1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * arch/arm64/mm/hugetlbpage.c 4 * 5 * Copyright (C) 2013 Linaro Ltd. 6 * 7 * Based on arch/x86/mm/hugetlbpage.c. 8 */ 9 10 #include <linux/init.h> 11 #include <linux/fs.h> 12 #include <linux/mm.h> 13 #include <linux/hugetlb.h> 14 #include <linux/pagemap.h> 15 #include <linux/err.h> 16 #include <linux/sysctl.h> 17 #include <asm/mman.h> 18 #include <asm/tlb.h> 19 #include <asm/tlbflush.h> 20 21 /* 22 * HugeTLB Support Matrix 23 * 24 * --------------------------------------------------- 25 * | Page Size | CONT PTE | PMD | CONT PMD | PUD | 26 * --------------------------------------------------- 27 * | 4K | 64K | 2M | 32M | 1G | 28 * | 16K | 2M | 32M | 1G | | 29 * | 64K | 2M | 512M | 16G | | 30 * --------------------------------------------------- 31 */ 32 33 /* 34 * Reserve CMA areas for the largest supported gigantic 35 * huge page when requested. Any other smaller gigantic 36 * huge pages could still be served from those areas. 37 */ 38 #ifdef CONFIG_CMA 39 void __init arm64_hugetlb_cma_reserve(void) 40 { 41 int order; 42 43 if (pud_sect_supported()) 44 order = PUD_SHIFT - PAGE_SHIFT; 45 else 46 order = CONT_PMD_SHIFT - PAGE_SHIFT; 47 48 /* 49 * HugeTLB CMA reservation is required for gigantic 50 * huge pages which could not be allocated via the 51 * page allocator. Just warn if there is any change 52 * breaking this assumption. 53 */ 54 WARN_ON(order <= MAX_ORDER); 55 hugetlb_cma_reserve(order); 56 } 57 #endif /* CONFIG_CMA */ 58 59 static bool __hugetlb_valid_size(unsigned long size) 60 { 61 switch (size) { 62 #ifndef __PAGETABLE_PMD_FOLDED 63 case PUD_SIZE: 64 return pud_sect_supported(); 65 #endif 66 case CONT_PMD_SIZE: 67 case PMD_SIZE: 68 case CONT_PTE_SIZE: 69 return true; 70 } 71 72 return false; 73 } 74 75 #ifdef CONFIG_ARCH_ENABLE_HUGEPAGE_MIGRATION 76 bool arch_hugetlb_migration_supported(struct hstate *h) 77 { 78 size_t pagesize = huge_page_size(h); 79 80 if (!__hugetlb_valid_size(pagesize)) { 81 pr_warn("%s: unrecognized huge page size 0x%lx\n", 82 __func__, pagesize); 83 return false; 84 } 85 return true; 86 } 87 #endif 88 89 int pmd_huge(pmd_t pmd) 90 { 91 return pmd_val(pmd) && !(pmd_val(pmd) & PMD_TABLE_BIT); 92 } 93 94 int pud_huge(pud_t pud) 95 { 96 #ifndef __PAGETABLE_PMD_FOLDED 97 return pud_val(pud) && !(pud_val(pud) & PUD_TABLE_BIT); 98 #else 99 return 0; 100 #endif 101 } 102 103 static int find_num_contig(struct mm_struct *mm, unsigned long addr, 104 pte_t *ptep, size_t *pgsize) 105 { 106 pgd_t *pgdp = pgd_offset(mm, addr); 107 p4d_t *p4dp; 108 pud_t *pudp; 109 pmd_t *pmdp; 110 111 *pgsize = PAGE_SIZE; 112 p4dp = p4d_offset(pgdp, addr); 113 pudp = pud_offset(p4dp, addr); 114 pmdp = pmd_offset(pudp, addr); 115 if ((pte_t *)pmdp == ptep) { 116 *pgsize = PMD_SIZE; 117 return CONT_PMDS; 118 } 119 return CONT_PTES; 120 } 121 122 static inline int num_contig_ptes(unsigned long size, size_t *pgsize) 123 { 124 int contig_ptes = 0; 125 126 *pgsize = size; 127 128 switch (size) { 129 #ifndef __PAGETABLE_PMD_FOLDED 130 case PUD_SIZE: 131 if (pud_sect_supported()) 132 contig_ptes = 1; 133 break; 134 #endif 135 case PMD_SIZE: 136 contig_ptes = 1; 137 break; 138 case CONT_PMD_SIZE: 139 *pgsize = PMD_SIZE; 140 contig_ptes = CONT_PMDS; 141 break; 142 case CONT_PTE_SIZE: 143 *pgsize = PAGE_SIZE; 144 contig_ptes = CONT_PTES; 145 break; 146 } 147 148 return contig_ptes; 149 } 150 151 pte_t huge_ptep_get(pte_t *ptep) 152 { 153 int ncontig, i; 154 size_t pgsize; 155 pte_t orig_pte = ptep_get(ptep); 156 157 if (!pte_present(orig_pte) || !pte_cont(orig_pte)) 158 return orig_pte; 159 160 ncontig = num_contig_ptes(page_size(pte_page(orig_pte)), &pgsize); 161 for (i = 0; i < ncontig; i++, ptep++) { 162 pte_t pte = ptep_get(ptep); 163 164 if (pte_dirty(pte)) 165 orig_pte = pte_mkdirty(orig_pte); 166 167 if (pte_young(pte)) 168 orig_pte = pte_mkyoung(orig_pte); 169 } 170 return orig_pte; 171 } 172 173 /* 174 * Changing some bits of contiguous entries requires us to follow a 175 * Break-Before-Make approach, breaking the whole contiguous set 176 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 177 * "Misprogramming of the Contiguous bit", page D4-1762. 178 * 179 * This helper performs the break step. 180 */ 181 static pte_t get_clear_contig(struct mm_struct *mm, 182 unsigned long addr, 183 pte_t *ptep, 184 unsigned long pgsize, 185 unsigned long ncontig) 186 { 187 pte_t orig_pte = ptep_get(ptep); 188 unsigned long i; 189 190 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) { 191 pte_t pte = ptep_get_and_clear(mm, addr, ptep); 192 193 /* 194 * If HW_AFDBM is enabled, then the HW could turn on 195 * the dirty or accessed bit for any page in the set, 196 * so check them all. 197 */ 198 if (pte_dirty(pte)) 199 orig_pte = pte_mkdirty(orig_pte); 200 201 if (pte_young(pte)) 202 orig_pte = pte_mkyoung(orig_pte); 203 } 204 return orig_pte; 205 } 206 207 static pte_t get_clear_contig_flush(struct mm_struct *mm, 208 unsigned long addr, 209 pte_t *ptep, 210 unsigned long pgsize, 211 unsigned long ncontig) 212 { 213 pte_t orig_pte = get_clear_contig(mm, addr, ptep, pgsize, ncontig); 214 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 215 216 flush_tlb_range(&vma, addr, addr + (pgsize * ncontig)); 217 return orig_pte; 218 } 219 220 /* 221 * Changing some bits of contiguous entries requires us to follow a 222 * Break-Before-Make approach, breaking the whole contiguous set 223 * before we can change any entries. See ARM DDI 0487A.k_iss10775, 224 * "Misprogramming of the Contiguous bit", page D4-1762. 225 * 226 * This helper performs the break step for use cases where the 227 * original pte is not needed. 228 */ 229 static void clear_flush(struct mm_struct *mm, 230 unsigned long addr, 231 pte_t *ptep, 232 unsigned long pgsize, 233 unsigned long ncontig) 234 { 235 struct vm_area_struct vma = TLB_FLUSH_VMA(mm, 0); 236 unsigned long i, saddr = addr; 237 238 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 239 ptep_clear(mm, addr, ptep); 240 241 flush_tlb_range(&vma, saddr, addr); 242 } 243 244 void set_huge_pte_at(struct mm_struct *mm, unsigned long addr, 245 pte_t *ptep, pte_t pte, unsigned long sz) 246 { 247 size_t pgsize; 248 int i; 249 int ncontig; 250 unsigned long pfn, dpfn; 251 pgprot_t hugeprot; 252 253 ncontig = num_contig_ptes(sz, &pgsize); 254 255 if (!pte_present(pte)) { 256 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize) 257 set_pte_at(mm, addr, ptep, pte); 258 return; 259 } 260 261 if (!pte_cont(pte)) { 262 set_pte_at(mm, addr, ptep, pte); 263 return; 264 } 265 266 pfn = pte_pfn(pte); 267 dpfn = pgsize >> PAGE_SHIFT; 268 hugeprot = pte_pgprot(pte); 269 270 clear_flush(mm, addr, ptep, pgsize, ncontig); 271 272 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 273 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 274 } 275 276 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 277 unsigned long addr, unsigned long sz) 278 { 279 pgd_t *pgdp; 280 p4d_t *p4dp; 281 pud_t *pudp; 282 pmd_t *pmdp; 283 pte_t *ptep = NULL; 284 285 pgdp = pgd_offset(mm, addr); 286 p4dp = p4d_offset(pgdp, addr); 287 pudp = pud_alloc(mm, p4dp, addr); 288 if (!pudp) 289 return NULL; 290 291 if (sz == PUD_SIZE) { 292 ptep = (pte_t *)pudp; 293 } else if (sz == (CONT_PTE_SIZE)) { 294 pmdp = pmd_alloc(mm, pudp, addr); 295 if (!pmdp) 296 return NULL; 297 298 WARN_ON(addr & (sz - 1)); 299 ptep = pte_alloc_huge(mm, pmdp, addr); 300 } else if (sz == PMD_SIZE) { 301 if (want_pmd_share(vma, addr) && pud_none(READ_ONCE(*pudp))) 302 ptep = huge_pmd_share(mm, vma, addr, pudp); 303 else 304 ptep = (pte_t *)pmd_alloc(mm, pudp, addr); 305 } else if (sz == (CONT_PMD_SIZE)) { 306 pmdp = pmd_alloc(mm, pudp, addr); 307 WARN_ON(addr & (sz - 1)); 308 return (pte_t *)pmdp; 309 } 310 311 return ptep; 312 } 313 314 pte_t *huge_pte_offset(struct mm_struct *mm, 315 unsigned long addr, unsigned long sz) 316 { 317 pgd_t *pgdp; 318 p4d_t *p4dp; 319 pud_t *pudp, pud; 320 pmd_t *pmdp, pmd; 321 322 pgdp = pgd_offset(mm, addr); 323 if (!pgd_present(READ_ONCE(*pgdp))) 324 return NULL; 325 326 p4dp = p4d_offset(pgdp, addr); 327 if (!p4d_present(READ_ONCE(*p4dp))) 328 return NULL; 329 330 pudp = pud_offset(p4dp, addr); 331 pud = READ_ONCE(*pudp); 332 if (sz != PUD_SIZE && pud_none(pud)) 333 return NULL; 334 /* hugepage or swap? */ 335 if (pud_huge(pud) || !pud_present(pud)) 336 return (pte_t *)pudp; 337 /* table; check the next level */ 338 339 if (sz == CONT_PMD_SIZE) 340 addr &= CONT_PMD_MASK; 341 342 pmdp = pmd_offset(pudp, addr); 343 pmd = READ_ONCE(*pmdp); 344 if (!(sz == PMD_SIZE || sz == CONT_PMD_SIZE) && 345 pmd_none(pmd)) 346 return NULL; 347 if (pmd_huge(pmd) || !pmd_present(pmd)) 348 return (pte_t *)pmdp; 349 350 if (sz == CONT_PTE_SIZE) 351 return pte_offset_huge(pmdp, (addr & CONT_PTE_MASK)); 352 353 return NULL; 354 } 355 356 unsigned long hugetlb_mask_last_page(struct hstate *h) 357 { 358 unsigned long hp_size = huge_page_size(h); 359 360 switch (hp_size) { 361 #ifndef __PAGETABLE_PMD_FOLDED 362 case PUD_SIZE: 363 return PGDIR_SIZE - PUD_SIZE; 364 #endif 365 case CONT_PMD_SIZE: 366 return PUD_SIZE - CONT_PMD_SIZE; 367 case PMD_SIZE: 368 return PUD_SIZE - PMD_SIZE; 369 case CONT_PTE_SIZE: 370 return PMD_SIZE - CONT_PTE_SIZE; 371 default: 372 break; 373 } 374 375 return 0UL; 376 } 377 378 pte_t arch_make_huge_pte(pte_t entry, unsigned int shift, vm_flags_t flags) 379 { 380 size_t pagesize = 1UL << shift; 381 382 entry = pte_mkhuge(entry); 383 if (pagesize == CONT_PTE_SIZE) { 384 entry = pte_mkcont(entry); 385 } else if (pagesize == CONT_PMD_SIZE) { 386 entry = pmd_pte(pmd_mkcont(pte_pmd(entry))); 387 } else if (pagesize != PUD_SIZE && pagesize != PMD_SIZE) { 388 pr_warn("%s: unrecognized huge page size 0x%lx\n", 389 __func__, pagesize); 390 } 391 return entry; 392 } 393 394 void huge_pte_clear(struct mm_struct *mm, unsigned long addr, 395 pte_t *ptep, unsigned long sz) 396 { 397 int i, ncontig; 398 size_t pgsize; 399 400 ncontig = num_contig_ptes(sz, &pgsize); 401 402 for (i = 0; i < ncontig; i++, addr += pgsize, ptep++) 403 pte_clear(mm, addr, ptep); 404 } 405 406 pte_t huge_ptep_get_and_clear(struct mm_struct *mm, 407 unsigned long addr, pte_t *ptep) 408 { 409 int ncontig; 410 size_t pgsize; 411 pte_t orig_pte = ptep_get(ptep); 412 413 if (!pte_cont(orig_pte)) 414 return ptep_get_and_clear(mm, addr, ptep); 415 416 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 417 418 return get_clear_contig(mm, addr, ptep, pgsize, ncontig); 419 } 420 421 /* 422 * huge_ptep_set_access_flags will update access flags (dirty, accesssed) 423 * and write permission. 424 * 425 * For a contiguous huge pte range we need to check whether or not write 426 * permission has to change only on the first pte in the set. Then for 427 * all the contiguous ptes we need to check whether or not there is a 428 * discrepancy between dirty or young. 429 */ 430 static int __cont_access_flags_changed(pte_t *ptep, pte_t pte, int ncontig) 431 { 432 int i; 433 434 if (pte_write(pte) != pte_write(ptep_get(ptep))) 435 return 1; 436 437 for (i = 0; i < ncontig; i++) { 438 pte_t orig_pte = ptep_get(ptep + i); 439 440 if (pte_dirty(pte) != pte_dirty(orig_pte)) 441 return 1; 442 443 if (pte_young(pte) != pte_young(orig_pte)) 444 return 1; 445 } 446 447 return 0; 448 } 449 450 int huge_ptep_set_access_flags(struct vm_area_struct *vma, 451 unsigned long addr, pte_t *ptep, 452 pte_t pte, int dirty) 453 { 454 int ncontig, i; 455 size_t pgsize = 0; 456 unsigned long pfn = pte_pfn(pte), dpfn; 457 struct mm_struct *mm = vma->vm_mm; 458 pgprot_t hugeprot; 459 pte_t orig_pte; 460 461 if (!pte_cont(pte)) 462 return ptep_set_access_flags(vma, addr, ptep, pte, dirty); 463 464 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 465 dpfn = pgsize >> PAGE_SHIFT; 466 467 if (!__cont_access_flags_changed(ptep, pte, ncontig)) 468 return 0; 469 470 orig_pte = get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig); 471 472 /* Make sure we don't lose the dirty or young state */ 473 if (pte_dirty(orig_pte)) 474 pte = pte_mkdirty(pte); 475 476 if (pte_young(orig_pte)) 477 pte = pte_mkyoung(pte); 478 479 hugeprot = pte_pgprot(pte); 480 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 481 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 482 483 return 1; 484 } 485 486 void huge_ptep_set_wrprotect(struct mm_struct *mm, 487 unsigned long addr, pte_t *ptep) 488 { 489 unsigned long pfn, dpfn; 490 pgprot_t hugeprot; 491 int ncontig, i; 492 size_t pgsize; 493 pte_t pte; 494 495 if (!pte_cont(READ_ONCE(*ptep))) { 496 ptep_set_wrprotect(mm, addr, ptep); 497 return; 498 } 499 500 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 501 dpfn = pgsize >> PAGE_SHIFT; 502 503 pte = get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig); 504 pte = pte_wrprotect(pte); 505 506 hugeprot = pte_pgprot(pte); 507 pfn = pte_pfn(pte); 508 509 for (i = 0; i < ncontig; i++, ptep++, addr += pgsize, pfn += dpfn) 510 set_pte_at(mm, addr, ptep, pfn_pte(pfn, hugeprot)); 511 } 512 513 pte_t huge_ptep_clear_flush(struct vm_area_struct *vma, 514 unsigned long addr, pte_t *ptep) 515 { 516 struct mm_struct *mm = vma->vm_mm; 517 size_t pgsize; 518 int ncontig; 519 520 if (!pte_cont(READ_ONCE(*ptep))) 521 return ptep_clear_flush(vma, addr, ptep); 522 523 ncontig = find_num_contig(mm, addr, ptep, &pgsize); 524 return get_clear_contig_flush(mm, addr, ptep, pgsize, ncontig); 525 } 526 527 static int __init hugetlbpage_init(void) 528 { 529 if (pud_sect_supported()) 530 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT); 531 532 hugetlb_add_hstate(CONT_PMD_SHIFT - PAGE_SHIFT); 533 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT); 534 hugetlb_add_hstate(CONT_PTE_SHIFT - PAGE_SHIFT); 535 536 return 0; 537 } 538 arch_initcall(hugetlbpage_init); 539 540 bool __init arch_hugetlb_valid_size(unsigned long size) 541 { 542 return __hugetlb_valid_size(size); 543 } 544 545 pte_t huge_ptep_modify_prot_start(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 546 { 547 if (IS_ENABLED(CONFIG_ARM64_ERRATUM_2645198) && 548 cpus_have_const_cap(ARM64_WORKAROUND_2645198)) { 549 /* 550 * Break-before-make (BBM) is required for all user space mappings 551 * when the permission changes from executable to non-executable 552 * in cases where cpu is affected with errata #2645198. 553 */ 554 if (pte_user_exec(READ_ONCE(*ptep))) 555 return huge_ptep_clear_flush(vma, addr, ptep); 556 } 557 return huge_ptep_get_and_clear(vma->vm_mm, addr, ptep); 558 } 559 560 void huge_ptep_modify_prot_commit(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep, 561 pte_t old_pte, pte_t pte) 562 { 563 unsigned long psize = huge_page_size(hstate_vma(vma)); 564 565 set_huge_pte_at(vma->vm_mm, addr, ptep, pte, psize); 566 } 567