1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/mm/hugetlbpage.c 4 * 5 * Copyright (C) 2013 Linaro Ltd. 6 * 7 * Based on arch/x86/mm/hugetlbpage.c. 8 */ 9 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/pagemap.h> 15 #include <linux/err.h> 16 #include <linux/sysctl.h> 17 #include <asm/mman.h> 18 #include <asm/tlb.h> 19 #include <asm/tlbflush.h> 20 21 /* 22 * HugeTLB Support Matrix 23 * 24 * --------------------------------------------------- 25 * | Page Size | CONT PTE | PMD | CONT PMD | PUD | 26 * --------------------------------------------------- 27 * | 4K | 64K | 2M | 32M | 1G | 28 * | 16K | 2M | 32M | 1G | | 29 * | 64K | 2M | 512M | 16G | | 30 * --------------------------------------------------- 31 */ 32 33 /* 34 * Reserve CMA areas for the largest supported gigantic 35 * huge page when requested. Any other smaller gigantic 36 * huge pages could still be served from those areas. 37 */ 38 #ifdef CONFIG_CMA 39 void __init arm64_hugetlb_cma_reserve(void) 40 { 41 int order; 42 43 #ifdef CONFIG_ARM64_4K_PAGES 44 order = PUD_SHIFT - PAGE_SHIFT; 45 #else 46 order = CONT_PMD_SHIFT + PMD_SHIFT - PAGE_SHIFT; 47 #endif 48 /* 49 * HugeTLB CMA reservation is required for gigantic 50 * huge pages which could not be allocated via the 51 * page allocator. Just warn if there is any change 52 * breaking this assumption. 53 */ 54 WARN_ON(order <= MAX_ORDER); 55 hugetlb_cma_reserve(order); 56 } 57 #endif /* CONFIG_CMA */ 58 59 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 60 bool arch_hugetlb_migration_supported(struct hstate *h) 61 { 62 size_t pagesize = huge_page_size(h); 63 64 switch (pagesize) { 65 #ifdef CONFIG_ARM64_4K_PAGES 66 case PUD_SIZE: 67 #endif 68 case PMD_SIZE: 69 case CONT_PMD_SIZE: 70 case CONT_PTE_SIZE: 71 return true; 72 } 73 pr_warn("%s: unrecognized huge page size 0x%lx\n", 74 __func__, pagesize); 75 return false; 76 } 77 #endif 78 79 int pmd_huge(pmd_t pmd) 80 { 81 return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 82 } 83 84 int pud_huge(pud_t pud) 85 { 86 #ifndef __PAGETABLE_PMD_FOLDED 87 return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT); 88 #else 89 return 0; 90 #endif 91 } 92 93 /* 94 * Select all bits except the pfn 95 */ 96 static inline pgprot_t pte_pgprot(pte_t pte) 97 { 98 unsigned long pfn = pte_pfn(pte); 99 100 return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte)); 101 } 102 103 static int find_num_contig(struct mm_struct *mm, unsigned long addr, 104 pte_t *ptep, size_t *pgsize) 105 { 106 pgd_t *pgdp = pgd_offset(mm, addr); 107 p4d_t *p4dp; 108 pud_t *pudp; 109 pmd_t *pmdp; 110 111 *pgsize = PAGE_SIZE; 112 p4dp = p4d_offset(pgdp, addr); 113 pudp = pud_offset(p4dp, addr); 114 pmdp = pmd_offset(pudp, addr); 115 if ((pte_t *)pmdp == ptep) { 116 *pgsize = PMD_SIZE; 117 return CONT_PMDS; 118 } 119 return CONT_PTES; 120 } 121 122 static inline int num_contig_ptes(unsigned long size, size_t *pgsize) 123 { 124 int contig_ptes = 0; 125 126 *pgsize = size; 127 128 switch (size) { 129 #ifdef CONFIG_ARM64_4K_PAGES 130 case PUD_SIZE: 131 #endif 132 case PMD_SIZE: 133 contig_ptes = 1; 134 break; 135 case CONT_PMD_SIZE: 136 *pgsize = PMD_SIZE; 137 contig_ptes = CONT_PMDS; 138 break; 139 case CONT_PTE_SIZE: 140 *pgsize = PAGE_SIZE; 141 contig_ptes = CONT_PTES; 142 break; 143 } 144 145 return contig_ptes; 146 } 147 148 /* 149 * Changing some bits of contiguous entries requires us to follow a 150 * Break-Before-Make approach, breaking the whole contiguous set 151 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 152 * "Misprogramming of the Contiguous bit", page D4-1762. 153 * 154 * This helper performs the break step. 155 */ 156 static pte_t get_clear_flush(struct mm_struct *mm, 157 unsigned long addr, 158 pte_t *ptep, 159 unsigned long pgsize, 160 unsigned long ncontig) 161 { 162 pte_t orig_pte = huge_ptep_get(ptep); 163 bool valid = pte_valid(orig_pte); 164 unsigned long i, saddr = addr; 165 166 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) { 167 pte_t pte = ptep_get_and_clear(mm, addr, ptep); 168 169 /* 170 * If HW_AFDBM is enabled, then the HW could turn on 171 * the dirty or accessed bit for any page in the set, 172 * so check them all. 173 */ 174 if (pte_dirty(pte)) 175 orig_pte = pte_mkdirty(orig_pte); 176 177 if (pte_young(pte)) 178 orig_pte = pte_mkyoung(orig_pte); 179 } 180 181 if (valid) { 182 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 183 flush_tlb_range(&vma, saddr, addr); 184 } 185 return orig_pte; 186 } 187 188 /* 189 * Changing some bits of contiguous entries requires us to follow a 190 * Break-Before-Make approach, breaking the whole contiguous set 191 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 192 * "Misprogramming of the Contiguous bit", page D4-1762. 193 * 194 * This helper performs the break step for use cases where the 195 * original pte is not needed. 196 */ 197 static void clear_flush(struct mm_struct *mm, 198 unsigned long addr, 199 pte_t *ptep, 200 unsigned long pgsize, 201 unsigned long ncontig) 202 { 203 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 204 unsigned long i, saddr = addr; 205 206 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 207 pte_clear(mm, addr, ptep); 208 209 flush_tlb_range(&vma, saddr, addr); 210 } 211 212 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 213 pte_t *ptep, pte_t pte) 214 { 215 size_t pgsize; 216 int i; 217 int ncontig; 218 unsigned long pfn, dpfn; 219 pgprot_t hugeprot; 220 221 /* 222 * Code needs to be expanded to handle huge swap and migration 223 * entries. Needed for HUGETLB and MEMORY_FAILURE. 224 */ 225 WARN_ON(!pte_present(pte)); 226 227 if (!pte_cont(pte)) { 228 set_pte_at(mm, addr, ptep, pte); 229 return; 230 } 231 232 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 233 pfn = pte_pfn(pte); 234 dpfn = pgsize >> PAGE_SHIFT; 235 hugeprot = pte_pgprot(pte); 236 237 clear_flush(mm, addr, ptep, pgsize, ncontig); 238 239 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 240 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 241 } 242 243 void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr, 244 pte_t *ptep, pte_t pte, unsigned long sz) 245 { 246 int i, ncontig; 247 size_t pgsize; 248 249 ncontig = num_contig_ptes(sz, &pgsize); 250 251 for (i = 0; i < ncontig; i++, ptep++) 252 set_pte(ptep, pte); 253 } 254 255 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 256 unsigned long addr, unsigned long sz) 257 { 258 pgd_t *pgdp; 259 p4d_t *p4dp; 260 pud_t *pudp; 261 pmd_t *pmdp; 262 pte_t *ptep = NULL; 263 264 pgdp = pgd_offset(mm, addr); 265 p4dp = p4d_offset(pgdp, addr); 266 pudp = pud_alloc(mm, p4dp, addr); 267 if (!pudp) 268 return NULL; 269 270 if (sz == PUD_SIZE) { 271 ptep = (pte_t *)pudp; 272 } else if (sz == (CONT_PTE_SIZE)) { 273 pmdp = pmd_alloc(mm, pudp, addr); 274 if (!pmdp) 275 return NULL; 276 277 WARN_ON(addr & (sz - 1)); 278 /* 279 * Note that if this code were ever ported to the 280 * 32-bit arm platform then it will cause trouble in 281 * the case where CONFIG_HIGHPTE is set, since there 282 * will be no pte_unmap() to correspond with this 283 * pte_alloc_map(). 284 */ 285 ptep = pte_alloc_map(mm, pmdp, addr); 286 } else if (sz == PMD_SIZE) { 287 if (want_pmd_share(vma, addr) && pud_none(READ_ONCE(*pudp))) 288 ptep = huge_pmd_share(mm, vma, addr, pudp); 289 else 290 ptep = (pte_t *)pmd_alloc(mm, pudp, addr); 291 } else if (sz == (CONT_PMD_SIZE)) { 292 pmdp = pmd_alloc(mm, pudp, addr); 293 WARN_ON(addr & (sz - 1)); 294 return (pte_t *)pmdp; 295 } 296 297 return ptep; 298 } 299 300 pte_t *huge_pte_offset(struct mm_struct *mm, 301 unsigned long addr, unsigned long sz) 302 { 303 pgd_t *pgdp; 304 p4d_t *p4dp; 305 pud_t *pudp, pud; 306 pmd_t *pmdp, pmd; 307 308 pgdp = pgd_offset(mm, addr); 309 if (!pgd_present(READ_ONCE(*pgdp))) 310 return NULL; 311 312 p4dp = p4d_offset(pgdp, addr); 313 if (!p4d_present(READ_ONCE(*p4dp))) 314 return NULL; 315 316 pudp = pud_offset(p4dp, addr); 317 pud = READ_ONCE(*pudp); 318 if (sz != PUD_SIZE && pud_none(pud)) 319 return NULL; 320 /* hugepage or swap? */ 321 if (pud_huge(pud) || !pud_present(pud)) 322 return (pte_t *)pudp; 323 /* table; check the next level */ 324 325 if (sz == CONT_PMD_SIZE) 326 addr &= CONT_PMD_MASK; 327 328 pmdp = pmd_offset(pudp, addr); 329 pmd = READ_ONCE(*pmdp); 330 if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) && 331 pmd_none(pmd)) 332 return NULL; 333 if (pmd_huge(pmd) || !pmd_present(pmd)) 334 return (pte_t *)pmdp; 335 336 if (sz == CONT_PTE_SIZE) 337 return pte_offset_kernel(pmdp, (addr & CONT_PTE_MASK)); 338 339 return NULL; 340 } 341 342 pte_t arch_make_huge_pte(pte_t entry, struct vm_area_struct *vma, 343 struct page *page, int writable) 344 { 345 size_t pagesize = huge_page_size(hstate_vma(vma)); 346 347 if (pagesize == CONT_PTE_SIZE) { 348 entry = pte_mkcont(entry); 349 } else if (pagesize == CONT_PMD_SIZE) { 350 entry = pmd_pte(pmd_mkcont(pte_pmd(entry))); 351 } else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) { 352 pr_warn("%s: unrecognized huge page size 0x%lx\n", 353 __func__, pagesize); 354 } 355 return entry; 356 } 357 358 void huge_pte_clear(struct mm_struct *mm, unsigned long addr, 359 pte_t *ptep, unsigned long sz) 360 { 361 int i, ncontig; 362 size_t pgsize; 363 364 ncontig = num_contig_ptes(sz, &pgsize); 365 366 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 367 pte_clear(mm, addr, ptep); 368 } 369 370 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, 371 unsigned long addr, pte_t *ptep) 372 { 373 int ncontig; 374 size_t pgsize; 375 pte_t orig_pte = huge_ptep_get(ptep); 376 377 if (!pte_cont(orig_pte)) 378 return ptep_get_and_clear(mm, addr, ptep); 379 380 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 381 382 return get_clear_flush(mm, addr, ptep, pgsize, ncontig); 383 } 384 385 /* 386 * huge_ptep_set_access_flags will update access flags (dirty, accesssed) 387 * and write permission. 388 * 389 * For a contiguous huge pte range we need to check whether or not write 390 * permission has to change only on the first pte in the set. Then for 391 * all the contiguous ptes we need to check whether or not there is a 392 * discrepancy between dirty or young. 393 */ 394 static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig) 395 { 396 int i; 397 398 if (pte_write(pte) != pte_write(huge_ptep_get(ptep))) 399 return 1; 400 401 for (i = 0; i < ncontig; i++) { 402 pte_t orig_pte = huge_ptep_get(ptep + i); 403 404 if (pte_dirty(pte) != pte_dirty(orig_pte)) 405 return 1; 406 407 if (pte_young(pte) != pte_young(orig_pte)) 408 return 1; 409 } 410 411 return 0; 412 } 413 414 int huge_ptep_set_access_flags(struct vm_area_struct *vma, 415 unsigned long addr, pte_t *ptep, 416 pte_t pte, int dirty) 417 { 418 int ncontig, i; 419 size_t pgsize = 0; 420 unsigned long pfn = pte_pfn(pte), dpfn; 421 pgprot_t hugeprot; 422 pte_t orig_pte; 423 424 if (!pte_cont(pte)) 425 return ptep_set_access_flags(vma, addr, ptep, pte, dirty); 426 427 ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); 428 dpfn = pgsize >> PAGE_SHIFT; 429 430 if (!__cont_access_flags_changed(ptep, pte, ncontig)) 431 return 0; 432 433 orig_pte = get_clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig); 434 435 /* Make sure we don't lose the dirty or young state */ 436 if (pte_dirty(orig_pte)) 437 pte = pte_mkdirty(pte); 438 439 if (pte_young(orig_pte)) 440 pte = pte_mkyoung(pte); 441 442 hugeprot = pte_pgprot(pte); 443 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 444 set_pte_at(vma->vm_mm, addr, ptep, pfn_pte(pfn, hugeprot)); 445 446 return 1; 447 } 448 449 void huge_ptep_set_wrprotect(struct mm_struct *mm, 450 unsigned long addr, pte_t *ptep) 451 { 452 unsigned long pfn, dpfn; 453 pgprot_t hugeprot; 454 int ncontig, i; 455 size_t pgsize; 456 pte_t pte; 457 458 if (!pte_cont(READ_ONCE(*ptep))) { 459 ptep_set_wrprotect(mm, addr, ptep); 460 return; 461 } 462 463 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 464 dpfn = pgsize >> PAGE_SHIFT; 465 466 pte = get_clear_flush(mm, addr, ptep, pgsize, ncontig); 467 pte = pte_wrprotect(pte); 468 469 hugeprot = pte_pgprot(pte); 470 pfn = pte_pfn(pte); 471 472 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 473 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 474 } 475 476 void huge_ptep_clear_flush(struct vm_area_struct *vma, 477 unsigned long addr, pte_t *ptep) 478 { 479 size_t pgsize; 480 int ncontig; 481 482 if (!pte_cont(READ_ONCE(*ptep))) { 483 ptep_clear_flush(vma, addr, ptep); 484 return; 485 } 486 487 ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize); 488 clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig); 489 } 490 491 static int __init hugetlbpage_init(void) 492 { 493 #ifdef CONFIG_ARM64_4K_PAGES 494 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); 495 #endif 496 hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT); 497 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); 498 hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT); 499 500 return 0; 501 } 502 arch_initcall(hugetlbpage_init); 503 504 bool __init arch_hugetlb_valid_size(unsigned long size) 505 { 506 switch (size) { 507 #ifdef CONFIG_ARM64_4K_PAGES 508 case PUD_SIZE: 509 #endif 510 case CONT_PMD_SIZE: 511 case PMD_SIZE: 512 case CONT_PTE_SIZE: 513 return true; 514 } 515 516 return false; 517 } 518