1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/mm/hugetlbpage.c 4 * 5 * Copyright (C) 2013 Linaro Ltd. 6 * 7 * Based on arch/x86/mm/hugetlbpage.c. 8 */ 9 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/pagemap.h> 15 #include <linux/err.h> 16 #include <linux/sysctl.h> 17 #include <asm/mman.h> 18 #include <asm/tlb.h> 19 #include <asm/tlbflush.h> 20 21 /* 22 * HugeTLB Support Matrix 23 * 24 * --------------------------------------------------- 25 * | Page Size | CONT PTE | PMD | CONT PMD | PUD | 26 * --------------------------------------------------- 27 * | 4K | 64K | 2M | 32M | 1G | 28 * | 16K | 2M | 32M | 1G | | 29 * | 64K | 2M | 512M | 16G | | 30 * --------------------------------------------------- 31 */ 32 33 /* 34 * Reserve CMA areas for the largest supported gigantic 35 * huge page when requested. Any other smaller gigantic 36 * huge pages could still be served from those areas. 37 */ 38 #ifdef CONFIG_CMA 39 void __init arm64_hugetlb_cma_reserve(void) 40 { 41 int order; 42 43 if (pud_sect_supported()) 44 order = PUD_SHIFT - PAGE_SHIFT; 45 else 46 order = CONT_PMD_SHIFT - PAGE_SHIFT; 47 48 /* 49 * HugeTLB CMA reservation is required for gigantic 50 * huge pages which could not be allocated via the 51 * page allocator. Just warn if there is any change 52 * breaking this assumption. 53 */ 54 WARN_ON(order <= MAX_ORDER); 55 hugetlb_cma_reserve(order); 56 } 57 #endif /* CONFIG_CMA */ 58 59 static bool __hugetlb_valid_size(unsigned long size) 60 { 61 switch (size) { 62 #ifndef __PAGETABLE_PMD_FOLDED 63 case PUD_SIZE: 64 return pud_sect_supported(); 65 #endif 66 case CONT_PMD_SIZE: 67 case PMD_SIZE: 68 case CONT_PTE_SIZE: 69 return true; 70 } 71 72 return false; 73 } 74 75 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 76 bool arch_hugetlb_migration_supported(struct hstate *h) 77 { 78 size_t pagesize = huge_page_size(h); 79 80 if (!__hugetlb_valid_size(pagesize)) { 81 pr_warn("%s: unrecognized huge page size 0x%lx\n", 82 __func__, pagesize); 83 return false; 84 } 85 return true; 86 } 87 #endif 88 89 int pmd_huge(pmd_t pmd) 90 { 91 return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 92 } 93 94 int pud_huge(pud_t pud) 95 { 96 #ifndef __PAGETABLE_PMD_FOLDED 97 return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT); 98 #else 99 return 0; 100 #endif 101 } 102 103 /* 104 * Select all bits except the pfn 105 */ 106 static inline pgprot_t pte_pgprot(pte_t pte) 107 { 108 unsigned long pfn = pte_pfn(pte); 109 110 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 111 } 112 113 static int find_num_contig(struct mm_struct *mm, unsigned long addr, 114 pte_t *ptep, size_t *pgsize) 115 { 116 pgd_t *pgdp = pgd_offset(mm, addr); 117 p4d_t *p4dp; 118 pud_t *pudp; 119 pmd_t *pmdp; 120 121 *pgsize = PAGE_SIZE; 122 p4dp = p4d_offset(pgdp, addr); 123 pudp = pud_offset(p4dp, addr); 124 pmdp = pmd_offset(pudp, addr); 125 if ((pte_t *)pmdp == ptep) { 126 *pgsize = PMD_SIZE; 127 return CONT_PMDS; 128 } 129 return CONT_PTES; 130 } 131 132 static inline int num_contig_ptes(unsigned long size, size_t *pgsize) 133 { 134 int contig_ptes = 0; 135 136 *pgsize = size; 137 138 switch (size) { 139 #ifndef __PAGETABLE_PMD_FOLDED 140 case PUD_SIZE: 141 if (pud_sect_supported()) 142 contig_ptes = 1; 143 break; 144 #endif 145 case PMD_SIZE: 146 contig_ptes = 1; 147 break; 148 case CONT_PMD_SIZE: 149 *pgsize = PMD_SIZE; 150 contig_ptes = CONT_PMDS; 151 break; 152 case CONT_PTE_SIZE: 153 *pgsize = PAGE_SIZE; 154 contig_ptes = CONT_PTES; 155 break; 156 } 157 158 return contig_ptes; 159 } 160 161 pte_t huge_ptep_get(pte_t *ptep) 162 { 163 int ncontig, i; 164 size_t pgsize; 165 pte_t orig_pte = ptep_get(ptep); 166 167 if (!pte_present(orig_pte) || !pte_cont(orig_pte)) 168 return orig_pte; 169 170 ncontig = num_contig_ptes(page_size(pte_page(orig_pte)), &pgsize); 171 for (i = 0; i < ncontig; i++, ptep++) { 172 pte_t pte = ptep_get(ptep); 173 174 if (pte_dirty(pte)) 175 orig_pte = pte_mkdirty(orig_pte); 176 177 if (pte_young(pte)) 178 orig_pte = pte_mkyoung(orig_pte); 179 } 180 return orig_pte; 181 } 182 183 /* 184 * Changing some bits of contiguous entries requires us to follow a 185 * Break-Before-Make approach, breaking the whole contiguous set 186 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 187 * "Misprogramming of the Contiguous bit", page D4-1762. 188 * 189 * This helper performs the break step. 190 */ 191 static pte_t get_clear_contig(struct mm_struct *mm, 192 unsigned long addr, 193 pte_t *ptep, 194 unsigned long pgsize, 195 unsigned long ncontig) 196 { 197 pte_t orig_pte = ptep_get(ptep); 198 unsigned long i; 199 200 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) { 201 pte_t pte = ptep_get_and_clear(mm, addr, ptep); 202 203 /* 204 * If HW_AFDBM is enabled, then the HW could turn on 205 * the dirty or accessed bit for any page in the set, 206 * so check them all. 207 */ 208 if (pte_dirty(pte)) 209 orig_pte = pte_mkdirty(orig_pte); 210 211 if (pte_young(pte)) 212 orig_pte = pte_mkyoung(orig_pte); 213 } 214 return orig_pte; 215 } 216 217 /* 218 * Changing some bits of contiguous entries requires us to follow a 219 * Break-Before-Make approach, breaking the whole contiguous set 220 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 221 * "Misprogramming of the Contiguous bit", page D4-1762. 222 * 223 * This helper performs the break step for use cases where the 224 * original pte is not needed. 225 */ 226 static void clear_flush(struct mm_struct *mm, 227 unsigned long addr, 228 pte_t *ptep, 229 unsigned long pgsize, 230 unsigned long ncontig) 231 { 232 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 233 unsigned long i, saddr = addr; 234 235 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 236 pte_clear(mm, addr, ptep); 237 238 flush_tlb_range(&vma, saddr, addr); 239 } 240 241 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 242 pte_t *ptep, pte_t pte) 243 { 244 size_t pgsize; 245 int i; 246 int ncontig; 247 unsigned long pfn, dpfn; 248 pgprot_t hugeprot; 249 250 /* 251 * Code needs to be expanded to handle huge swap and migration 252 * entries. Needed for HUGETLB and MEMORY_FAILURE. 253 */ 254 WARN_ON(!pte_present(pte)); 255 256 if (!pte_cont(pte)) { 257 set_pte_at(mm, addr, ptep, pte); 258 return; 259 } 260 261 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 262 pfn = pte_pfn(pte); 263 dpfn = pgsize >> PAGE_SHIFT; 264 hugeprot = pte_pgprot(pte); 265 266 clear_flush(mm, addr, ptep, pgsize, ncontig); 267 268 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 269 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 270 } 271 272 void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr, 273 pte_t *ptep, pte_t pte, unsigned long sz) 274 { 275 int i, ncontig; 276 size_t pgsize; 277 278 ncontig = num_contig_ptes(sz, &pgsize); 279 280 for (i = 0; i < ncontig; i++, ptep++) 281 set_pte(ptep, pte); 282 } 283 284 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 285 unsigned long addr, unsigned long sz) 286 { 287 pgd_t *pgdp; 288 p4d_t *p4dp; 289 pud_t *pudp; 290 pmd_t *pmdp; 291 pte_t *ptep = NULL; 292 293 pgdp = pgd_offset(mm, addr); 294 p4dp = p4d_offset(pgdp, addr); 295 pudp = pud_alloc(mm, p4dp, addr); 296 if (!pudp) 297 return NULL; 298 299 if (sz == PUD_SIZE) { 300 ptep = (pte_t *)pudp; 301 } else if (sz == (CONT_PTE_SIZE)) { 302 pmdp = pmd_alloc(mm, pudp, addr); 303 if (!pmdp) 304 return NULL; 305 306 WARN_ON(addr & (sz - 1)); 307 /* 308 * Note that if this code were ever ported to the 309 * 32-bit arm platform then it will cause trouble in 310 * the case where CONFIG_HIGHPTE is set, since there 311 * will be no pte_unmap() to correspond with this 312 * pte_alloc_map(). 313 */ 314 ptep = pte_alloc_map(mm, pmdp, addr); 315 } else if (sz == PMD_SIZE) { 316 if (want_pmd_share(vma, addr) && pud_none(READ_ONCE(*pudp))) 317 ptep = huge_pmd_share(mm, vma, addr, pudp); 318 else 319 ptep = (pte_t *)pmd_alloc(mm, pudp, addr); 320 } else if (sz == (CONT_PMD_SIZE)) { 321 pmdp = pmd_alloc(mm, pudp, addr); 322 WARN_ON(addr & (sz - 1)); 323 return (pte_t *)pmdp; 324 } 325 326 return ptep; 327 } 328 329 pte_t *huge_pte_offset(struct mm_struct *mm, 330 unsigned long addr, unsigned long sz) 331 { 332 pgd_t *pgdp; 333 p4d_t *p4dp; 334 pud_t *pudp, pud; 335 pmd_t *pmdp, pmd; 336 337 pgdp = pgd_offset(mm, addr); 338 if (!pgd_present(READ_ONCE(*pgdp))) 339 return NULL; 340 341 p4dp = p4d_offset(pgdp, addr); 342 if (!p4d_present(READ_ONCE(*p4dp))) 343 return NULL; 344 345 pudp = pud_offset(p4dp, addr); 346 pud = READ_ONCE(*pudp); 347 if (sz != PUD_SIZE && pud_none(pud)) 348 return NULL; 349 /* hugepage or swap? */ 350 if (pud_huge(pud) || !pud_present(pud)) 351 return (pte_t *)pudp; 352 /* table; check the next level */ 353 354 if (sz == CONT_PMD_SIZE) 355 addr &= CONT_PMD_MASK; 356 357 pmdp = pmd_offset(pudp, addr); 358 pmd = READ_ONCE(*pmdp); 359 if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) && 360 pmd_none(pmd)) 361 return NULL; 362 if (pmd_huge(pmd) || !pmd_present(pmd)) 363 return (pte_t *)pmdp; 364 365 if (sz == CONT_PTE_SIZE) 366 return pte_offset_kernel(pmdp, (addr & CONT_PTE_MASK)); 367 368 return NULL; 369 } 370 371 pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, vm_flags_t flags) 372 { 373 size_t pagesize = 1UL << shift; 374 375 entry = pte_mkhuge(entry); 376 if (pagesize == CONT_PTE_SIZE) { 377 entry = pte_mkcont(entry); 378 } else if (pagesize == CONT_PMD_SIZE) { 379 entry = pmd_pte(pmd_mkcont(pte_pmd(entry))); 380 } else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) { 381 pr_warn("%s: unrecognized huge page size 0x%lx\n", 382 __func__, pagesize); 383 } 384 return entry; 385 } 386 387 void huge_pte_clear(struct mm_struct *mm, unsigned long addr, 388 pte_t *ptep, unsigned long sz) 389 { 390 int i, ncontig; 391 size_t pgsize; 392 393 ncontig = num_contig_ptes(sz, &pgsize); 394 395 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 396 pte_clear(mm, addr, ptep); 397 } 398 399 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, 400 unsigned long addr, pte_t *ptep) 401 { 402 int ncontig; 403 size_t pgsize; 404 pte_t orig_pte = ptep_get(ptep); 405 406 if (!pte_cont(orig_pte)) 407 return ptep_get_and_clear(mm, addr, ptep); 408 409 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 410 411 return get_clear_contig(mm, addr, ptep, pgsize, ncontig); 412 } 413 414 /* 415 * huge_ptep_set_access_flags will update access flags (dirty, accesssed) 416 * and write permission. 417 * 418 * For a contiguous huge pte range we need to check whether or not write 419 * permission has to change only on the first pte in the set. Then for 420 * all the contiguous ptes we need to check whether or not there is a 421 * discrepancy between dirty or young. 422 */ 423 static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig) 424 { 425 int i; 426 427 if (pte_write(pte) != pte_write(ptep_get(ptep))) 428 return 1; 429 430 for (i = 0; i < ncontig; i++) { 431 pte_t orig_pte = ptep_get(ptep + i); 432 433 if (pte_dirty(pte) != pte_dirty(orig_pte)) 434 return 1; 435 436 if (pte_young(pte) != pte_young(orig_pte)) 437 return 1; 438 } 439 440 return 0; 441 } 442 443 int huge_ptep_set_access_flags(struct vm_area_struct *vma, 444 unsigned long addr, pte_t *ptep, 445 pte_t pte, int dirty) 446 { 447 int ncontig, i; 448 size_t pgsize = 0; 449 unsigned long pfn = pte_pfn(pte), dpfn; 450 pgprot_t hugeprot; 451 pte_t orig_pte; 452 453 if (!pte_cont(pte)) 454 return ptep_set_access_flags(vma, addr, ptep, pte, dirty); 455 456 ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); 457 dpfn = pgsize >> PAGE_SHIFT; 458 459 if (!__cont_access_flags_changed(ptep, pte, ncontig)) 460 return 0; 461 462 orig_pte = get_clear_contig(vma->vm_mm, addr, ptep, pgsize, ncontig); 463 464 /* Make sure we don't lose the dirty or young state */ 465 if (pte_dirty(orig_pte)) 466 pte = pte_mkdirty(pte); 467 468 if (pte_young(orig_pte)) 469 pte = pte_mkyoung(pte); 470 471 hugeprot = pte_pgprot(pte); 472 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 473 set_pte_at(vma->vm_mm, addr, ptep, pfn_pte(pfn, hugeprot)); 474 475 return 1; 476 } 477 478 void huge_ptep_set_wrprotect(struct mm_struct *mm, 479 unsigned long addr, pte_t *ptep) 480 { 481 unsigned long pfn, dpfn; 482 pgprot_t hugeprot; 483 int ncontig, i; 484 size_t pgsize; 485 pte_t pte; 486 487 if (!pte_cont(READ_ONCE(*ptep))) { 488 ptep_set_wrprotect(mm, addr, ptep); 489 return; 490 } 491 492 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 493 dpfn = pgsize >> PAGE_SHIFT; 494 495 pte = get_clear_contig(mm, addr, ptep, pgsize, ncontig); 496 pte = pte_wrprotect(pte); 497 498 hugeprot = pte_pgprot(pte); 499 pfn = pte_pfn(pte); 500 501 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 502 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 503 } 504 505 pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, 506 unsigned long addr, pte_t *ptep) 507 { 508 size_t pgsize; 509 int ncontig; 510 pte_t orig_pte; 511 512 if (!pte_cont(READ_ONCE(*ptep))) 513 return ptep_clear_flush(vma, addr, ptep); 514 515 ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); 516 orig_pte = get_clear_contig(vma->vm_mm, addr, ptep, pgsize, ncontig); 517 flush_tlb_range(vma, addr, addr + pgsize * ncontig); 518 return orig_pte; 519 } 520 521 static int __init hugetlbpage_init(void) 522 { 523 if (pud_sect_supported()) 524 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); 525 526 hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT); 527 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); 528 hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT); 529 530 return 0; 531 } 532 arch_initcall(hugetlbpage_init); 533 534 bool __init arch_hugetlb_valid_size(unsigned long size) 535 { 536 return __hugetlb_valid_size(size); 537 } 538