xref: /openbmc/linux/arch/arm64/mm/fault.c (revision f8523d0e83613ab8d082cd504dc53a09fbba4889)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
26 
27 #include <asm/acpi.h>
28 #include <asm/bug.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/kprobes.h>
36 #include <asm/processor.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/tlbflush.h>
40 #include <asm/traps.h>
41 
42 struct fault_info {
43 	int	(*fn)(unsigned long addr, unsigned int esr,
44 		      struct pt_regs *regs);
45 	int	sig;
46 	int	code;
47 	const char *name;
48 };
49 
50 static const struct fault_info fault_info[];
51 static struct fault_info debug_fault_info[];
52 
53 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
54 {
55 	return fault_info + (esr & ESR_ELx_FSC);
56 }
57 
58 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
59 {
60 	return debug_fault_info + DBG_ESR_EVT(esr);
61 }
62 
63 static void data_abort_decode(unsigned int esr)
64 {
65 	pr_alert("Data abort info:\n");
66 
67 	if (esr & ESR_ELx_ISV) {
68 		pr_alert("  Access size = %u byte(s)\n",
69 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
70 		pr_alert("  SSE = %lu, SRT = %lu\n",
71 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
72 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
73 		pr_alert("  SF = %lu, AR = %lu\n",
74 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
75 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
76 	} else {
77 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
78 	}
79 
80 	pr_alert("  CM = %lu, WnR = %lu\n",
81 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
82 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
83 }
84 
85 static void mem_abort_decode(unsigned int esr)
86 {
87 	pr_alert("Mem abort info:\n");
88 
89 	pr_alert("  ESR = 0x%08x\n", esr);
90 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
91 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
92 		 (esr & ESR_ELx_IL) ? 32 : 16);
93 	pr_alert("  SET = %lu, FnV = %lu\n",
94 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
95 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
96 	pr_alert("  EA = %lu, S1PTW = %lu\n",
97 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
98 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
99 
100 	if (esr_is_data_abort(esr))
101 		data_abort_decode(esr);
102 }
103 
104 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
105 {
106 	/* Either init_pg_dir or swapper_pg_dir */
107 	if (mm == &init_mm)
108 		return __pa_symbol(mm->pgd);
109 
110 	return (unsigned long)virt_to_phys(mm->pgd);
111 }
112 
113 /*
114  * Dump out the page tables associated with 'addr' in the currently active mm.
115  */
116 static void show_pte(unsigned long addr)
117 {
118 	struct mm_struct *mm;
119 	pgd_t *pgdp;
120 	pgd_t pgd;
121 
122 	if (is_ttbr0_addr(addr)) {
123 		/* TTBR0 */
124 		mm = current->active_mm;
125 		if (mm == &init_mm) {
126 			pr_alert("[%016lx] user address but active_mm is swapper\n",
127 				 addr);
128 			return;
129 		}
130 	} else if (is_ttbr1_addr(addr)) {
131 		/* TTBR1 */
132 		mm = &init_mm;
133 	} else {
134 		pr_alert("[%016lx] address between user and kernel address ranges\n",
135 			 addr);
136 		return;
137 	}
138 
139 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
140 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
141 		 vabits_actual, mm_to_pgd_phys(mm));
142 	pgdp = pgd_offset(mm, addr);
143 	pgd = READ_ONCE(*pgdp);
144 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
145 
146 	do {
147 		p4d_t *p4dp, p4d;
148 		pud_t *pudp, pud;
149 		pmd_t *pmdp, pmd;
150 		pte_t *ptep, pte;
151 
152 		if (pgd_none(pgd) || pgd_bad(pgd))
153 			break;
154 
155 		p4dp = p4d_offset(pgdp, addr);
156 		p4d = READ_ONCE(*p4dp);
157 		pr_cont(", p4d=%016llx", p4d_val(p4d));
158 		if (p4d_none(p4d) || p4d_bad(p4d))
159 			break;
160 
161 		pudp = pud_offset(p4dp, addr);
162 		pud = READ_ONCE(*pudp);
163 		pr_cont(", pud=%016llx", pud_val(pud));
164 		if (pud_none(pud) || pud_bad(pud))
165 			break;
166 
167 		pmdp = pmd_offset(pudp, addr);
168 		pmd = READ_ONCE(*pmdp);
169 		pr_cont(", pmd=%016llx", pmd_val(pmd));
170 		if (pmd_none(pmd) || pmd_bad(pmd))
171 			break;
172 
173 		ptep = pte_offset_map(pmdp, addr);
174 		pte = READ_ONCE(*ptep);
175 		pr_cont(", pte=%016llx", pte_val(pte));
176 		pte_unmap(ptep);
177 	} while(0);
178 
179 	pr_cont("\n");
180 }
181 
182 /*
183  * This function sets the access flags (dirty, accessed), as well as write
184  * permission, and only to a more permissive setting.
185  *
186  * It needs to cope with hardware update of the accessed/dirty state by other
187  * agents in the system and can safely skip the __sync_icache_dcache() call as,
188  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
189  *
190  * Returns whether or not the PTE actually changed.
191  */
192 int ptep_set_access_flags(struct vm_area_struct *vma,
193 			  unsigned long address, pte_t *ptep,
194 			  pte_t entry, int dirty)
195 {
196 	pteval_t old_pteval, pteval;
197 	pte_t pte = READ_ONCE(*ptep);
198 
199 	if (pte_same(pte, entry))
200 		return 0;
201 
202 	/* only preserve the access flags and write permission */
203 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
204 
205 	/*
206 	 * Setting the flags must be done atomically to avoid racing with the
207 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
208 	 * be set to the most permissive (lowest value) of *ptep and entry
209 	 * (calculated as: a & b == ~(~a | ~b)).
210 	 */
211 	pte_val(entry) ^= PTE_RDONLY;
212 	pteval = pte_val(pte);
213 	do {
214 		old_pteval = pteval;
215 		pteval ^= PTE_RDONLY;
216 		pteval |= pte_val(entry);
217 		pteval ^= PTE_RDONLY;
218 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
219 	} while (pteval != old_pteval);
220 
221 	flush_tlb_fix_spurious_fault(vma, address);
222 	return 1;
223 }
224 
225 static bool is_el1_instruction_abort(unsigned int esr)
226 {
227 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
228 }
229 
230 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
231 					   struct pt_regs *regs)
232 {
233 	unsigned int ec       = ESR_ELx_EC(esr);
234 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
235 
236 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
237 		return false;
238 
239 	if (fsc_type == ESR_ELx_FSC_PERM)
240 		return true;
241 
242 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
243 		return fsc_type == ESR_ELx_FSC_FAULT &&
244 			(regs->pstate & PSR_PAN_BIT);
245 
246 	return false;
247 }
248 
249 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
250 							unsigned int esr,
251 							struct pt_regs *regs)
252 {
253 	unsigned long flags;
254 	u64 par, dfsc;
255 
256 	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
257 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
258 		return false;
259 
260 	local_irq_save(flags);
261 	asm volatile("at s1e1r, %0" :: "r" (addr));
262 	isb();
263 	par = read_sysreg(par_el1);
264 	local_irq_restore(flags);
265 
266 	/*
267 	 * If we now have a valid translation, treat the translation fault as
268 	 * spurious.
269 	 */
270 	if (!(par & SYS_PAR_EL1_F))
271 		return true;
272 
273 	/*
274 	 * If we got a different type of fault from the AT instruction,
275 	 * treat the translation fault as spurious.
276 	 */
277 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
278 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
279 }
280 
281 static void die_kernel_fault(const char *msg, unsigned long addr,
282 			     unsigned int esr, struct pt_regs *regs)
283 {
284 	bust_spinlocks(1);
285 
286 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
287 		 addr);
288 
289 	mem_abort_decode(esr);
290 
291 	show_pte(addr);
292 	die("Oops", regs, esr);
293 	bust_spinlocks(0);
294 	do_exit(SIGKILL);
295 }
296 
297 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
298 			      struct pt_regs *regs)
299 {
300 	const char *msg;
301 
302 	/*
303 	 * Are we prepared to handle this kernel fault?
304 	 * We are almost certainly not prepared to handle instruction faults.
305 	 */
306 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
307 		return;
308 
309 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
310 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
311 		return;
312 
313 	if (is_el1_permission_fault(addr, esr, regs)) {
314 		if (esr & ESR_ELx_WNR)
315 			msg = "write to read-only memory";
316 		else if (is_el1_instruction_abort(esr))
317 			msg = "execute from non-executable memory";
318 		else
319 			msg = "read from unreadable memory";
320 	} else if (addr < PAGE_SIZE) {
321 		msg = "NULL pointer dereference";
322 	} else {
323 		msg = "paging request";
324 	}
325 
326 	die_kernel_fault(msg, addr, esr, regs);
327 }
328 
329 static void set_thread_esr(unsigned long address, unsigned int esr)
330 {
331 	current->thread.fault_address = address;
332 
333 	/*
334 	 * If the faulting address is in the kernel, we must sanitize the ESR.
335 	 * From userspace's point of view, kernel-only mappings don't exist
336 	 * at all, so we report them as level 0 translation faults.
337 	 * (This is not quite the way that "no mapping there at all" behaves:
338 	 * an alignment fault not caused by the memory type would take
339 	 * precedence over translation fault for a real access to empty
340 	 * space. Unfortunately we can't easily distinguish "alignment fault
341 	 * not caused by memory type" from "alignment fault caused by memory
342 	 * type", so we ignore this wrinkle and just return the translation
343 	 * fault.)
344 	 */
345 	if (!is_ttbr0_addr(current->thread.fault_address)) {
346 		switch (ESR_ELx_EC(esr)) {
347 		case ESR_ELx_EC_DABT_LOW:
348 			/*
349 			 * These bits provide only information about the
350 			 * faulting instruction, which userspace knows already.
351 			 * We explicitly clear bits which are architecturally
352 			 * RES0 in case they are given meanings in future.
353 			 * We always report the ESR as if the fault was taken
354 			 * to EL1 and so ISV and the bits in ISS[23:14] are
355 			 * clear. (In fact it always will be a fault to EL1.)
356 			 */
357 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
358 				ESR_ELx_CM | ESR_ELx_WNR;
359 			esr |= ESR_ELx_FSC_FAULT;
360 			break;
361 		case ESR_ELx_EC_IABT_LOW:
362 			/*
363 			 * Claim a level 0 translation fault.
364 			 * All other bits are architecturally RES0 for faults
365 			 * reported with that DFSC value, so we clear them.
366 			 */
367 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
368 			esr |= ESR_ELx_FSC_FAULT;
369 			break;
370 		default:
371 			/*
372 			 * This should never happen (entry.S only brings us
373 			 * into this code for insn and data aborts from a lower
374 			 * exception level). Fail safe by not providing an ESR
375 			 * context record at all.
376 			 */
377 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
378 			esr = 0;
379 			break;
380 		}
381 	}
382 
383 	current->thread.fault_code = esr;
384 }
385 
386 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
387 {
388 	/*
389 	 * If we are in kernel mode at this point, we have no context to
390 	 * handle this fault with.
391 	 */
392 	if (user_mode(regs)) {
393 		const struct fault_info *inf = esr_to_fault_info(esr);
394 
395 		set_thread_esr(addr, esr);
396 		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
397 				      inf->name);
398 	} else {
399 		__do_kernel_fault(addr, esr, regs);
400 	}
401 }
402 
403 #define VM_FAULT_BADMAP		0x010000
404 #define VM_FAULT_BADACCESS	0x020000
405 
406 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
407 			   unsigned int mm_flags, unsigned long vm_flags)
408 {
409 	struct vm_area_struct *vma = find_vma(mm, addr);
410 
411 	if (unlikely(!vma))
412 		return VM_FAULT_BADMAP;
413 
414 	/*
415 	 * Ok, we have a good vm_area for this memory access, so we can handle
416 	 * it.
417 	 */
418 	if (unlikely(vma->vm_start > addr)) {
419 		if (!(vma->vm_flags & VM_GROWSDOWN))
420 			return VM_FAULT_BADMAP;
421 		if (expand_stack(vma, addr))
422 			return VM_FAULT_BADMAP;
423 	}
424 
425 	/*
426 	 * Check that the permissions on the VMA allow for the fault which
427 	 * occurred.
428 	 */
429 	if (!(vma->vm_flags & vm_flags))
430 		return VM_FAULT_BADACCESS;
431 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
432 }
433 
434 static bool is_el0_instruction_abort(unsigned int esr)
435 {
436 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
437 }
438 
439 /*
440  * Note: not valid for EL1 DC IVAC, but we never use that such that it
441  * should fault. EL0 cannot issue DC IVAC (undef).
442  */
443 static bool is_write_abort(unsigned int esr)
444 {
445 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
446 }
447 
448 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
449 				   struct pt_regs *regs)
450 {
451 	const struct fault_info *inf;
452 	struct mm_struct *mm = current->mm;
453 	vm_fault_t fault, major = 0;
454 	unsigned long vm_flags = VM_ACCESS_FLAGS;
455 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
456 
457 	if (kprobe_page_fault(regs, esr))
458 		return 0;
459 
460 	/*
461 	 * If we're in an interrupt or have no user context, we must not take
462 	 * the fault.
463 	 */
464 	if (faulthandler_disabled() || !mm)
465 		goto no_context;
466 
467 	if (user_mode(regs))
468 		mm_flags |= FAULT_FLAG_USER;
469 
470 	if (is_el0_instruction_abort(esr)) {
471 		vm_flags = VM_EXEC;
472 		mm_flags |= FAULT_FLAG_INSTRUCTION;
473 	} else if (is_write_abort(esr)) {
474 		vm_flags = VM_WRITE;
475 		mm_flags |= FAULT_FLAG_WRITE;
476 	}
477 
478 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
479 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
480 		if (regs->orig_addr_limit == KERNEL_DS)
481 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
482 					 addr, esr, regs);
483 
484 		if (is_el1_instruction_abort(esr))
485 			die_kernel_fault("execution of user memory",
486 					 addr, esr, regs);
487 
488 		if (!search_exception_tables(regs->pc))
489 			die_kernel_fault("access to user memory outside uaccess routines",
490 					 addr, esr, regs);
491 	}
492 
493 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
494 
495 	/*
496 	 * As per x86, we may deadlock here. However, since the kernel only
497 	 * validly references user space from well defined areas of the code,
498 	 * we can bug out early if this is from code which shouldn't.
499 	 */
500 	if (!mmap_read_trylock(mm)) {
501 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
502 			goto no_context;
503 retry:
504 		mmap_read_lock(mm);
505 	} else {
506 		/*
507 		 * The above down_read_trylock() might have succeeded in which
508 		 * case, we'll have missed the might_sleep() from down_read().
509 		 */
510 		might_sleep();
511 #ifdef CONFIG_DEBUG_VM
512 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
513 			mmap_read_unlock(mm);
514 			goto no_context;
515 		}
516 #endif
517 	}
518 
519 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
520 	major |= fault & VM_FAULT_MAJOR;
521 
522 	/* Quick path to respond to signals */
523 	if (fault_signal_pending(fault, regs)) {
524 		if (!user_mode(regs))
525 			goto no_context;
526 		return 0;
527 	}
528 
529 	if (fault & VM_FAULT_RETRY) {
530 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
531 			mm_flags |= FAULT_FLAG_TRIED;
532 			goto retry;
533 		}
534 	}
535 	mmap_read_unlock(mm);
536 
537 	/*
538 	 * Handle the "normal" (no error) case first.
539 	 */
540 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
541 			      VM_FAULT_BADACCESS)))) {
542 		/*
543 		 * Major/minor page fault accounting is only done
544 		 * once. If we go through a retry, it is extremely
545 		 * likely that the page will be found in page cache at
546 		 * that point.
547 		 */
548 		if (major) {
549 			current->maj_flt++;
550 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
551 				      addr);
552 		} else {
553 			current->min_flt++;
554 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
555 				      addr);
556 		}
557 
558 		return 0;
559 	}
560 
561 	/*
562 	 * If we are in kernel mode at this point, we have no context to
563 	 * handle this fault with.
564 	 */
565 	if (!user_mode(regs))
566 		goto no_context;
567 
568 	if (fault & VM_FAULT_OOM) {
569 		/*
570 		 * We ran out of memory, call the OOM killer, and return to
571 		 * userspace (which will retry the fault, or kill us if we got
572 		 * oom-killed).
573 		 */
574 		pagefault_out_of_memory();
575 		return 0;
576 	}
577 
578 	inf = esr_to_fault_info(esr);
579 	set_thread_esr(addr, esr);
580 	if (fault & VM_FAULT_SIGBUS) {
581 		/*
582 		 * We had some memory, but were unable to successfully fix up
583 		 * this page fault.
584 		 */
585 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
586 				      inf->name);
587 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
588 		unsigned int lsb;
589 
590 		lsb = PAGE_SHIFT;
591 		if (fault & VM_FAULT_HWPOISON_LARGE)
592 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
593 
594 		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
595 				       inf->name);
596 	} else {
597 		/*
598 		 * Something tried to access memory that isn't in our memory
599 		 * map.
600 		 */
601 		arm64_force_sig_fault(SIGSEGV,
602 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
603 				      (void __user *)addr,
604 				      inf->name);
605 	}
606 
607 	return 0;
608 
609 no_context:
610 	__do_kernel_fault(addr, esr, regs);
611 	return 0;
612 }
613 
614 static int __kprobes do_translation_fault(unsigned long addr,
615 					  unsigned int esr,
616 					  struct pt_regs *regs)
617 {
618 	if (is_ttbr0_addr(addr))
619 		return do_page_fault(addr, esr, regs);
620 
621 	do_bad_area(addr, esr, regs);
622 	return 0;
623 }
624 
625 static int do_alignment_fault(unsigned long addr, unsigned int esr,
626 			      struct pt_regs *regs)
627 {
628 	do_bad_area(addr, esr, regs);
629 	return 0;
630 }
631 
632 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
633 {
634 	return 1; /* "fault" */
635 }
636 
637 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
638 {
639 	const struct fault_info *inf;
640 	void __user *siaddr;
641 
642 	inf = esr_to_fault_info(esr);
643 
644 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
645 		/*
646 		 * APEI claimed this as a firmware-first notification.
647 		 * Some processing deferred to task_work before ret_to_user().
648 		 */
649 		return 0;
650 	}
651 
652 	if (esr & ESR_ELx_FnV)
653 		siaddr = NULL;
654 	else
655 		siaddr  = (void __user *)addr;
656 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
657 
658 	return 0;
659 }
660 
661 static const struct fault_info fault_info[] = {
662 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
663 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
664 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
665 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
666 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
667 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
668 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
669 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
670 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
671 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
672 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
673 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
674 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
675 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
676 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
677 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
678 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
679 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
680 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
681 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
682 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
683 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
684 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
685 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
686 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
687 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
688 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
689 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
690 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
691 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
692 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
693 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
694 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
695 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
696 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
697 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
698 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
699 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
700 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
701 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
702 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
703 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
704 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
705 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
706 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
707 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
708 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
709 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
710 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
711 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
712 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
713 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
714 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
715 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
716 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
717 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
718 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
719 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
720 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
721 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
722 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
723 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
724 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
725 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
726 };
727 
728 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
729 {
730 	const struct fault_info *inf = esr_to_fault_info(esr);
731 
732 	if (!inf->fn(addr, esr, regs))
733 		return;
734 
735 	if (!user_mode(regs)) {
736 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
737 		mem_abort_decode(esr);
738 		show_pte(addr);
739 	}
740 
741 	arm64_notify_die(inf->name, regs,
742 			 inf->sig, inf->code, (void __user *)addr, esr);
743 }
744 NOKPROBE_SYMBOL(do_mem_abort);
745 
746 void do_el0_irq_bp_hardening(void)
747 {
748 	/* PC has already been checked in entry.S */
749 	arm64_apply_bp_hardening();
750 }
751 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
752 
753 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
754 {
755 	arm64_notify_die("SP/PC alignment exception", regs,
756 			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
757 }
758 NOKPROBE_SYMBOL(do_sp_pc_abort);
759 
760 int __init early_brk64(unsigned long addr, unsigned int esr,
761 		       struct pt_regs *regs);
762 
763 /*
764  * __refdata because early_brk64 is __init, but the reference to it is
765  * clobbered at arch_initcall time.
766  * See traps.c and debug-monitors.c:debug_traps_init().
767  */
768 static struct fault_info __refdata debug_fault_info[] = {
769 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
770 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
771 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
772 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
773 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
774 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
775 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
776 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
777 };
778 
779 void __init hook_debug_fault_code(int nr,
780 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
781 				  int sig, int code, const char *name)
782 {
783 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
784 
785 	debug_fault_info[nr].fn		= fn;
786 	debug_fault_info[nr].sig	= sig;
787 	debug_fault_info[nr].code	= code;
788 	debug_fault_info[nr].name	= name;
789 }
790 
791 /*
792  * In debug exception context, we explicitly disable preemption despite
793  * having interrupts disabled.
794  * This serves two purposes: it makes it much less likely that we would
795  * accidentally schedule in exception context and it will force a warning
796  * if we somehow manage to schedule by accident.
797  */
798 static void debug_exception_enter(struct pt_regs *regs)
799 {
800 	/*
801 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
802 	 * already disabled to preserve the last enabled/disabled addresses.
803 	 */
804 	if (interrupts_enabled(regs))
805 		trace_hardirqs_off();
806 
807 	if (user_mode(regs)) {
808 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
809 	} else {
810 		/*
811 		 * We might have interrupted pretty much anything.  In
812 		 * fact, if we're a debug exception, we can even interrupt
813 		 * NMI processing. We don't want this code makes in_nmi()
814 		 * to return true, but we need to notify RCU.
815 		 */
816 		rcu_nmi_enter();
817 	}
818 
819 	preempt_disable();
820 
821 	/* This code is a bit fragile.  Test it. */
822 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
823 }
824 NOKPROBE_SYMBOL(debug_exception_enter);
825 
826 static void debug_exception_exit(struct pt_regs *regs)
827 {
828 	preempt_enable_no_resched();
829 
830 	if (!user_mode(regs))
831 		rcu_nmi_exit();
832 
833 	if (interrupts_enabled(regs))
834 		trace_hardirqs_on();
835 }
836 NOKPROBE_SYMBOL(debug_exception_exit);
837 
838 #ifdef CONFIG_ARM64_ERRATUM_1463225
839 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
840 
841 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
842 {
843 	if (user_mode(regs))
844 		return 0;
845 
846 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
847 		return 0;
848 
849 	/*
850 	 * We've taken a dummy step exception from the kernel to ensure
851 	 * that interrupts are re-enabled on the syscall path. Return back
852 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
853 	 * masked so that we can safely restore the mdscr and get on with
854 	 * handling the syscall.
855 	 */
856 	regs->pstate |= PSR_D_BIT;
857 	return 1;
858 }
859 #else
860 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
861 {
862 	return 0;
863 }
864 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
865 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
866 
867 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
868 			struct pt_regs *regs)
869 {
870 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
871 	unsigned long pc = instruction_pointer(regs);
872 
873 	if (cortex_a76_erratum_1463225_debug_handler(regs))
874 		return;
875 
876 	debug_exception_enter(regs);
877 
878 	if (user_mode(regs) && !is_ttbr0_addr(pc))
879 		arm64_apply_bp_hardening();
880 
881 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
882 		arm64_notify_die(inf->name, regs,
883 				 inf->sig, inf->code, (void __user *)pc, esr);
884 	}
885 
886 	debug_exception_exit(regs);
887 }
888 NOKPROBE_SYMBOL(do_debug_exception);
889