1 /* 2 * Based on arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1995-2004 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <linux/extable.h> 22 #include <linux/signal.h> 23 #include <linux/mm.h> 24 #include <linux/hardirq.h> 25 #include <linux/init.h> 26 #include <linux/kprobes.h> 27 #include <linux/uaccess.h> 28 #include <linux/page-flags.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/debug.h> 31 #include <linux/highmem.h> 32 #include <linux/perf_event.h> 33 #include <linux/preempt.h> 34 35 #include <asm/bug.h> 36 #include <asm/cpufeature.h> 37 #include <asm/exception.h> 38 #include <asm/debug-monitors.h> 39 #include <asm/esr.h> 40 #include <asm/sysreg.h> 41 #include <asm/system_misc.h> 42 #include <asm/pgtable.h> 43 #include <asm/tlbflush.h> 44 45 static const char *fault_name(unsigned int esr); 46 47 #ifdef CONFIG_KPROBES 48 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 49 { 50 int ret = 0; 51 52 /* kprobe_running() needs smp_processor_id() */ 53 if (!user_mode(regs)) { 54 preempt_disable(); 55 if (kprobe_running() && kprobe_fault_handler(regs, esr)) 56 ret = 1; 57 preempt_enable(); 58 } 59 60 return ret; 61 } 62 #else 63 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 64 { 65 return 0; 66 } 67 #endif 68 69 /* 70 * Dump out the page tables associated with 'addr' in mm 'mm'. 71 */ 72 void show_pte(struct mm_struct *mm, unsigned long addr) 73 { 74 pgd_t *pgd; 75 76 if (!mm) 77 mm = &init_mm; 78 79 pr_alert("pgd = %p\n", mm->pgd); 80 pgd = pgd_offset(mm, addr); 81 pr_alert("[%08lx] *pgd=%016llx", addr, pgd_val(*pgd)); 82 83 do { 84 pud_t *pud; 85 pmd_t *pmd; 86 pte_t *pte; 87 88 if (pgd_none(*pgd) || pgd_bad(*pgd)) 89 break; 90 91 pud = pud_offset(pgd, addr); 92 pr_cont(", *pud=%016llx", pud_val(*pud)); 93 if (pud_none(*pud) || pud_bad(*pud)) 94 break; 95 96 pmd = pmd_offset(pud, addr); 97 pr_cont(", *pmd=%016llx", pmd_val(*pmd)); 98 if (pmd_none(*pmd) || pmd_bad(*pmd)) 99 break; 100 101 pte = pte_offset_map(pmd, addr); 102 pr_cont(", *pte=%016llx", pte_val(*pte)); 103 pte_unmap(pte); 104 } while(0); 105 106 pr_cont("\n"); 107 } 108 109 #ifdef CONFIG_ARM64_HW_AFDBM 110 /* 111 * This function sets the access flags (dirty, accessed), as well as write 112 * permission, and only to a more permissive setting. 113 * 114 * It needs to cope with hardware update of the accessed/dirty state by other 115 * agents in the system and can safely skip the __sync_icache_dcache() call as, 116 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 117 * 118 * Returns whether or not the PTE actually changed. 119 */ 120 int ptep_set_access_flags(struct vm_area_struct *vma, 121 unsigned long address, pte_t *ptep, 122 pte_t entry, int dirty) 123 { 124 pteval_t old_pteval; 125 unsigned int tmp; 126 127 if (pte_same(*ptep, entry)) 128 return 0; 129 130 /* only preserve the access flags and write permission */ 131 pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY; 132 133 /* 134 * PTE_RDONLY is cleared by default in the asm below, so set it in 135 * back if necessary (read-only or clean PTE). 136 */ 137 if (!pte_write(entry) || !pte_sw_dirty(entry)) 138 pte_val(entry) |= PTE_RDONLY; 139 140 /* 141 * Setting the flags must be done atomically to avoid racing with the 142 * hardware update of the access/dirty state. 143 */ 144 asm volatile("// ptep_set_access_flags\n" 145 " prfm pstl1strm, %2\n" 146 "1: ldxr %0, %2\n" 147 " and %0, %0, %3 // clear PTE_RDONLY\n" 148 " orr %0, %0, %4 // set flags\n" 149 " stxr %w1, %0, %2\n" 150 " cbnz %w1, 1b\n" 151 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)) 152 : "L" (~PTE_RDONLY), "r" (pte_val(entry))); 153 154 flush_tlb_fix_spurious_fault(vma, address); 155 return 1; 156 } 157 #endif 158 159 static bool is_el1_instruction_abort(unsigned int esr) 160 { 161 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 162 } 163 164 /* 165 * The kernel tried to access some page that wasn't present. 166 */ 167 static void __do_kernel_fault(struct mm_struct *mm, unsigned long addr, 168 unsigned int esr, struct pt_regs *regs) 169 { 170 /* 171 * Are we prepared to handle this kernel fault? 172 * We are almost certainly not prepared to handle instruction faults. 173 */ 174 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 175 return; 176 177 /* 178 * No handler, we'll have to terminate things with extreme prejudice. 179 */ 180 bust_spinlocks(1); 181 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", 182 (addr < PAGE_SIZE) ? "NULL pointer dereference" : 183 "paging request", addr); 184 185 show_pte(mm, addr); 186 die("Oops", regs, esr); 187 bust_spinlocks(0); 188 do_exit(SIGKILL); 189 } 190 191 /* 192 * Something tried to access memory that isn't in our memory map. User mode 193 * accesses just cause a SIGSEGV 194 */ 195 static void __do_user_fault(struct task_struct *tsk, unsigned long addr, 196 unsigned int esr, unsigned int sig, int code, 197 struct pt_regs *regs) 198 { 199 struct siginfo si; 200 201 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) { 202 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x\n", 203 tsk->comm, task_pid_nr(tsk), fault_name(esr), sig, 204 addr, esr); 205 show_pte(tsk->mm, addr); 206 show_regs(regs); 207 } 208 209 tsk->thread.fault_address = addr; 210 tsk->thread.fault_code = esr; 211 si.si_signo = sig; 212 si.si_errno = 0; 213 si.si_code = code; 214 si.si_addr = (void __user *)addr; 215 force_sig_info(sig, &si, tsk); 216 } 217 218 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) 219 { 220 struct task_struct *tsk = current; 221 struct mm_struct *mm = tsk->active_mm; 222 223 /* 224 * If we are in kernel mode at this point, we have no context to 225 * handle this fault with. 226 */ 227 if (user_mode(regs)) 228 __do_user_fault(tsk, addr, esr, SIGSEGV, SEGV_MAPERR, regs); 229 else 230 __do_kernel_fault(mm, addr, esr, regs); 231 } 232 233 #define VM_FAULT_BADMAP 0x010000 234 #define VM_FAULT_BADACCESS 0x020000 235 236 static int __do_page_fault(struct mm_struct *mm, unsigned long addr, 237 unsigned int mm_flags, unsigned long vm_flags, 238 struct task_struct *tsk) 239 { 240 struct vm_area_struct *vma; 241 int fault; 242 243 vma = find_vma(mm, addr); 244 fault = VM_FAULT_BADMAP; 245 if (unlikely(!vma)) 246 goto out; 247 if (unlikely(vma->vm_start > addr)) 248 goto check_stack; 249 250 /* 251 * Ok, we have a good vm_area for this memory access, so we can handle 252 * it. 253 */ 254 good_area: 255 /* 256 * Check that the permissions on the VMA allow for the fault which 257 * occurred. 258 */ 259 if (!(vma->vm_flags & vm_flags)) { 260 fault = VM_FAULT_BADACCESS; 261 goto out; 262 } 263 264 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); 265 266 check_stack: 267 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) 268 goto good_area; 269 out: 270 return fault; 271 } 272 273 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs) 274 { 275 unsigned int ec = ESR_ELx_EC(esr); 276 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 277 278 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 279 return false; 280 281 if (system_uses_ttbr0_pan()) 282 return fsc_type == ESR_ELx_FSC_FAULT && 283 (regs->pstate & PSR_PAN_BIT); 284 else 285 return fsc_type == ESR_ELx_FSC_PERM; 286 } 287 288 static bool is_el0_instruction_abort(unsigned int esr) 289 { 290 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 291 } 292 293 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, 294 struct pt_regs *regs) 295 { 296 struct task_struct *tsk; 297 struct mm_struct *mm; 298 int fault, sig, code; 299 unsigned long vm_flags = VM_READ | VM_WRITE; 300 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 301 302 if (notify_page_fault(regs, esr)) 303 return 0; 304 305 tsk = current; 306 mm = tsk->mm; 307 308 /* 309 * If we're in an interrupt or have no user context, we must not take 310 * the fault. 311 */ 312 if (faulthandler_disabled() || !mm) 313 goto no_context; 314 315 if (user_mode(regs)) 316 mm_flags |= FAULT_FLAG_USER; 317 318 if (is_el0_instruction_abort(esr)) { 319 vm_flags = VM_EXEC; 320 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) { 321 vm_flags = VM_WRITE; 322 mm_flags |= FAULT_FLAG_WRITE; 323 } 324 325 if (addr < USER_DS && is_permission_fault(esr, regs)) { 326 /* regs->orig_addr_limit may be 0 if we entered from EL0 */ 327 if (regs->orig_addr_limit == KERNEL_DS) 328 die("Accessing user space memory with fs=KERNEL_DS", regs, esr); 329 330 if (is_el1_instruction_abort(esr)) 331 die("Attempting to execute userspace memory", regs, esr); 332 333 if (!search_exception_tables(regs->pc)) 334 die("Accessing user space memory outside uaccess.h routines", regs, esr); 335 } 336 337 /* 338 * As per x86, we may deadlock here. However, since the kernel only 339 * validly references user space from well defined areas of the code, 340 * we can bug out early if this is from code which shouldn't. 341 */ 342 if (!down_read_trylock(&mm->mmap_sem)) { 343 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 344 goto no_context; 345 retry: 346 down_read(&mm->mmap_sem); 347 } else { 348 /* 349 * The above down_read_trylock() might have succeeded in which 350 * case, we'll have missed the might_sleep() from down_read(). 351 */ 352 might_sleep(); 353 #ifdef CONFIG_DEBUG_VM 354 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 355 goto no_context; 356 #endif 357 } 358 359 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk); 360 361 /* 362 * If we need to retry but a fatal signal is pending, handle the 363 * signal first. We do not need to release the mmap_sem because it 364 * would already be released in __lock_page_or_retry in mm/filemap.c. 365 */ 366 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) 367 return 0; 368 369 /* 370 * Major/minor page fault accounting is only done on the initial 371 * attempt. If we go through a retry, it is extremely likely that the 372 * page will be found in page cache at that point. 373 */ 374 375 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 376 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 377 if (fault & VM_FAULT_MAJOR) { 378 tsk->maj_flt++; 379 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, 380 addr); 381 } else { 382 tsk->min_flt++; 383 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, 384 addr); 385 } 386 if (fault & VM_FAULT_RETRY) { 387 /* 388 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of 389 * starvation. 390 */ 391 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; 392 mm_flags |= FAULT_FLAG_TRIED; 393 goto retry; 394 } 395 } 396 397 up_read(&mm->mmap_sem); 398 399 /* 400 * Handle the "normal" case first - VM_FAULT_MAJOR 401 */ 402 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 403 VM_FAULT_BADACCESS)))) 404 return 0; 405 406 /* 407 * If we are in kernel mode at this point, we have no context to 408 * handle this fault with. 409 */ 410 if (!user_mode(regs)) 411 goto no_context; 412 413 if (fault & VM_FAULT_OOM) { 414 /* 415 * We ran out of memory, call the OOM killer, and return to 416 * userspace (which will retry the fault, or kill us if we got 417 * oom-killed). 418 */ 419 pagefault_out_of_memory(); 420 return 0; 421 } 422 423 if (fault & VM_FAULT_SIGBUS) { 424 /* 425 * We had some memory, but were unable to successfully fix up 426 * this page fault. 427 */ 428 sig = SIGBUS; 429 code = BUS_ADRERR; 430 } else { 431 /* 432 * Something tried to access memory that isn't in our memory 433 * map. 434 */ 435 sig = SIGSEGV; 436 code = fault == VM_FAULT_BADACCESS ? 437 SEGV_ACCERR : SEGV_MAPERR; 438 } 439 440 __do_user_fault(tsk, addr, esr, sig, code, regs); 441 return 0; 442 443 no_context: 444 __do_kernel_fault(mm, addr, esr, regs); 445 return 0; 446 } 447 448 /* 449 * First Level Translation Fault Handler 450 * 451 * We enter here because the first level page table doesn't contain a valid 452 * entry for the address. 453 * 454 * If the address is in kernel space (>= TASK_SIZE), then we are probably 455 * faulting in the vmalloc() area. 456 * 457 * If the init_task's first level page tables contains the relevant entry, we 458 * copy the it to this task. If not, we send the process a signal, fixup the 459 * exception, or oops the kernel. 460 * 461 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt 462 * or a critical region, and should only copy the information from the master 463 * page table, nothing more. 464 */ 465 static int __kprobes do_translation_fault(unsigned long addr, 466 unsigned int esr, 467 struct pt_regs *regs) 468 { 469 if (addr < TASK_SIZE) 470 return do_page_fault(addr, esr, regs); 471 472 do_bad_area(addr, esr, regs); 473 return 0; 474 } 475 476 static int do_alignment_fault(unsigned long addr, unsigned int esr, 477 struct pt_regs *regs) 478 { 479 do_bad_area(addr, esr, regs); 480 return 0; 481 } 482 483 /* 484 * This abort handler always returns "fault". 485 */ 486 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) 487 { 488 return 1; 489 } 490 491 static const struct fault_info { 492 int (*fn)(unsigned long addr, unsigned int esr, struct pt_regs *regs); 493 int sig; 494 int code; 495 const char *name; 496 } fault_info[] = { 497 { do_bad, SIGBUS, 0, "ttbr address size fault" }, 498 { do_bad, SIGBUS, 0, "level 1 address size fault" }, 499 { do_bad, SIGBUS, 0, "level 2 address size fault" }, 500 { do_bad, SIGBUS, 0, "level 3 address size fault" }, 501 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 502 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 503 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 504 { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 505 { do_bad, SIGBUS, 0, "unknown 8" }, 506 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 507 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 508 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 509 { do_bad, SIGBUS, 0, "unknown 12" }, 510 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 511 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 512 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 513 { do_bad, SIGBUS, 0, "synchronous external abort" }, 514 { do_bad, SIGBUS, 0, "unknown 17" }, 515 { do_bad, SIGBUS, 0, "unknown 18" }, 516 { do_bad, SIGBUS, 0, "unknown 19" }, 517 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" }, 518 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" }, 519 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" }, 520 { do_bad, SIGBUS, 0, "synchronous external abort (translation table walk)" }, 521 { do_bad, SIGBUS, 0, "synchronous parity error" }, 522 { do_bad, SIGBUS, 0, "unknown 25" }, 523 { do_bad, SIGBUS, 0, "unknown 26" }, 524 { do_bad, SIGBUS, 0, "unknown 27" }, 525 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, 526 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, 527 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, 528 { do_bad, SIGBUS, 0, "synchronous parity error (translation table walk)" }, 529 { do_bad, SIGBUS, 0, "unknown 32" }, 530 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 531 { do_bad, SIGBUS, 0, "unknown 34" }, 532 { do_bad, SIGBUS, 0, "unknown 35" }, 533 { do_bad, SIGBUS, 0, "unknown 36" }, 534 { do_bad, SIGBUS, 0, "unknown 37" }, 535 { do_bad, SIGBUS, 0, "unknown 38" }, 536 { do_bad, SIGBUS, 0, "unknown 39" }, 537 { do_bad, SIGBUS, 0, "unknown 40" }, 538 { do_bad, SIGBUS, 0, "unknown 41" }, 539 { do_bad, SIGBUS, 0, "unknown 42" }, 540 { do_bad, SIGBUS, 0, "unknown 43" }, 541 { do_bad, SIGBUS, 0, "unknown 44" }, 542 { do_bad, SIGBUS, 0, "unknown 45" }, 543 { do_bad, SIGBUS, 0, "unknown 46" }, 544 { do_bad, SIGBUS, 0, "unknown 47" }, 545 { do_bad, SIGBUS, 0, "TLB conflict abort" }, 546 { do_bad, SIGBUS, 0, "unknown 49" }, 547 { do_bad, SIGBUS, 0, "unknown 50" }, 548 { do_bad, SIGBUS, 0, "unknown 51" }, 549 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" }, 550 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" }, 551 { do_bad, SIGBUS, 0, "unknown 54" }, 552 { do_bad, SIGBUS, 0, "unknown 55" }, 553 { do_bad, SIGBUS, 0, "unknown 56" }, 554 { do_bad, SIGBUS, 0, "unknown 57" }, 555 { do_bad, SIGBUS, 0, "unknown 58" }, 556 { do_bad, SIGBUS, 0, "unknown 59" }, 557 { do_bad, SIGBUS, 0, "unknown 60" }, 558 { do_bad, SIGBUS, 0, "section domain fault" }, 559 { do_bad, SIGBUS, 0, "page domain fault" }, 560 { do_bad, SIGBUS, 0, "unknown 63" }, 561 }; 562 563 static const char *fault_name(unsigned int esr) 564 { 565 const struct fault_info *inf = fault_info + (esr & 63); 566 return inf->name; 567 } 568 569 /* 570 * Dispatch a data abort to the relevant handler. 571 */ 572 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr, 573 struct pt_regs *regs) 574 { 575 const struct fault_info *inf = fault_info + (esr & 63); 576 struct siginfo info; 577 578 if (!inf->fn(addr, esr, regs)) 579 return; 580 581 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n", 582 inf->name, esr, addr); 583 584 info.si_signo = inf->sig; 585 info.si_errno = 0; 586 info.si_code = inf->code; 587 info.si_addr = (void __user *)addr; 588 arm64_notify_die("", regs, &info, esr); 589 } 590 591 /* 592 * Handle stack alignment exceptions. 593 */ 594 asmlinkage void __exception do_sp_pc_abort(unsigned long addr, 595 unsigned int esr, 596 struct pt_regs *regs) 597 { 598 struct siginfo info; 599 struct task_struct *tsk = current; 600 601 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS)) 602 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n", 603 tsk->comm, task_pid_nr(tsk), 604 esr_get_class_string(esr), (void *)regs->pc, 605 (void *)regs->sp); 606 607 info.si_signo = SIGBUS; 608 info.si_errno = 0; 609 info.si_code = BUS_ADRALN; 610 info.si_addr = (void __user *)addr; 611 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr); 612 } 613 614 int __init early_brk64(unsigned long addr, unsigned int esr, 615 struct pt_regs *regs); 616 617 /* 618 * __refdata because early_brk64 is __init, but the reference to it is 619 * clobbered at arch_initcall time. 620 * See traps.c and debug-monitors.c:debug_traps_init(). 621 */ 622 static struct fault_info __refdata debug_fault_info[] = { 623 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 624 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 625 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 626 { do_bad, SIGBUS, 0, "unknown 3" }, 627 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 628 { do_bad, SIGTRAP, 0, "aarch32 vector catch" }, 629 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 630 { do_bad, SIGBUS, 0, "unknown 7" }, 631 }; 632 633 void __init hook_debug_fault_code(int nr, 634 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 635 int sig, int code, const char *name) 636 { 637 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 638 639 debug_fault_info[nr].fn = fn; 640 debug_fault_info[nr].sig = sig; 641 debug_fault_info[nr].code = code; 642 debug_fault_info[nr].name = name; 643 } 644 645 asmlinkage int __exception do_debug_exception(unsigned long addr, 646 unsigned int esr, 647 struct pt_regs *regs) 648 { 649 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr); 650 struct siginfo info; 651 int rv; 652 653 /* 654 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were 655 * already disabled to preserve the last enabled/disabled addresses. 656 */ 657 if (interrupts_enabled(regs)) 658 trace_hardirqs_off(); 659 660 if (!inf->fn(addr, esr, regs)) { 661 rv = 1; 662 } else { 663 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n", 664 inf->name, esr, addr); 665 666 info.si_signo = inf->sig; 667 info.si_errno = 0; 668 info.si_code = inf->code; 669 info.si_addr = (void __user *)addr; 670 arm64_notify_die("", regs, &info, 0); 671 rv = 0; 672 } 673 674 if (interrupts_enabled(regs)) 675 trace_hardirqs_on(); 676 677 return rv; 678 } 679 NOKPROBE_SYMBOL(do_debug_exception); 680 681 #ifdef CONFIG_ARM64_PAN 682 int cpu_enable_pan(void *__unused) 683 { 684 /* 685 * We modify PSTATE. This won't work from irq context as the PSTATE 686 * is discarded once we return from the exception. 687 */ 688 WARN_ON_ONCE(in_interrupt()); 689 690 config_sctlr_el1(SCTLR_EL1_SPAN, 0); 691 asm(SET_PSTATE_PAN(1)); 692 return 0; 693 } 694 #endif /* CONFIG_ARM64_PAN */ 695