xref: /openbmc/linux/arch/arm64/mm/hugetlbpage.c (revision 1fe3a33b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * arch/arm64/mm/hugetlbpage.c
4  *
5  * Copyright (C) 2013 Linaro Ltd.
6  *
7  * Based on arch/x86/mm/hugetlbpage.c.
8  */
9 
10 #include <linux/init.h>
11 #include <linux/fs.h>
12 #include <linux/mm.h>
13 #include <linux/hugetlb.h>
14 #include <linux/pagemap.h>
15 #include <linux/err.h>
16 #include <linux/sysctl.h>
17 #include <asm/mman.h>
18 #include <asm/tlb.h>
19 #include <asm/tlbflush.h>
20 
21 /*
22  * HugeTLB Support Matrix
23  *
24  * ---------------------------------------------------
25  * | Page Size | CONT PTE |  PMD  | CONT PMD |  PUD  |
26  * ---------------------------------------------------
27  * |     4K    |   64K    |   2M  |    32M   |   1G  |
28  * |    16K    |    2M    |  32M  |     1G   |       |
29  * |    64K    |    2M    | 512M  |    16G   |       |
30  * ---------------------------------------------------
31  */
32 
33 /*
34  * Reserve CMA areas for the largest supported gigantic
35  * huge page when requested. Any other smaller gigantic
36  * huge pages could still be served from those areas.
37  */
38 #ifdef CONFIG_CMA
39 void __init arm64_hugetlb_cma_reserve(void)
40 {
41 	int order;
42 
43 	if (pud_sect_supported())
44 		order = PUD_SHIFT - PAGE_SHIFT;
45 	else
46 		order = CONT_PMD_SHIFT - PAGE_SHIFT;
47 
48 	/*
49 	 * HugeTLB CMA reservation is required for gigantic
50 	 * huge pages which could not be allocated via the
51 	 * page allocator. Just warn if there is any change
52 	 * breaking this assumption.
53 	 */
54 	WARN_ON(order <= MAX_ORDER);
55 	hugetlb_cma_reserve(order);
56 }
57 #endif /* CONFIG_CMA */
58 
59 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION
60 bool arch_hugetlb_migration_supported(struct hstate *h)
61 {
62 	size_t pagesize = huge_page_size(h);
63 
64 	switch (pagesize) {
65 #ifndef __PAGETABLE_PMD_FOLDED
66 	case PUD_SIZE:
67 		return pud_sect_supported();
68 #endif
69 	case PMD_SIZE:
70 	case CONT_PMD_SIZE:
71 	case CONT_PTE_SIZE:
72 		return true;
73 	}
74 	pr_warn("%s: unrecognized huge page size 0x%lx\n",
75 			__func__, pagesize);
76 	return false;
77 }
78 #endif
79 
80 int pmd_huge(pmd_t pmd)
81 {
82 	return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT);
83 }
84 
85 int pud_huge(pud_t pud)
86 {
87 #ifndef __PAGETABLE_PMD_FOLDED
88 	return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT);
89 #else
90 	return 0;
91 #endif
92 }
93 
94 /*
95  * Select all bits except the pfn
96  */
97 static inline pgprot_t pte_pgprot(pte_t pte)
98 {
99 	unsigned long pfn = pte_pfn(pte);
100 
101 	return __pgprot(pte_val(pfn_pte(pfn, __pgprot(0))) ^ pte_val(pte));
102 }
103 
104 static int find_num_contig(struct mm_struct *mm, unsigned long addr,
105 			   pte_t *ptep, size_t *pgsize)
106 {
107 	pgd_t *pgdp = pgd_offset(mm, addr);
108 	p4d_t *p4dp;
109 	pud_t *pudp;
110 	pmd_t *pmdp;
111 
112 	*pgsize = PAGE_SIZE;
113 	p4dp = p4d_offset(pgdp, addr);
114 	pudp = pud_offset(p4dp, addr);
115 	pmdp = pmd_offset(pudp, addr);
116 	if ((pte_t *)pmdp == ptep) {
117 		*pgsize = PMD_SIZE;
118 		return CONT_PMDS;
119 	}
120 	return CONT_PTES;
121 }
122 
123 static inline int num_contig_ptes(unsigned long size, size_t *pgsize)
124 {
125 	int contig_ptes = 0;
126 
127 	*pgsize = size;
128 
129 	switch (size) {
130 #ifndef __PAGETABLE_PMD_FOLDED
131 	case PUD_SIZE:
132 		if (pud_sect_supported())
133 			contig_ptes = 1;
134 		break;
135 #endif
136 	case PMD_SIZE:
137 		contig_ptes = 1;
138 		break;
139 	case CONT_PMD_SIZE:
140 		*pgsize = PMD_SIZE;
141 		contig_ptes = CONT_PMDS;
142 		break;
143 	case CONT_PTE_SIZE:
144 		*pgsize = PAGE_SIZE;
145 		contig_ptes = CONT_PTES;
146 		break;
147 	}
148 
149 	return contig_ptes;
150 }
151 
152 /*
153  * Changing some bits of contiguous entries requires us to follow a
154  * Break-Before-Make approach, breaking the whole contiguous set
155  * before we can change any entries. See ARM DDI 0487A.k_iss10775,
156  * "Misprogramming of the Contiguous bit", page D4-1762.
157  *
158  * This helper performs the break step.
159  */
160 static pte_t get_clear_flush(struct mm_struct *mm,
161 			     unsigned long addr,
162 			     pte_t *ptep,
163 			     unsigned long pgsize,
164 			     unsigned long ncontig)
165 {
166 	pte_t orig_pte = huge_ptep_get(ptep);
167 	bool valid = pte_valid(orig_pte);
168 	unsigned long i, saddr = addr;
169 
170 	for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) {
171 		pte_t pte = ptep_get_and_clear(mm, addr, ptep);
172 
173 		/*
174 		 * If HW_AFDBM is enabled, then the HW could turn on
175 		 * the dirty or accessed bit for any page in the set,
176 		 * so check them all.
177 		 */
178 		if (pte_dirty(pte))
179 			orig_pte = pte_mkdirty(orig_pte);
180 
181 		if (pte_young(pte))
182 			orig_pte = pte_mkyoung(orig_pte);
183 	}
184 
185 	if (valid) {
186 		struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0);
187 		flush_tlb_range(&vma, saddr, addr);
188 	}
189 	return orig_pte;
190 }
191 
192 /*
193  * Changing some bits of contiguous entries requires us to follow a
194  * Break-Before-Make approach, breaking the whole contiguous set
195  * before we can change any entries. See ARM DDI 0487A.k_iss10775,
196  * "Misprogramming of the Contiguous bit", page D4-1762.
197  *
198  * This helper performs the break step for use cases where the
199  * original pte is not needed.
200  */
201 static void clear_flush(struct mm_struct *mm,
202 			     unsigned long addr,
203 			     pte_t *ptep,
204 			     unsigned long pgsize,
205 			     unsigned long ncontig)
206 {
207 	struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0);
208 	unsigned long i, saddr = addr;
209 
210 	for (i = 0; i < ncontig; i++, addr += pgsize, ptep++)
211 		pte_clear(mm, addr, ptep);
212 
213 	flush_tlb_range(&vma, saddr, addr);
214 }
215 
216 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr,
217 			    pte_t *ptep, pte_t pte)
218 {
219 	size_t pgsize;
220 	int i;
221 	int ncontig;
222 	unsigned long pfn, dpfn;
223 	pgprot_t hugeprot;
224 
225 	/*
226 	 * Code needs to be expanded to handle huge swap and migration
227 	 * entries. Needed for HUGETLB and MEMORY_FAILURE.
228 	 */
229 	WARN_ON(!pte_present(pte));
230 
231 	if (!pte_cont(pte)) {
232 		set_pte_at(mm, addr, ptep, pte);
233 		return;
234 	}
235 
236 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
237 	pfn = pte_pfn(pte);
238 	dpfn = pgsize >> PAGE_SHIFT;
239 	hugeprot = pte_pgprot(pte);
240 
241 	clear_flush(mm, addr, ptep, pgsize, ncontig);
242 
243 	for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn)
244 		set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot));
245 }
246 
247 void set_huge_swap_pte_at(struct mm_struct *mm, unsigned long addr,
248 			  pte_t *ptep, pte_t pte, unsigned long sz)
249 {
250 	int i, ncontig;
251 	size_t pgsize;
252 
253 	ncontig = num_contig_ptes(sz, &pgsize);
254 
255 	for (i = 0; i < ncontig; i++, ptep++)
256 		set_pte(ptep, pte);
257 }
258 
259 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
260 		      unsigned long addr, unsigned long sz)
261 {
262 	pgd_t *pgdp;
263 	p4d_t *p4dp;
264 	pud_t *pudp;
265 	pmd_t *pmdp;
266 	pte_t *ptep = NULL;
267 
268 	pgdp = pgd_offset(mm, addr);
269 	p4dp = p4d_offset(pgdp, addr);
270 	pudp = pud_alloc(mm, p4dp, addr);
271 	if (!pudp)
272 		return NULL;
273 
274 	if (sz == PUD_SIZE) {
275 		ptep = (pte_t *)pudp;
276 	} else if (sz == (CONT_PTE_SIZE)) {
277 		pmdp = pmd_alloc(mm, pudp, addr);
278 		if (!pmdp)
279 			return NULL;
280 
281 		WARN_ON(addr & (sz - 1));
282 		/*
283 		 * Note that if this code were ever ported to the
284 		 * 32-bit arm platform then it will cause trouble in
285 		 * the case where CONFIG_HIGHPTE is set, since there
286 		 * will be no pte_unmap() to correspond with this
287 		 * pte_alloc_map().
288 		 */
289 		ptep = pte_alloc_map(mm, pmdp, addr);
290 	} else if (sz == PMD_SIZE) {
291 		if (want_pmd_share(vma, addr) && pud_none(READ_ONCE(*pudp)))
292 			ptep = huge_pmd_share(mm, vma, addr, pudp);
293 		else
294 			ptep = (pte_t *)pmd_alloc(mm, pudp, addr);
295 	} else if (sz == (CONT_PMD_SIZE)) {
296 		pmdp = pmd_alloc(mm, pudp, addr);
297 		WARN_ON(addr & (sz - 1));
298 		return (pte_t *)pmdp;
299 	}
300 
301 	return ptep;
302 }
303 
304 pte_t *huge_pte_offset(struct mm_struct *mm,
305 		       unsigned long addr, unsigned long sz)
306 {
307 	pgd_t *pgdp;
308 	p4d_t *p4dp;
309 	pud_t *pudp, pud;
310 	pmd_t *pmdp, pmd;
311 
312 	pgdp = pgd_offset(mm, addr);
313 	if (!pgd_present(READ_ONCE(*pgdp)))
314 		return NULL;
315 
316 	p4dp = p4d_offset(pgdp, addr);
317 	if (!p4d_present(READ_ONCE(*p4dp)))
318 		return NULL;
319 
320 	pudp = pud_offset(p4dp, addr);
321 	pud = READ_ONCE(*pudp);
322 	if (sz != PUD_SIZE && pud_none(pud))
323 		return NULL;
324 	/* hugepage or swap? */
325 	if (pud_huge(pud) || !pud_present(pud))
326 		return (pte_t *)pudp;
327 	/* table; check the next level */
328 
329 	if (sz == CONT_PMD_SIZE)
330 		addr &= CONT_PMD_MASK;
331 
332 	pmdp = pmd_offset(pudp, addr);
333 	pmd = READ_ONCE(*pmdp);
334 	if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) &&
335 	    pmd_none(pmd))
336 		return NULL;
337 	if (pmd_huge(pmd) || !pmd_present(pmd))
338 		return (pte_t *)pmdp;
339 
340 	if (sz == CONT_PTE_SIZE)
341 		return pte_offset_kernel(pmdp, (addr & CONT_PTE_MASK));
342 
343 	return NULL;
344 }
345 
346 pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, vm_flags_t flags)
347 {
348 	size_t pagesize = 1UL << shift;
349 
350 	if (pagesize == CONT_PTE_SIZE) {
351 		entry = pte_mkcont(entry);
352 	} else if (pagesize == CONT_PMD_SIZE) {
353 		entry = pmd_pte(pmd_mkcont(pte_pmd(entry)));
354 	} else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) {
355 		pr_warn("%s: unrecognized huge page size 0x%lx\n",
356 			__func__, pagesize);
357 	}
358 	return entry;
359 }
360 
361 void huge_pte_clear(struct mm_struct *mm, unsigned long addr,
362 		    pte_t *ptep, unsigned long sz)
363 {
364 	int i, ncontig;
365 	size_t pgsize;
366 
367 	ncontig = num_contig_ptes(sz, &pgsize);
368 
369 	for (i = 0; i < ncontig; i++, addr += pgsize, ptep++)
370 		pte_clear(mm, addr, ptep);
371 }
372 
373 pte_t huge_ptep_get_and_clear(struct mm_struct *mm,
374 			      unsigned long addr, pte_t *ptep)
375 {
376 	int ncontig;
377 	size_t pgsize;
378 	pte_t orig_pte = huge_ptep_get(ptep);
379 
380 	if (!pte_cont(orig_pte))
381 		return ptep_get_and_clear(mm, addr, ptep);
382 
383 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
384 
385 	return get_clear_flush(mm, addr, ptep, pgsize, ncontig);
386 }
387 
388 /*
389  * huge_ptep_set_access_flags will update access flags (dirty, accesssed)
390  * and write permission.
391  *
392  * For a contiguous huge pte range we need to check whether or not write
393  * permission has to change only on the first pte in the set. Then for
394  * all the contiguous ptes we need to check whether or not there is a
395  * discrepancy between dirty or young.
396  */
397 static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig)
398 {
399 	int i;
400 
401 	if (pte_write(pte) != pte_write(huge_ptep_get(ptep)))
402 		return 1;
403 
404 	for (i = 0; i < ncontig; i++) {
405 		pte_t orig_pte = huge_ptep_get(ptep + i);
406 
407 		if (pte_dirty(pte) != pte_dirty(orig_pte))
408 			return 1;
409 
410 		if (pte_young(pte) != pte_young(orig_pte))
411 			return 1;
412 	}
413 
414 	return 0;
415 }
416 
417 int huge_ptep_set_access_flags(struct vm_area_struct *vma,
418 			       unsigned long addr, pte_t *ptep,
419 			       pte_t pte, int dirty)
420 {
421 	int ncontig, i;
422 	size_t pgsize = 0;
423 	unsigned long pfn = pte_pfn(pte), dpfn;
424 	pgprot_t hugeprot;
425 	pte_t orig_pte;
426 
427 	if (!pte_cont(pte))
428 		return ptep_set_access_flags(vma, addr, ptep, pte, dirty);
429 
430 	ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize);
431 	dpfn = pgsize >> PAGE_SHIFT;
432 
433 	if (!__cont_access_flags_changed(ptep, pte, ncontig))
434 		return 0;
435 
436 	orig_pte = get_clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig);
437 
438 	/* Make sure we don't lose the dirty or young state */
439 	if (pte_dirty(orig_pte))
440 		pte = pte_mkdirty(pte);
441 
442 	if (pte_young(orig_pte))
443 		pte = pte_mkyoung(pte);
444 
445 	hugeprot = pte_pgprot(pte);
446 	for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn)
447 		set_pte_at(vma->vm_mm, addr, ptep, pfn_pte(pfn, hugeprot));
448 
449 	return 1;
450 }
451 
452 void huge_ptep_set_wrprotect(struct mm_struct *mm,
453 			     unsigned long addr, pte_t *ptep)
454 {
455 	unsigned long pfn, dpfn;
456 	pgprot_t hugeprot;
457 	int ncontig, i;
458 	size_t pgsize;
459 	pte_t pte;
460 
461 	if (!pte_cont(READ_ONCE(*ptep))) {
462 		ptep_set_wrprotect(mm, addr, ptep);
463 		return;
464 	}
465 
466 	ncontig = find_num_contig(mm, addr, ptep, &pgsize);
467 	dpfn = pgsize >> PAGE_SHIFT;
468 
469 	pte = get_clear_flush(mm, addr, ptep, pgsize, ncontig);
470 	pte = pte_wrprotect(pte);
471 
472 	hugeprot = pte_pgprot(pte);
473 	pfn = pte_pfn(pte);
474 
475 	for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn)
476 		set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot));
477 }
478 
479 void huge_ptep_clear_flush(struct vm_area_struct *vma,
480 			   unsigned long addr, pte_t *ptep)
481 {
482 	size_t pgsize;
483 	int ncontig;
484 
485 	if (!pte_cont(READ_ONCE(*ptep))) {
486 		ptep_clear_flush(vma, addr, ptep);
487 		return;
488 	}
489 
490 	ncontig = find_num_contig(vma->vm_mm, addr, ptep, &pgsize);
491 	clear_flush(vma->vm_mm, addr, ptep, pgsize, ncontig);
492 }
493 
494 static int __init hugetlbpage_init(void)
495 {
496 	if (pud_sect_supported())
497 		hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
498 
499 	hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT);
500 	hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
501 	hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT);
502 
503 	return 0;
504 }
505 arch_initcall(hugetlbpage_init);
506 
507 bool __init arch_hugetlb_valid_size(unsigned long size)
508 {
509 	switch (size) {
510 #ifndef __PAGETABLE_PMD_FOLDED
511 	case PUD_SIZE:
512 		return pud_sect_supported();
513 #endif
514 	case CONT_PMD_SIZE:
515 	case PMD_SIZE:
516 	case CONT_PTE_SIZE:
517 		return true;
518 	}
519 
520 	return false;
521 }
522