMBOL(pfn_valid); 227 228 static phys_addr_t memory_limit = PHYS_ADDR_MAX; 229 230 /* 231 * Limit the memory size that was specified via FDT. 232 */ 233 static int __init early_mem(char *p) 234 { 235 if (!p) 236 return 1; 237 238 memory_limit = memparse(p, &p) & PAGE_MASK; 239 pr_notice("Memory limited to %lldMB\n", memory_limit >> 20); 240 241 return 0; 242 } 243 early_param("mem", early_mem); 244 245 static int __init early_init_dt_scan_usablemem(unsigned long node, 246 const char *uname, int depth, void *data) 247 { 248 struct memblock_region *usablemem = data; 249 const __be32 *reg; 250 int len; 251 252 if (depth != 1 || strcmp(uname, "chosen") != 0) 253 return 0; 254 255 reg = of_get_flat_dt_prop(node, "linux,usable-memory-range", &len); 256 if (!reg || (len < (dt_root_addr_cells + dt_root_size_cells))) 257 return 1; 258 259 usablemem->base = dt_mem_next_cell(dt_root_addr_cells, ®); 260 usablemem->size = dt_mem_next_cell(dt_root_size_cells, ®); 261 262 return 1; 263 } 264 265 static void __init fdt_enforce_memory_region(void) 266 { 267 struct memblock_region reg = { 268 .size = 0, 269 }; 270 271 of_scan_flat_dt(early_init_dt_scan_usablemem, ®); 272 273 if (reg.size) 274 memblock_cap_memory_range(reg.base, reg.size); 275 } 276 277 void __init arm64_memblock_init(void) 278 { 279 const s64 linear_region_size = BIT(vabits_actual - 1); 280 281 /* Handle linux,usable-memory-range property */ 282 fdt_enforce_memory_region(); 283 284 /* Remove memory above our supported physical address size */ 285 memblock_remove(1ULL << PHYS_MASK_SHIFT, ULLONG_MAX); 286 287 /* 288 * Select a suitable value for the base of physical memory. 289 */ 290 memstart_addr = round_down(memblock_start_of_DRAM(), 291 ARM64_MEMSTART_ALIGN); 292 293 physvirt_offset = PHYS_OFFSET - PAGE_OFFSET; 294 295 vmemmap = ((struct page *)VMEMMAP_START - (memstart_addr >> PAGE_SHIFT)); 296 297 /* 298 * If we are running with a 52-bit kernel VA config on a system that 299 * does not support it, we have to offset our vmemmap and physvirt_offset 300 * s.t. we avoid the 52-bit portion of the direct linear map 301 */ 302 if (IS_ENABLED(CONFIG_ARM64_VA_BITS_52) && (vabits_actual != 52)) { 303 vmemmap += (_PAGE_OFFSET(48) - _PAGE_OFFSET(52)) >> PAGE_SHIFT; 304 physvirt_offset = PHYS_OFFSET - _PAGE_OFFSET(48); 305 } 306 307 /* 308 * Remove the memory that we will not be able to cover with the 309 * linear mapping. Take care not to clip the kernel which may be 310 * high in memory. 311 */ 312 memblock_remove(max_t(u64, memstart_addr + linear_region_size, 313 __pa_symbol(_end)), ULLONG_MAX); 314 if (memstart_addr + linear_region_size < memblock_end_of_DRAM()) { 315 /* ensure that memstart_addr remains sufficiently aligned */ 316 memstart_addr = round_up(memblock_end_of_DRAM() - linear_region_size, 317 ARM64_MEMSTART_ALIGN); 318 memblock_remove(0, memstart_addr); 319 } 320 321 /* 322 * Apply the memory limit if it was set. Since the kernel may be loaded 323 * high up in memory, add back the kernel region that must be accessible 324 * via the linear mapping. 325 */ 326 if (memory_limit != PHYS_ADDR_MAX) { 327 memblock_mem_limit_remove_map(memory_limit); 328 memblock_add(__pa_symbol(_text), (u64)(_end - _text)); 329 } 330 331 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 332 /* 333 * Add back the memory we just removed if it results in the 334 * initrd to become inaccessible via the linear mapping. 335 * Otherwise, this is a no-op 336 */ 337 u64 base = phys_initrd_start & PAGE_MASK; 338 u64 size = PAGE_ALIGN(phys_initrd_start + phys_initrd_size) - base; 339 340 /* 341 * We can only add back the initrd memory if we don't end up 342 * with more memory than we can address via the linear mapping. 343 * It is up to the bootloader to position the kernel and the 344 * initrd reasonably close to each other (i.e., within 32 GB of 345 * each other) so that all granule/#levels combinations can 346 * always access both. 347 */ 348 if (WARN(base < memblock_start_of_DRAM() || 349 base + size > memblock_start_of_DRAM() + 350 linear_region_size, 351 "initrd not fully accessible via the linear mapping -- please check your bootloader ...\n")) { 352 phys_initrd_size = 0; 353 } else { 354 memblock_remove(base, size); /* clear MEMBLOCK_ flags */ 355 memblock_add(base, size); 356 memblock_reserve(base, size); 357 } 358 } 359 360 if (IS_ENABLED(CONFIG_RANDOMIZE_BASE)) { 361 extern u16 memstart_offset_seed; 362 u64 range = linear_region_size - 363 (memblock_end_of_DRAM() - memblock_start_of_DRAM()); 364 365 /* 366 * If the size of the linear region exceeds, by a sufficient 367 * margin, the size of the region that the available physical 368 * memory spans, randomize the linear region as well. 369 */ 370 if (memstart_offset_seed > 0 && range >= ARM64_MEMSTART_ALIGN) { 371 range /= ARM64_MEMSTART_ALIGN; 372 memstart_addr -= ARM64_MEMSTART_ALIGN * 373 ((range * memstart_offset_seed) >> 16); 374 } 375 } 376 377 /* 378 * Register the kernel text, kernel data, initrd, and initial 379 * pagetables with memblock. 380 */ 381 memblock_reserve(__pa_symbol(_text), _end - _text); 382 if (IS_ENABLED(CONFIG_BLK_DEV_INITRD) && phys_initrd_size) { 383 /* the generic initrd code expects virtual addresses */ 384 initrd_start = __phys_to_virt(phys_initrd_start); 385 initrd_end = initrd_start + phys_initrd_size; 386 } 387 388 early_init_fdt_scan_reserved_mem(); 389 390 if (IS_ENABLED(CONFIG_ZONE_DMA)) { 391 zone_dma_bits = ARM64_ZONE_DMA_BITS; 392 arm64_dma_phys_limit = max_zone_phys(ARM64_ZONE_DMA_BITS); 393 } 394 395 if (IS_ENABLED(CONFIG_ZONE_DMA32)) 396 arm64_dma32_phys_limit = max_zone_phys(32); 397 else 398 arm64_dma32_phys_limit = PHYS_MASK + 1; 399 400 reserve_crashkernel(); 401 402 reserve_elfcorehdr(); 403 404 high_memory = __va(memblock_end_of_DRAM() - 1) + 1; 405 406 dma_contiguous_reserve(arm64_dma32_phys_limit); 407 } 408 409 void __init bootmem_init(void) 410 { 411 unsigned long min, max; 412 413 min = PFN_UP(memblock_start_of_DRAM()); 414 max = PFN_DOWN(memblock_end_of_DRAM()); 415 416 early_memtest(min << PAGE_SHIFT, max << PAGE_SHIFT); 417 418 max_pfn = max_low_pfn = max; 419 min_low_pfn = min; 420 421 arm64_numa_init(); 422 423 /* 424 * must be done after arm64_numa_init() which calls numa_init() to 425 * initialize node_online_map that gets used in hugetlb_cma_reserve() 426 * while allocating required CMA size across online nodes. 427 */ 428 #ifdef CONFIG_ARM64_4K_PAGES 429 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT); 430 #endif 431 432 /* 433 * Sparsemem tries to allocate bootmem in memory_present(), so must be 434 * done after the fixed reservations. 435 */ 436 memblocks_present(); 437 438 sparse_init(); 439 zone_sizes_init(min, max); 440 441 memblock_dump_all(); 442 } 443 444 #ifndef CONFIG_SPARSEMEM_VMEMMAP 445 static inline void free_memmap(unsigned long start_pfn, unsigned long end_pfn) 446 { 447 struct page *start_pg, *end_pg; 448 unsigned long pg, pgend; 449 450 /* 451 * Convert start_pfn/end_pfn to a struct page pointer. 452 */ 453 start_pg = pfn_to_page(start_pfn - 1) + 1; 454 end_pg = pfn_to_page(end_pfn - 1) + 1; 455 456 /* 457 * Convert to physical addresses, and round start upwards and end 458 * downwards. 459 */ 460 pg = (unsigned long)PAGE_ALIGN(__pa(start_pg)); 461 pgend = (unsigned long)__pa(end_pg) & PAGE_MASK; 462 463 /* 464 * If there are free pages between these, free the section of the 465 * memmap array. 466 */ 467 if (pg < pgend) 468 memblock_free(pg, pgend - pg); 469 } 470 471 /* 472 * The mem_map array can get very big. Free the unused area of the memory map. 473 */ 474 static void __init free_unused_memmap(void) 475 { 476 unsigned long start, prev_end = 0; 477 struct memblock_region *reg; 478 479 for_each_memblock(memory, reg) { 480 start = __phys_to_pfn(reg->base); 481 482 #ifdef CONFIG_SPARSEMEM 483 /* 484 * Take care not to free memmap entries that don't exist due 485 * to SPARSEMEM sections which aren't present. 486 */ 487 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION)); 488 #endif 489 /* 490 * If we had a previous bank, and there is a space between the 491 * current bank and the previous, free it. 492 */ 493 if (prev_end && prev_end < start) 494 free_memmap(prev_end, start); 495 496 /* 497 * Align up here since the VM subsystem insists that the 498 * memmap entries are valid from the bank end aligned to 499 * MAX_ORDER_NR_PAGES. 500 */ 501 prev_end = ALIGN(__phys_to_pfn(reg->base + reg->size), 502 MAX_ORDER_NR_PAGES); 503 } 504 505 #ifdef CONFIG_SPARSEMEM 506 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) 507 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION)); 508 #endif 509 } 510 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */ 511 512 /* 513 * mem_init() marks the free areas in the mem_map and tells us how much memory 514 * is free. This is done after various parts of the system have claimed their 515 * memory after the kernel image. 516 */ 517 void __init mem_init(void) 518 { 519 if (swiotlb_force == SWIOTLB_FORCE || 520 max_pfn > PFN_DOWN(arm64_dma_phys_limit ? : arm64_dma32_phys_limit)) 521 swiotlb_init(1); 522 else 523 swiotlb_force = SWIOTLB_NO_FORCE; 524 525 set_max_mapnr(max_pfn - PHYS_PFN_OFFSET); 526 527 #ifndef CONFIG_SPARSEMEM_VMEMMAP 528 free_unused_memmap(); 529 #endif 530 /* this will put all unused low memory onto the freelists */ 531 memblock_free_all(); 532 533 mem_init_print_info(NULL); 534 535 /* 536 * Check boundaries twice: Some fundamental inconsistencies can be 537 * detected at build time already. 538 */ 539 #ifdef CONFIG_COMPAT 540 BUILD_BUG_ON(TASK_SIZE_32 > DEFAULT_MAP_WINDOW_64); 541 #endif 542 543 if (PAGE_SIZE >= 16384 && get_num_physpages() <= 128) { 544 extern int sysctl_overcommit_memory; 545 /* 546 * On a machine this small we won't get anywhere without 547 * overcommit, so turn it on by default. 548 */ 549 sysctl_overcommit_memory = OVERCOMMIT_ALWAYS; 550 } 551 } 552 553 void free_initmem(void) 554 { 555 free_reserved_area(lm_alias(__init_begin), 556 lm_alias(__init_end), 557 POISON_FREE_INITMEM, "unused kernel"); 558 /* 559 * Unmap the __init region but leave the VM area in place. This 560 * prevents the region from being reused for kernel modules, which 561 * is not supported by kallsyms. 562 */ 563 unmap_kernel_range((u64)__init_begin, (u64)(__init_end - __init_begin)); 564 } 565 566 /* 567 * Dump out memory limit information on panic. 568 */ 569 static int dump_mem_limit(struct notifier_block *self, unsigned long v, void *p) 570 { 571 if (memory_limit != PHYS_ADDR_MAX) { 572 pr_emerg("Memory Limit: %llu MB\n", memory_limit >> 20); 573 } else { 574 pr_emerg("Memory Limit: none\n"); 575 } 576 return 0; 577 } 578 579 static struct notifier_block mem_limit_notifier = { 580 .notifier_call = dump_mem_limit, 581 }; 582 583 static int __init register_mem_limit_dumper(void) 584 { 585 atomic_notifier_chain_register(&panic_notifier_list, 586 &mem_limit_notifier); 587 return 0; 588 } 589 __initcall(register_mem_limit_dumper); 590