1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/mm/hugetlbpage.c 4 * 5 * Copyright (C) 2013 Linaro Ltd. 6 * 7 * Based on arch/x86/mm/hugetlbpage.c. 8 */ 9 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/pagemap.h> 15 #include <linux/err.h> 16 #include <linux/sysctl.h> 17 #include <asm/mman.h> 18 #include <asm/tlb.h> 19 #include <asm/tlbflush.h> 20 21 /* 22 * HugeTLB Support Matrix 23 * 24 * --------------------------------------------------- 25 * | Page Size | CONT PTE | PMD | CONT PMD | PUD | 26 * --------------------------------------------------- 27 * | 4K | 64K | 2M | 32M | 1G | 28 * | 16K | 2M | 32M | 1G | | 29 * | 64K | 2M | 512M | 16G | | 30 * --------------------------------------------------- 31 */ 32 33 /* 34 * Reserve CMA areas for the largest supported gigantic 35 * huge page when requested. Any other smaller gigantic 36 * huge pages could still be served from those areas. 37 */ 38 #ifdef CONFIG_CMA 39 void __init arm64_hugetlb_cma_reserve(void) 40 { 41 int order; 42 43 if (pud_sect_supported()) 44 order = PUD_SHIFT - PAGE_SHIFT; 45 else 46 order = CONT_PMD_SHIFT - PAGE_SHIFT; 47 48 /* 49 * HugeTLB CMA reservation is required for gigantic 50 * huge pages which could not be allocated via the 51 * page allocator. Just warn if there is any change 52 * breaking this assumption. 53 */ 54 WARN_ON(order <= MAX_ORDER); 55 hugetlb_cma_reserve(order); 56 } 57 #endif /* CONFIG_CMA */ 58 59 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 60 bool arch_hugetlb_migration_supported(struct hstate *h) 61 { 62 size_t pagesize = huge_page_size(h); 63 64 switch (pagesize) { 65 #ifndef __PAGETABLE_PMD_FOLDED 66 case PUD_SIZE: 67 return pud_sect_supported(); 68 #endif 69 case PMD_SIZE: 70 case CONT_PMD_SIZE: 71 case CONT_PTE_SIZE: 72 return true; 73 } 74 pr_warn("%s: unrecognized huge page size 0x%lx\n", 75 __func__, pagesize); 76 return false; 77 } 78 #endif 79 80 int pmd_huge(pmd_t pmd) 81 { 82 return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 83 } 84 85 int pud_huge(pud_t pud) 86 { 87 #ifndef __PAGETABLE_PMD_FOLDED 88 return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT); 89 #else 90 return 0; 91 #endif 92 } 93 94 /* 95 * Select all bits except the pfn 96 */ 97 static inline pgprot_t pte_pgprot(pte_t pte) 98 { 99 unsigned long pfn = pte_pfn(pte); 100 101 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 102 } 103 104 static int find_num_contig(struct mm_struct *mm, unsigned long addr, 105 pte_t *ptep, size_t *pgsize) 106 { 107 pgd_t *pgdp = pgd_offset(mm, addr); 108 p4d_t *p4dp; 109 pud_t *pudp; 110 pmd_t *pmdp; 111 112 *pgsize = PAGE_SIZE; 113 p4dp = p4d_offset(pgdp, addr); 114 pudp = pud_offset(p4dp, addr); 115 pmdp = pmd_offset(pudp, addr); 116 if ((pte_t *)pmdp == ptep) { 117 *pgsize = PMD_SIZE; 118 return CONT_PMDS; 119 } 120 return CONT_PTES; 121 } 122 123 static inline int num_contig_ptes(unsigned long size, size_t *pgsize) 124 { 125 int contig_ptes = 0; 126 127 *pgsize = size; 128 129 switch (size) { 130 #ifndef __PAGETABLE_PMD_FOLDED 131 case PUD_SIZE: 132 if (pud_sect_supported()) 133 contig_ptes = 1; 134 break; 135 #endif 136 case PMD_SIZE: 137 contig_ptes = 1; 138 break; 139 case CONT_PMD_SIZE: 140 *pgsize = PMD_SIZE; 141 contig_ptes = CONT_PMDS; 142 break; 143 case CONT_PTE_SIZE: 144 *pgsize = PAGE_SIZE; 145 contig_ptes = CONT_PTES; 146 break; 147 } 148 149 return contig_ptes; 150 } 151 152 /* 153 * Changing some bits of contiguous entries requires us to follow a 154 * Break-Before-Make approach, breaking the whole contiguous set 155 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 156 * "Misprogramming of the Contiguous bit", page D4-1762. 157 * 158 * This helper performs the break step. 159 */ 160 static pte_t get_clear_flush(struct mm_struct *mm, 161 unsigned long addr, 162 pte_t *ptep, 163 unsigned long pgsize, 164 unsigned long ncontig) 165 { 166 pte_t orig_pte = huge_ptep_get(ptep); 167 bool valid = pte_valid(orig_pte); 168 unsigned long i, saddr = addr; 169 170 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) { 171 pte_t pte = ptep_get_and_clear(mm, addr, ptep); 172 173 /* 174 * If HW_AFDBM is enabled, then the HW could turn on 175 * the dirty or accessed bit for any page in the set, 176 * so check them all. 177 */ 178 if (pte_dirty(pte)) 179 orig_pte = pte_mkdirty(orig_pte); 180 181 if (pte_young(pte)) 182 orig_pte = pte_mkyoung(orig_pte); 183 } 184 185 if (valid) { 186 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 187 flush_tlb_range(&vma, saddr, addr); 188 } 189 return orig_pte; 190 } 191 192 /* 193 * Changing some bits of contiguous entries requires us to follow a 194 * Break-Before-Make approach, breaking the whole contiguous set 195 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 196 * "Misprogramming of the Contiguous bit", page D4-1762. 197 * 198 * This helper performs the break step for use cases where the 199 * original pte is not needed. 200 */ 201 static void clear_flush(struct mm_struct *mm, 202 unsigned long addr, 203 pte_t *ptep, 204 unsigned long pgsize, 205 unsigned long ncontig) 206 { 207 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 208 unsigned long i, saddr = addr; 209 210 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 211 pte_clear(mm, addr, ptep); 212 213 flush_tlb_range(&vma, saddr, addr); 214 } 215 216 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 217 pte_t *ptep, pte_t pte) 218 { 219 size_t pgsize; 220 int i; 221 int ncontig; 222 unsigned long pfn, dpfn; 223 pgprot_t hugeprot; 224 225 /* 226 * Code needs to be expanded to handle huge swap and migration 227 * entries. Needed for HUGETLB and MEMORY_FAILURE. 228 */ 229 WARN_ON(!pte_present(pte)); 230 231 if (!pte_cont(pte)) { 232 set_pte_at(mm, addr, ptep, pte); 233 return; 234 } 235 236 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 237 pfn = pte_pfn(pte); 238 dpfn = pgsize >> PAGE_SHIFT; 239 hugeprot = pte_pgprot(pte); 240 241 clear_flush(mm, addr, ptep, pgsize, ncontig); 242 243 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 244 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 245 } 246 247 void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr, 248 pte_t *ptep, pte_t pte, unsigned long sz) 249 { 250 int i, ncontig; 251 size_t pgsize; 252 253 ncontig = num_contig_ptes(sz, &pgsize); 254 255 for (i = 0; i < ncontig; i++, ptep++) 256 set_pte(ptep, pte); 257 } 258 259 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 260 unsigned long addr, unsigned long sz) 261 { 262 pgd_t *pgdp; 263 p4d_t *p4dp; 264 pud_t *pudp; 265 pmd_t *pmdp; 266 pte_t *ptep = NULL; 267 268 pgdp = pgd_offset(mm, addr); 269 p4dp = p4d_offset(pgdp, addr); 270 pudp = pud_alloc(mm, p4dp, addr); 271 if (!pudp) 272 return NULL; 273 274 if (sz == PUD_SIZE) { 275 ptep = (pte_t *)pudp; 276 } else if (sz == (CONT_PTE_SIZE)) { 277 pmdp = pmd_alloc(mm, pudp, addr); 278 if (!pmdp) 279 return NULL; 280 281 WARN_ON(addr & (sz - 1)); 282 /* 283 * Note that if this code were ever ported to the 284 * 32-bit arm platform then it will cause trouble in 285 * the case where CONFIG_HIGHPTE is set, since there 286 * will be no pte_unmap() to correspond with this 287 * pte_alloc_map(). 288 */ 289 ptep = pte_alloc_map(mm, pmdp, addr); 290 } else if (sz == PMD_SIZE) { 291 if (want_pmd_share(vma, addr) && pud_none(READ_ONCE(*pudp))) 292 ptep = huge_pmd_share(mm, vma, addr, pudp); 293 else 294 ptep = (pte_t *)pmd_alloc(mm, pudp, addr); 295 } else if (sz == (CONT_PMD_SIZE)) { 296 pmdp = pmd_alloc(mm, pudp, addr); 297 WARN_ON(addr & (sz - 1)); 298 return (pte_t *)pmdp; 299 } 300 301 return ptep; 302 } 303 304 pte_t *huge_pte_offset(struct mm_struct *mm, 305 unsigned long addr, unsigned long sz) 306 { 307 pgd_t *pgdp; 308 p4d_t *p4dp; 309 pud_t *pudp, pud; 310 pmd_t *pmdp, pmd; 311 312 pgdp = pgd_offset(mm, addr); 313 if (!pgd_present(READ_ONCE(*pgdp))) 314 return NULL; 315 316 p4dp = p4d_offset(pgdp, addr); 317 if (!p4d_present(READ_ONCE(*p4dp))) 318 return NULL; 319 320 pudp = pud_offset(p4dp, addr); 321 pud = READ_ONCE(*pudp); 322 if (sz != PUD_SIZE && pud_none(pud)) 323 return NULL; 324 /* hugepage or swap? */ 325 if (pud_huge(pud) || !pud_present(pud)) 326 return (pte_t *)pudp; 327 /* table; check the next level */ 328 329 if (sz == CONT_PMD_SIZE) 330 addr &= CONT_PMD_MASK; 331 332 pmdp = pmd_offset(pudp, addr); 333 pmd = READ_ONCE(*pmdp); 334 if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) && 335 pmd_none(pmd)) 336 return NULL; 337 if (pmd_huge(pmd) || !pmd_present(pmd)) 338 return (pte_t *)pmdp; 339 340 if (sz == CONT_PTE_SIZE) 341 return pte_offset_kernel(pmdp, (addr & CONT_PTE_MASK)); 342 343 return NULL; 344 } 345 346 pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, vm_flags_t flags) 347 { 348 size_t pagesize = 1UL << shift; 349 350 if (pagesize == CONT_PTE_SIZE) { 351 entry = pte_mkcont(entry); 352 } else if (pagesize == CONT_PMD_SIZE) { 353 entry = pmd_pte(pmd_mkcont(pte_pmd(entry))); 354 } else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) { 355 pr_warn("%s: unrecognized huge page size 0x%lx\n", 356 __func__, pagesize); 357 } 358 return entry; 359 } 360 361 void huge_pte_clear(struct mm_struct *mm, unsigned long addr, 362 pte_t *ptep, unsigned long sz) 363 { 364 int i, ncontig; 365 size_t pgsize; 366 367 ncontig = num_contig_ptes(sz, &pgsize); 368 369 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 370 pte_clear(mm, addr, ptep); 371 } 372 373 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, 374 unsigned long addr, pte_t *ptep) 375 { 376 int ncontig; 377 size_t pgsize; 378 pte_t orig_pte = huge_ptep_get(ptep); 379 380 if (!pte_cont(orig_pte)) 381 return ptep_get_and_clear(mm, addr, ptep); 382 383 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 384 385 return get_clear_flush(mm, addr, ptep, pgsize, ncontig); 386 } 387 388 /* 389 * huge_ptep_set_access_flags will update access flags (dirty, accesssed) 390 * and write permission. 391 * 392 * For a contiguous huge pte range we need to check whether or not write 393 * permission has to change only on the first pte in the set. Then for 394 * all the contiguous ptes we need to check whether or not there is a 395 * discrepancy between dirty or young. 396 */ 397 static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig) 398 { 399 int i; 400 401 if (pte_write(pte) != pte_write(huge_ptep_get(ptep))) 402 return 1; 403 404 for (i = 0; i < ncontig; i++) { 405 pte_t orig_pte = huge_ptep_get(ptep + i); 406 407 if (pte_dirty(pte) != pte_dirty(orig_pte)) 408 return 1; 409 410 if (pte_young(pte) != pte_young(orig_pte)) 411 return 1; 412 } 413 414 return 0; 415 } 416 417 int huge_ptep_set_access_flags(struct vm_area_struct *vma, 418 unsigned long addr, pte_t *ptep, 419 pte_t pte, int dirty) 420 { 421 int ncontig, i; 422 size_t pgsize = 0; 423 unsigned long pfn = pte_pfn(pte), dpfn; 424 pgprot_t hugeprot; 425 pte_t orig_pte; 426 427 if (!pte_cont(pte)) 428 return ptep_set_access_flags(vma, addr, ptep, pte, dirty); 429 430 ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); 431 dpfn = pgsize >> PAGE_SHIFT; 432 433 if (!__cont_access_flags_changed(ptep, pte, ncontig)) 434 return 0; 435 436 orig_pte = get_clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig); 437 438 /* Make sure we don't lose the dirty or young state */ 439 if (pte_dirty(orig_pte)) 440 pte = pte_mkdirty(pte); 441 442 if (pte_young(orig_pte)) 443 pte = pte_mkyoung(pte); 444 445 hugeprot = pte_pgprot(pte); 446 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 447 set_pte_at(vma->vm_mm, addr, ptep, pfn_pte(pfn, hugeprot)); 448 449 return 1; 450 } 451 452 void huge_ptep_set_wrprotect(struct mm_struct *mm, 453 unsigned long addr, pte_t *ptep) 454 { 455 unsigned long pfn, dpfn; 456 pgprot_t hugeprot; 457 int ncontig, i; 458 size_t pgsize; 459 pte_t pte; 460 461 if (!pte_cont(READ_ONCE(*ptep))) { 462 ptep_set_wrprotect(mm, addr, ptep); 463 return; 464 } 465 466 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 467 dpfn = pgsize >> PAGE_SHIFT; 468 469 pte = get_clear_flush(mm, addr, ptep, pgsize, ncontig); 470 pte = pte_wrprotect(pte); 471 472 hugeprot = pte_pgprot(pte); 473 pfn = pte_pfn(pte); 474 475 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 476 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 477 } 478 479 void huge_ptep_clear_flush(struct vm_area_struct *vma, 480 unsigned long addr, pte_t *ptep) 481 { 482 size_t pgsize; 483 int ncontig; 484 485 if (!pte_cont(READ_ONCE(*ptep))) { 486 ptep_clear_flush(vma, addr, ptep); 487 return; 488 } 489 490 ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); 491 clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig); 492 } 493 494 static int __init hugetlbpage_init(void) 495 { 496 if (pud_sect_supported()) 497 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); 498 499 hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT); 500 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); 501 hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT); 502 503 return 0; 504 } 505 arch_initcall(hugetlbpage_init); 506 507 bool __init arch_hugetlb_valid_size(unsigned long size) 508 { 509 switch (size) { 510 #ifndef __PAGETABLE_PMD_FOLDED 511 case PUD_SIZE: 512 return pud_sect_supported(); 513 #endif 514 case CONT_PMD_SIZE: 515 case PMD_SIZE: 516 case CONT_PTE_SIZE: 517 return true; 518 } 519 520 return false; 521 } 522