1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/mm/hugetlbpage.c 4 * 5 * Copyright (C) 2013 Linaro Ltd. 6 * 7 * Based on arch/x86/mm/hugetlbpage.c. 8 */ 9 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/pagemap.h> 15 #include <linux/err.h> 16 #include <linux/sysctl.h> 17 #include <asm/mman.h> 18 #include <asm/tlb.h> 19 #include <asm/tlbflush.h> 20 21 /* 22 * HugeTLB Support Matrix 23 * 24 * --------------------------------------------------- 25 * | Page Size | CONT PTE | PMD | CONT PMD | PUD | 26 * --------------------------------------------------- 27 * | 4K | 64K | 2M | 32M | 1G | 28 * | 16K | 2M | 32M | 1G | | 29 * | 64K | 2M | 512M | 16G | | 30 * --------------------------------------------------- 31 */ 32 33 /* 34 * Reserve CMA areas for the largest supported gigantic 35 * huge page when requested. Any other smaller gigantic 36 * huge pages could still be served from those areas. 37 */ 38 #ifdef CONFIG_CMA 39 void __init arm64_hugetlb_cma_reserve(void) 40 { 41 int order; 42 43 if (pud_sect_supported()) 44 order = PUD_SHIFT - PAGE_SHIFT; 45 else 46 order = CONT_PMD_SHIFT - PAGE_SHIFT; 47 48 /* 49 * HugeTLB CMA reservation is required for gigantic 50 * huge pages which could not be allocated via the 51 * page allocator. Just warn if there is any change 52 * breaking this assumption. 53 */ 54 WARN_ON(order <= MAX_ORDER); 55 hugetlb_cma_reserve(order); 56 } 57 #endif /* CONFIG_CMA */ 58 59 static bool __hugetlb_valid_size(unsigned long size) 60 { 61 switch (size) { 62 #ifndef __PAGETABLE_PMD_FOLDED 63 case PUD_SIZE: 64 return pud_sect_supported(); 65 #endif 66 case CONT_PMD_SIZE: 67 case PMD_SIZE: 68 case CONT_PTE_SIZE: 69 return true; 70 } 71 72 return false; 73 } 74 75 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 76 bool arch_hugetlb_migration_supported(struct hstate *h) 77 { 78 size_t pagesize = huge_page_size(h); 79 80 if (!__hugetlb_valid_size(pagesize)) { 81 pr_warn("%s: unrecognized huge page size 0x%lx\n", 82 __func__, pagesize); 83 return false; 84 } 85 return true; 86 } 87 #endif 88 89 int pmd_huge(pmd_t pmd) 90 { 91 return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 92 } 93 94 int pud_huge(pud_t pud) 95 { 96 #ifndef __PAGETABLE_PMD_FOLDED 97 return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT); 98 #else 99 return 0; 100 #endif 101 } 102 103 /* 104 * Select all bits except the pfn 105 */ 106 static inline pgprot_t pte_pgprot(pte_t pte) 107 { 108 unsigned long pfn = pte_pfn(pte); 109 110 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 111 } 112 113 static int find_num_contig(struct mm_struct *mm, unsigned long addr, 114 pte_t *ptep, size_t *pgsize) 115 { 116 pgd_t *pgdp = pgd_offset(mm, addr); 117 p4d_t *p4dp; 118 pud_t *pudp; 119 pmd_t *pmdp; 120 121 *pgsize = PAGE_SIZE; 122 p4dp = p4d_offset(pgdp, addr); 123 pudp = pud_offset(p4dp, addr); 124 pmdp = pmd_offset(pudp, addr); 125 if ((pte_t *)pmdp == ptep) { 126 *pgsize = PMD_SIZE; 127 return CONT_PMDS; 128 } 129 return CONT_PTES; 130 } 131 132 static inline int num_contig_ptes(unsigned long size, size_t *pgsize) 133 { 134 int contig_ptes = 0; 135 136 *pgsize = size; 137 138 switch (size) { 139 #ifndef __PAGETABLE_PMD_FOLDED 140 case PUD_SIZE: 141 if (pud_sect_supported()) 142 contig_ptes = 1; 143 break; 144 #endif 145 case PMD_SIZE: 146 contig_ptes = 1; 147 break; 148 case CONT_PMD_SIZE: 149 *pgsize = PMD_SIZE; 150 contig_ptes = CONT_PMDS; 151 break; 152 case CONT_PTE_SIZE: 153 *pgsize = PAGE_SIZE; 154 contig_ptes = CONT_PTES; 155 break; 156 } 157 158 return contig_ptes; 159 } 160 161 pte_t huge_ptep_get(pte_t *ptep) 162 { 163 int ncontig, i; 164 size_t pgsize; 165 pte_t orig_pte = ptep_get(ptep); 166 167 if (!pte_present(orig_pte) || !pte_cont(orig_pte)) 168 return orig_pte; 169 170 ncontig = num_contig_ptes(page_size(pte_page(orig_pte)), &pgsize); 171 for (i = 0; i < ncontig; i++, ptep++) { 172 pte_t pte = ptep_get(ptep); 173 174 if (pte_dirty(pte)) 175 orig_pte = pte_mkdirty(orig_pte); 176 177 if (pte_young(pte)) 178 orig_pte = pte_mkyoung(orig_pte); 179 } 180 return orig_pte; 181 } 182 183 /* 184 * Changing some bits of contiguous entries requires us to follow a 185 * Break-Before-Make approach, breaking the whole contiguous set 186 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 187 * "Misprogramming of the Contiguous bit", page D4-1762. 188 * 189 * This helper performs the break step. 190 */ 191 static pte_t get_clear_contig(struct mm_struct *mm, 192 unsigned long addr, 193 pte_t *ptep, 194 unsigned long pgsize, 195 unsigned long ncontig) 196 { 197 pte_t orig_pte = ptep_get(ptep); 198 unsigned long i; 199 200 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) { 201 pte_t pte = ptep_get_and_clear(mm, addr, ptep); 202 203 /* 204 * If HW_AFDBM is enabled, then the HW could turn on 205 * the dirty or accessed bit for any page in the set, 206 * so check them all. 207 */ 208 if (pte_dirty(pte)) 209 orig_pte = pte_mkdirty(orig_pte); 210 211 if (pte_young(pte)) 212 orig_pte = pte_mkyoung(orig_pte); 213 } 214 return orig_pte; 215 } 216 217 static pte_t get_clear_contig_flush(struct mm_struct *mm, 218 unsigned long addr, 219 pte_t *ptep, 220 unsigned long pgsize, 221 unsigned long ncontig) 222 { 223 pte_t orig_pte = get_clear_contig(mm, addr, ptep, pgsize, ncontig); 224 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 225 226 flush_tlb_range(&vma, addr, addr + (pgsize * ncontig)); 227 return orig_pte; 228 } 229 230 /* 231 * Changing some bits of contiguous entries requires us to follow a 232 * Break-Before-Make approach, breaking the whole contiguous set 233 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 234 * "Misprogramming of the Contiguous bit", page D4-1762. 235 * 236 * This helper performs the break step for use cases where the 237 * original pte is not needed. 238 */ 239 static void clear_flush(struct mm_struct *mm, 240 unsigned long addr, 241 pte_t *ptep, 242 unsigned long pgsize, 243 unsigned long ncontig) 244 { 245 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 246 unsigned long i, saddr = addr; 247 248 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 249 pte_clear(mm, addr, ptep); 250 251 flush_tlb_range(&vma, saddr, addr); 252 } 253 254 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 255 pte_t *ptep, pte_t pte) 256 { 257 size_t pgsize; 258 int i; 259 int ncontig; 260 unsigned long pfn, dpfn; 261 pgprot_t hugeprot; 262 263 /* 264 * Code needs to be expanded to handle huge swap and migration 265 * entries. Needed for HUGETLB and MEMORY_FAILURE. 266 */ 267 WARN_ON(!pte_present(pte)); 268 269 if (!pte_cont(pte)) { 270 set_pte_at(mm, addr, ptep, pte); 271 return; 272 } 273 274 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 275 pfn = pte_pfn(pte); 276 dpfn = pgsize >> PAGE_SHIFT; 277 hugeprot = pte_pgprot(pte); 278 279 clear_flush(mm, addr, ptep, pgsize, ncontig); 280 281 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 282 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 283 } 284 285 void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr, 286 pte_t *ptep, pte_t pte, unsigned long sz) 287 { 288 int i, ncontig; 289 size_t pgsize; 290 291 ncontig = num_contig_ptes(sz, &pgsize); 292 293 for (i = 0; i < ncontig; i++, ptep++) 294 set_pte(ptep, pte); 295 } 296 297 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 298 unsigned long addr, unsigned long sz) 299 { 300 pgd_t *pgdp; 301 p4d_t *p4dp; 302 pud_t *pudp; 303 pmd_t *pmdp; 304 pte_t *ptep = NULL; 305 306 pgdp = pgd_offset(mm, addr); 307 p4dp = p4d_offset(pgdp, addr); 308 pudp = pud_alloc(mm, p4dp, addr); 309 if (!pudp) 310 return NULL; 311 312 if (sz == PUD_SIZE) { 313 ptep = (pte_t *)pudp; 314 } else if (sz == (CONT_PTE_SIZE)) { 315 pmdp = pmd_alloc(mm, pudp, addr); 316 if (!pmdp) 317 return NULL; 318 319 WARN_ON(addr & (sz - 1)); 320 /* 321 * Note that if this code were ever ported to the 322 * 32-bit arm platform then it will cause trouble in 323 * the case where CONFIG_HIGHPTE is set, since there 324 * will be no pte_unmap() to correspond with this 325 * pte_alloc_map(). 326 */ 327 ptep = pte_alloc_map(mm, pmdp, addr); 328 } else if (sz == PMD_SIZE) { 329 if (want_pmd_share(vma, addr) && pud_none(READ_ONCE(*pudp))) 330 ptep = huge_pmd_share(mm, vma, addr, pudp); 331 else 332 ptep = (pte_t *)pmd_alloc(mm, pudp, addr); 333 } else if (sz == (CONT_PMD_SIZE)) { 334 pmdp = pmd_alloc(mm, pudp, addr); 335 WARN_ON(addr & (sz - 1)); 336 return (pte_t *)pmdp; 337 } 338 339 return ptep; 340 } 341 342 pte_t *huge_pte_offset(struct mm_struct *mm, 343 unsigned long addr, unsigned long sz) 344 { 345 pgd_t *pgdp; 346 p4d_t *p4dp; 347 pud_t *pudp, pud; 348 pmd_t *pmdp, pmd; 349 350 pgdp = pgd_offset(mm, addr); 351 if (!pgd_present(READ_ONCE(*pgdp))) 352 return NULL; 353 354 p4dp = p4d_offset(pgdp, addr); 355 if (!p4d_present(READ_ONCE(*p4dp))) 356 return NULL; 357 358 pudp = pud_offset(p4dp, addr); 359 pud = READ_ONCE(*pudp); 360 if (sz != PUD_SIZE && pud_none(pud)) 361 return NULL; 362 /* hugepage or swap? */ 363 if (pud_huge(pud) || !pud_present(pud)) 364 return (pte_t *)pudp; 365 /* table; check the next level */ 366 367 if (sz == CONT_PMD_SIZE) 368 addr &= CONT_PMD_MASK; 369 370 pmdp = pmd_offset(pudp, addr); 371 pmd = READ_ONCE(*pmdp); 372 if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) && 373 pmd_none(pmd)) 374 return NULL; 375 if (pmd_huge(pmd) || !pmd_present(pmd)) 376 return (pte_t *)pmdp; 377 378 if (sz == CONT_PTE_SIZE) 379 return pte_offset_kernel(pmdp, (addr & CONT_PTE_MASK)); 380 381 return NULL; 382 } 383 384 pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, vm_flags_t flags) 385 { 386 size_t pagesize = 1UL << shift; 387 388 entry = pte_mkhuge(entry); 389 if (pagesize == CONT_PTE_SIZE) { 390 entry = pte_mkcont(entry); 391 } else if (pagesize == CONT_PMD_SIZE) { 392 entry = pmd_pte(pmd_mkcont(pte_pmd(entry))); 393 } else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) { 394 pr_warn("%s: unrecognized huge page size 0x%lx\n", 395 __func__, pagesize); 396 } 397 return entry; 398 } 399 400 void huge_pte_clear(struct mm_struct *mm, unsigned long addr, 401 pte_t *ptep, unsigned long sz) 402 { 403 int i, ncontig; 404 size_t pgsize; 405 406 ncontig = num_contig_ptes(sz, &pgsize); 407 408 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 409 pte_clear(mm, addr, ptep); 410 } 411 412 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, 413 unsigned long addr, pte_t *ptep) 414 { 415 int ncontig; 416 size_t pgsize; 417 pte_t orig_pte = ptep_get(ptep); 418 419 if (!pte_cont(orig_pte)) 420 return ptep_get_and_clear(mm, addr, ptep); 421 422 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 423 424 return get_clear_contig(mm, addr, ptep, pgsize, ncontig); 425 } 426 427 /* 428 * huge_ptep_set_access_flags will update access flags (dirty, accesssed) 429 * and write permission. 430 * 431 * For a contiguous huge pte range we need to check whether or not write 432 * permission has to change only on the first pte in the set. Then for 433 * all the contiguous ptes we need to check whether or not there is a 434 * discrepancy between dirty or young. 435 */ 436 static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig) 437 { 438 int i; 439 440 if (pte_write(pte) != pte_write(ptep_get(ptep))) 441 return 1; 442 443 for (i = 0; i < ncontig; i++) { 444 pte_t orig_pte = ptep_get(ptep + i); 445 446 if (pte_dirty(pte) != pte_dirty(orig_pte)) 447 return 1; 448 449 if (pte_young(pte) != pte_young(orig_pte)) 450 return 1; 451 } 452 453 return 0; 454 } 455 456 int huge_ptep_set_access_flags(struct vm_area_struct *vma, 457 unsigned long addr, pte_t *ptep, 458 pte_t pte, int dirty) 459 { 460 int ncontig, i; 461 size_t pgsize = 0; 462 unsigned long pfn = pte_pfn(pte), dpfn; 463 struct mm_struct *mm = vma->vm_mm; 464 pgprot_t hugeprot; 465 pte_t orig_pte; 466 467 if (!pte_cont(pte)) 468 return ptep_set_access_flags(vma, addr, ptep, pte, dirty); 469 470 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 471 dpfn = pgsize >> PAGE_SHIFT; 472 473 if (!__cont_access_flags_changed(ptep, pte, ncontig)) 474 return 0; 475 476 orig_pte = get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig); 477 478 /* Make sure we don't lose the dirty or young state */ 479 if (pte_dirty(orig_pte)) 480 pte = pte_mkdirty(pte); 481 482 if (pte_young(orig_pte)) 483 pte = pte_mkyoung(pte); 484 485 hugeprot = pte_pgprot(pte); 486 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 487 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 488 489 return 1; 490 } 491 492 void huge_ptep_set_wrprotect(struct mm_struct *mm, 493 unsigned long addr, pte_t *ptep) 494 { 495 unsigned long pfn, dpfn; 496 pgprot_t hugeprot; 497 int ncontig, i; 498 size_t pgsize; 499 pte_t pte; 500 501 if (!pte_cont(READ_ONCE(*ptep))) { 502 ptep_set_wrprotect(mm, addr, ptep); 503 return; 504 } 505 506 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 507 dpfn = pgsize >> PAGE_SHIFT; 508 509 pte = get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig); 510 pte = pte_wrprotect(pte); 511 512 hugeprot = pte_pgprot(pte); 513 pfn = pte_pfn(pte); 514 515 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 516 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 517 } 518 519 pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, 520 unsigned long addr, pte_t *ptep) 521 { 522 struct mm_struct *mm = vma->vm_mm; 523 size_t pgsize; 524 int ncontig; 525 526 if (!pte_cont(READ_ONCE(*ptep))) 527 return ptep_clear_flush(vma, addr, ptep); 528 529 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 530 return get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig); 531 } 532 533 static int __init hugetlbpage_init(void) 534 { 535 if (pud_sect_supported()) 536 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); 537 538 hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT); 539 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); 540 hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT); 541 542 return 0; 543 } 544 arch_initcall(hugetlbpage_init); 545 546 bool __init arch_hugetlb_valid_size(unsigned long size) 547 { 548 return __hugetlb_valid_size(size); 549 } 550