xref: /openbmc/linux/arch/arm64/mm/fault.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
26 
27 #include <asm/acpi.h>
28 #include <asm/bug.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/kprobes.h>
36 #include <asm/processor.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/traps.h>
42 
43 struct fault_info {
44 	int	(*fn)(unsigned long addr, unsigned int esr,
45 		      struct pt_regs *regs);
46 	int	sig;
47 	int	code;
48 	const char *name;
49 };
50 
51 static const struct fault_info fault_info[];
52 static struct fault_info debug_fault_info[];
53 
54 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
55 {
56 	return fault_info + (esr & ESR_ELx_FSC);
57 }
58 
59 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
60 {
61 	return debug_fault_info + DBG_ESR_EVT(esr);
62 }
63 
64 static void data_abort_decode(unsigned int esr)
65 {
66 	pr_alert("Data abort info:\n");
67 
68 	if (esr & ESR_ELx_ISV) {
69 		pr_alert("  Access size = %u byte(s)\n",
70 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71 		pr_alert("  SSE = %lu, SRT = %lu\n",
72 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74 		pr_alert("  SF = %lu, AR = %lu\n",
75 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77 	} else {
78 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
79 	}
80 
81 	pr_alert("  CM = %lu, WnR = %lu\n",
82 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
83 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
84 }
85 
86 static void mem_abort_decode(unsigned int esr)
87 {
88 	pr_alert("Mem abort info:\n");
89 
90 	pr_alert("  ESR = 0x%08x\n", esr);
91 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
92 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
93 		 (esr & ESR_ELx_IL) ? 32 : 16);
94 	pr_alert("  SET = %lu, FnV = %lu\n",
95 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
96 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
97 	pr_alert("  EA = %lu, S1PTW = %lu\n",
98 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
99 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
100 
101 	if (esr_is_data_abort(esr))
102 		data_abort_decode(esr);
103 }
104 
105 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
106 {
107 	/* Either init_pg_dir or swapper_pg_dir */
108 	if (mm == &init_mm)
109 		return __pa_symbol(mm->pgd);
110 
111 	return (unsigned long)virt_to_phys(mm->pgd);
112 }
113 
114 /*
115  * Dump out the page tables associated with 'addr' in the currently active mm.
116  */
117 static void show_pte(unsigned long addr)
118 {
119 	struct mm_struct *mm;
120 	pgd_t *pgdp;
121 	pgd_t pgd;
122 
123 	if (is_ttbr0_addr(addr)) {
124 		/* TTBR0 */
125 		mm = current->active_mm;
126 		if (mm == &init_mm) {
127 			pr_alert("[%016lx] user address but active_mm is swapper\n",
128 				 addr);
129 			return;
130 		}
131 	} else if (is_ttbr1_addr(addr)) {
132 		/* TTBR1 */
133 		mm = &init_mm;
134 	} else {
135 		pr_alert("[%016lx] address between user and kernel address ranges\n",
136 			 addr);
137 		return;
138 	}
139 
140 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
141 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
142 		 vabits_actual, mm_to_pgd_phys(mm));
143 	pgdp = pgd_offset(mm, addr);
144 	pgd = READ_ONCE(*pgdp);
145 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
146 
147 	do {
148 		pud_t *pudp, pud;
149 		pmd_t *pmdp, pmd;
150 		pte_t *ptep, pte;
151 
152 		if (pgd_none(pgd) || pgd_bad(pgd))
153 			break;
154 
155 		pudp = pud_offset(pgdp, addr);
156 		pud = READ_ONCE(*pudp);
157 		pr_cont(", pud=%016llx", pud_val(pud));
158 		if (pud_none(pud) || pud_bad(pud))
159 			break;
160 
161 		pmdp = pmd_offset(pudp, addr);
162 		pmd = READ_ONCE(*pmdp);
163 		pr_cont(", pmd=%016llx", pmd_val(pmd));
164 		if (pmd_none(pmd) || pmd_bad(pmd))
165 			break;
166 
167 		ptep = pte_offset_map(pmdp, addr);
168 		pte = READ_ONCE(*ptep);
169 		pr_cont(", pte=%016llx", pte_val(pte));
170 		pte_unmap(ptep);
171 	} while(0);
172 
173 	pr_cont("\n");
174 }
175 
176 /*
177  * This function sets the access flags (dirty, accessed), as well as write
178  * permission, and only to a more permissive setting.
179  *
180  * It needs to cope with hardware update of the accessed/dirty state by other
181  * agents in the system and can safely skip the __sync_icache_dcache() call as,
182  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
183  *
184  * Returns whether or not the PTE actually changed.
185  */
186 int ptep_set_access_flags(struct vm_area_struct *vma,
187 			  unsigned long address, pte_t *ptep,
188 			  pte_t entry, int dirty)
189 {
190 	pteval_t old_pteval, pteval;
191 	pte_t pte = READ_ONCE(*ptep);
192 
193 	if (pte_same(pte, entry))
194 		return 0;
195 
196 	/* only preserve the access flags and write permission */
197 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
198 
199 	/*
200 	 * Setting the flags must be done atomically to avoid racing with the
201 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
202 	 * be set to the most permissive (lowest value) of *ptep and entry
203 	 * (calculated as: a & b == ~(~a | ~b)).
204 	 */
205 	pte_val(entry) ^= PTE_RDONLY;
206 	pteval = pte_val(pte);
207 	do {
208 		old_pteval = pteval;
209 		pteval ^= PTE_RDONLY;
210 		pteval |= pte_val(entry);
211 		pteval ^= PTE_RDONLY;
212 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
213 	} while (pteval != old_pteval);
214 
215 	flush_tlb_fix_spurious_fault(vma, address);
216 	return 1;
217 }
218 
219 static bool is_el1_instruction_abort(unsigned int esr)
220 {
221 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
222 }
223 
224 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
225 					   struct pt_regs *regs)
226 {
227 	unsigned int ec       = ESR_ELx_EC(esr);
228 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
229 
230 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
231 		return false;
232 
233 	if (fsc_type == ESR_ELx_FSC_PERM)
234 		return true;
235 
236 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
237 		return fsc_type == ESR_ELx_FSC_FAULT &&
238 			(regs->pstate & PSR_PAN_BIT);
239 
240 	return false;
241 }
242 
243 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
244 							unsigned int esr,
245 							struct pt_regs *regs)
246 {
247 	unsigned long flags;
248 	u64 par, dfsc;
249 
250 	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
251 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
252 		return false;
253 
254 	local_irq_save(flags);
255 	asm volatile("at s1e1r, %0" :: "r" (addr));
256 	isb();
257 	par = read_sysreg(par_el1);
258 	local_irq_restore(flags);
259 
260 	/*
261 	 * If we now have a valid translation, treat the translation fault as
262 	 * spurious.
263 	 */
264 	if (!(par & SYS_PAR_EL1_F))
265 		return true;
266 
267 	/*
268 	 * If we got a different type of fault from the AT instruction,
269 	 * treat the translation fault as spurious.
270 	 */
271 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
272 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
273 }
274 
275 static void die_kernel_fault(const char *msg, unsigned long addr,
276 			     unsigned int esr, struct pt_regs *regs)
277 {
278 	bust_spinlocks(1);
279 
280 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
281 		 addr);
282 
283 	mem_abort_decode(esr);
284 
285 	show_pte(addr);
286 	die("Oops", regs, esr);
287 	bust_spinlocks(0);
288 	do_exit(SIGKILL);
289 }
290 
291 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
292 			      struct pt_regs *regs)
293 {
294 	const char *msg;
295 
296 	/*
297 	 * Are we prepared to handle this kernel fault?
298 	 * We are almost certainly not prepared to handle instruction faults.
299 	 */
300 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
301 		return;
302 
303 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
304 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
305 		return;
306 
307 	if (is_el1_permission_fault(addr, esr, regs)) {
308 		if (esr & ESR_ELx_WNR)
309 			msg = "write to read-only memory";
310 		else if (is_el1_instruction_abort(esr))
311 			msg = "execute from non-executable memory";
312 		else
313 			msg = "read from unreadable memory";
314 	} else if (addr < PAGE_SIZE) {
315 		msg = "NULL pointer dereference";
316 	} else {
317 		msg = "paging request";
318 	}
319 
320 	die_kernel_fault(msg, addr, esr, regs);
321 }
322 
323 static void set_thread_esr(unsigned long address, unsigned int esr)
324 {
325 	current->thread.fault_address = address;
326 
327 	/*
328 	 * If the faulting address is in the kernel, we must sanitize the ESR.
329 	 * From userspace's point of view, kernel-only mappings don't exist
330 	 * at all, so we report them as level 0 translation faults.
331 	 * (This is not quite the way that "no mapping there at all" behaves:
332 	 * an alignment fault not caused by the memory type would take
333 	 * precedence over translation fault for a real access to empty
334 	 * space. Unfortunately we can't easily distinguish "alignment fault
335 	 * not caused by memory type" from "alignment fault caused by memory
336 	 * type", so we ignore this wrinkle and just return the translation
337 	 * fault.)
338 	 */
339 	if (!is_ttbr0_addr(current->thread.fault_address)) {
340 		switch (ESR_ELx_EC(esr)) {
341 		case ESR_ELx_EC_DABT_LOW:
342 			/*
343 			 * These bits provide only information about the
344 			 * faulting instruction, which userspace knows already.
345 			 * We explicitly clear bits which are architecturally
346 			 * RES0 in case they are given meanings in future.
347 			 * We always report the ESR as if the fault was taken
348 			 * to EL1 and so ISV and the bits in ISS[23:14] are
349 			 * clear. (In fact it always will be a fault to EL1.)
350 			 */
351 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
352 				ESR_ELx_CM | ESR_ELx_WNR;
353 			esr |= ESR_ELx_FSC_FAULT;
354 			break;
355 		case ESR_ELx_EC_IABT_LOW:
356 			/*
357 			 * Claim a level 0 translation fault.
358 			 * All other bits are architecturally RES0 for faults
359 			 * reported with that DFSC value, so we clear them.
360 			 */
361 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
362 			esr |= ESR_ELx_FSC_FAULT;
363 			break;
364 		default:
365 			/*
366 			 * This should never happen (entry.S only brings us
367 			 * into this code for insn and data aborts from a lower
368 			 * exception level). Fail safe by not providing an ESR
369 			 * context record at all.
370 			 */
371 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
372 			esr = 0;
373 			break;
374 		}
375 	}
376 
377 	current->thread.fault_code = esr;
378 }
379 
380 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
381 {
382 	/*
383 	 * If we are in kernel mode at this point, we have no context to
384 	 * handle this fault with.
385 	 */
386 	if (user_mode(regs)) {
387 		const struct fault_info *inf = esr_to_fault_info(esr);
388 
389 		set_thread_esr(addr, esr);
390 		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
391 				      inf->name);
392 	} else {
393 		__do_kernel_fault(addr, esr, regs);
394 	}
395 }
396 
397 #define VM_FAULT_BADMAP		0x010000
398 #define VM_FAULT_BADACCESS	0x020000
399 
400 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
401 			   unsigned int mm_flags, unsigned long vm_flags)
402 {
403 	struct vm_area_struct *vma = find_vma(mm, addr);
404 
405 	if (unlikely(!vma))
406 		return VM_FAULT_BADMAP;
407 
408 	/*
409 	 * Ok, we have a good vm_area for this memory access, so we can handle
410 	 * it.
411 	 */
412 	if (unlikely(vma->vm_start > addr)) {
413 		if (!(vma->vm_flags & VM_GROWSDOWN))
414 			return VM_FAULT_BADMAP;
415 		if (expand_stack(vma, addr))
416 			return VM_FAULT_BADMAP;
417 	}
418 
419 	/*
420 	 * Check that the permissions on the VMA allow for the fault which
421 	 * occurred.
422 	 */
423 	if (!(vma->vm_flags & vm_flags))
424 		return VM_FAULT_BADACCESS;
425 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
426 }
427 
428 static bool is_el0_instruction_abort(unsigned int esr)
429 {
430 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
431 }
432 
433 /*
434  * Note: not valid for EL1 DC IVAC, but we never use that such that it
435  * should fault. EL0 cannot issue DC IVAC (undef).
436  */
437 static bool is_write_abort(unsigned int esr)
438 {
439 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
440 }
441 
442 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
443 				   struct pt_regs *regs)
444 {
445 	const struct fault_info *inf;
446 	struct mm_struct *mm = current->mm;
447 	vm_fault_t fault, major = 0;
448 	unsigned long vm_flags = VM_ACCESS_FLAGS;
449 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
450 
451 	if (kprobe_page_fault(regs, esr))
452 		return 0;
453 
454 	/*
455 	 * If we're in an interrupt or have no user context, we must not take
456 	 * the fault.
457 	 */
458 	if (faulthandler_disabled() || !mm)
459 		goto no_context;
460 
461 	if (user_mode(regs))
462 		mm_flags |= FAULT_FLAG_USER;
463 
464 	if (is_el0_instruction_abort(esr)) {
465 		vm_flags = VM_EXEC;
466 		mm_flags |= FAULT_FLAG_INSTRUCTION;
467 	} else if (is_write_abort(esr)) {
468 		vm_flags = VM_WRITE;
469 		mm_flags |= FAULT_FLAG_WRITE;
470 	}
471 
472 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
473 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
474 		if (regs->orig_addr_limit == KERNEL_DS)
475 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
476 					 addr, esr, regs);
477 
478 		if (is_el1_instruction_abort(esr))
479 			die_kernel_fault("execution of user memory",
480 					 addr, esr, regs);
481 
482 		if (!search_exception_tables(regs->pc))
483 			die_kernel_fault("access to user memory outside uaccess routines",
484 					 addr, esr, regs);
485 	}
486 
487 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
488 
489 	/*
490 	 * As per x86, we may deadlock here. However, since the kernel only
491 	 * validly references user space from well defined areas of the code,
492 	 * we can bug out early if this is from code which shouldn't.
493 	 */
494 	if (!down_read_trylock(&mm->mmap_sem)) {
495 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
496 			goto no_context;
497 retry:
498 		down_read(&mm->mmap_sem);
499 	} else {
500 		/*
501 		 * The above down_read_trylock() might have succeeded in which
502 		 * case, we'll have missed the might_sleep() from down_read().
503 		 */
504 		might_sleep();
505 #ifdef CONFIG_DEBUG_VM
506 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
507 			up_read(&mm->mmap_sem);
508 			goto no_context;
509 		}
510 #endif
511 	}
512 
513 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
514 	major |= fault & VM_FAULT_MAJOR;
515 
516 	/* Quick path to respond to signals */
517 	if (fault_signal_pending(fault, regs)) {
518 		if (!user_mode(regs))
519 			goto no_context;
520 		return 0;
521 	}
522 
523 	if (fault & VM_FAULT_RETRY) {
524 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
525 			mm_flags |= FAULT_FLAG_TRIED;
526 			goto retry;
527 		}
528 	}
529 	up_read(&mm->mmap_sem);
530 
531 	/*
532 	 * Handle the "normal" (no error) case first.
533 	 */
534 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
535 			      VM_FAULT_BADACCESS)))) {
536 		/*
537 		 * Major/minor page fault accounting is only done
538 		 * once. If we go through a retry, it is extremely
539 		 * likely that the page will be found in page cache at
540 		 * that point.
541 		 */
542 		if (major) {
543 			current->maj_flt++;
544 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
545 				      addr);
546 		} else {
547 			current->min_flt++;
548 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
549 				      addr);
550 		}
551 
552 		return 0;
553 	}
554 
555 	/*
556 	 * If we are in kernel mode at this point, we have no context to
557 	 * handle this fault with.
558 	 */
559 	if (!user_mode(regs))
560 		goto no_context;
561 
562 	if (fault & VM_FAULT_OOM) {
563 		/*
564 		 * We ran out of memory, call the OOM killer, and return to
565 		 * userspace (which will retry the fault, or kill us if we got
566 		 * oom-killed).
567 		 */
568 		pagefault_out_of_memory();
569 		return 0;
570 	}
571 
572 	inf = esr_to_fault_info(esr);
573 	set_thread_esr(addr, esr);
574 	if (fault & VM_FAULT_SIGBUS) {
575 		/*
576 		 * We had some memory, but were unable to successfully fix up
577 		 * this page fault.
578 		 */
579 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
580 				      inf->name);
581 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
582 		unsigned int lsb;
583 
584 		lsb = PAGE_SHIFT;
585 		if (fault & VM_FAULT_HWPOISON_LARGE)
586 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
587 
588 		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
589 				       inf->name);
590 	} else {
591 		/*
592 		 * Something tried to access memory that isn't in our memory
593 		 * map.
594 		 */
595 		arm64_force_sig_fault(SIGSEGV,
596 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
597 				      (void __user *)addr,
598 				      inf->name);
599 	}
600 
601 	return 0;
602 
603 no_context:
604 	__do_kernel_fault(addr, esr, regs);
605 	return 0;
606 }
607 
608 static int __kprobes do_translation_fault(unsigned long addr,
609 					  unsigned int esr,
610 					  struct pt_regs *regs)
611 {
612 	if (is_ttbr0_addr(addr))
613 		return do_page_fault(addr, esr, regs);
614 
615 	do_bad_area(addr, esr, regs);
616 	return 0;
617 }
618 
619 static int do_alignment_fault(unsigned long addr, unsigned int esr,
620 			      struct pt_regs *regs)
621 {
622 	do_bad_area(addr, esr, regs);
623 	return 0;
624 }
625 
626 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
627 {
628 	return 1; /* "fault" */
629 }
630 
631 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
632 {
633 	const struct fault_info *inf;
634 	void __user *siaddr;
635 
636 	inf = esr_to_fault_info(esr);
637 
638 	/*
639 	 * Return value ignored as we rely on signal merging.
640 	 * Future patches will make this more robust.
641 	 */
642 	apei_claim_sea(regs);
643 
644 	if (esr & ESR_ELx_FnV)
645 		siaddr = NULL;
646 	else
647 		siaddr  = (void __user *)addr;
648 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
649 
650 	return 0;
651 }
652 
653 static const struct fault_info fault_info[] = {
654 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
655 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
656 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
657 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
658 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
659 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
660 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
661 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
662 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
663 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
664 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
665 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
666 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
667 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
668 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
669 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
670 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
671 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
672 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
673 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
674 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
675 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
676 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
677 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
678 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
679 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
680 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
681 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
682 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
683 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
684 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
685 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
686 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
687 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
688 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
689 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
690 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
691 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
692 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
693 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
694 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
695 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
696 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
697 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
698 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
699 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
700 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
701 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
702 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
703 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
704 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
705 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
706 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
707 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
708 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
709 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
710 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
711 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
712 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
713 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
714 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
715 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
716 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
717 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
718 };
719 
720 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
721 {
722 	const struct fault_info *inf = esr_to_fault_info(esr);
723 
724 	if (!inf->fn(addr, esr, regs))
725 		return;
726 
727 	if (!user_mode(regs)) {
728 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
729 		mem_abort_decode(esr);
730 		show_pte(addr);
731 	}
732 
733 	arm64_notify_die(inf->name, regs,
734 			 inf->sig, inf->code, (void __user *)addr, esr);
735 }
736 NOKPROBE_SYMBOL(do_mem_abort);
737 
738 void do_el0_irq_bp_hardening(void)
739 {
740 	/* PC has already been checked in entry.S */
741 	arm64_apply_bp_hardening();
742 }
743 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
744 
745 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
746 {
747 	arm64_notify_die("SP/PC alignment exception", regs,
748 			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
749 }
750 NOKPROBE_SYMBOL(do_sp_pc_abort);
751 
752 int __init early_brk64(unsigned long addr, unsigned int esr,
753 		       struct pt_regs *regs);
754 
755 /*
756  * __refdata because early_brk64 is __init, but the reference to it is
757  * clobbered at arch_initcall time.
758  * See traps.c and debug-monitors.c:debug_traps_init().
759  */
760 static struct fault_info __refdata debug_fault_info[] = {
761 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
762 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
763 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
764 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
765 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
766 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
767 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
768 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
769 };
770 
771 void __init hook_debug_fault_code(int nr,
772 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
773 				  int sig, int code, const char *name)
774 {
775 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
776 
777 	debug_fault_info[nr].fn		= fn;
778 	debug_fault_info[nr].sig	= sig;
779 	debug_fault_info[nr].code	= code;
780 	debug_fault_info[nr].name	= name;
781 }
782 
783 /*
784  * In debug exception context, we explicitly disable preemption despite
785  * having interrupts disabled.
786  * This serves two purposes: it makes it much less likely that we would
787  * accidentally schedule in exception context and it will force a warning
788  * if we somehow manage to schedule by accident.
789  */
790 static void debug_exception_enter(struct pt_regs *regs)
791 {
792 	/*
793 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
794 	 * already disabled to preserve the last enabled/disabled addresses.
795 	 */
796 	if (interrupts_enabled(regs))
797 		trace_hardirqs_off();
798 
799 	if (user_mode(regs)) {
800 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
801 	} else {
802 		/*
803 		 * We might have interrupted pretty much anything.  In
804 		 * fact, if we're a debug exception, we can even interrupt
805 		 * NMI processing. We don't want this code makes in_nmi()
806 		 * to return true, but we need to notify RCU.
807 		 */
808 		rcu_nmi_enter();
809 	}
810 
811 	preempt_disable();
812 
813 	/* This code is a bit fragile.  Test it. */
814 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
815 }
816 NOKPROBE_SYMBOL(debug_exception_enter);
817 
818 static void debug_exception_exit(struct pt_regs *regs)
819 {
820 	preempt_enable_no_resched();
821 
822 	if (!user_mode(regs))
823 		rcu_nmi_exit();
824 
825 	if (interrupts_enabled(regs))
826 		trace_hardirqs_on();
827 }
828 NOKPROBE_SYMBOL(debug_exception_exit);
829 
830 #ifdef CONFIG_ARM64_ERRATUM_1463225
831 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
832 
833 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
834 {
835 	if (user_mode(regs))
836 		return 0;
837 
838 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
839 		return 0;
840 
841 	/*
842 	 * We've taken a dummy step exception from the kernel to ensure
843 	 * that interrupts are re-enabled on the syscall path. Return back
844 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
845 	 * masked so that we can safely restore the mdscr and get on with
846 	 * handling the syscall.
847 	 */
848 	regs->pstate |= PSR_D_BIT;
849 	return 1;
850 }
851 #else
852 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
853 {
854 	return 0;
855 }
856 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
857 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
858 
859 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
860 			struct pt_regs *regs)
861 {
862 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
863 	unsigned long pc = instruction_pointer(regs);
864 
865 	if (cortex_a76_erratum_1463225_debug_handler(regs))
866 		return;
867 
868 	debug_exception_enter(regs);
869 
870 	if (user_mode(regs) && !is_ttbr0_addr(pc))
871 		arm64_apply_bp_hardening();
872 
873 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
874 		arm64_notify_die(inf->name, regs,
875 				 inf->sig, inf->code, (void __user *)pc, esr);
876 	}
877 
878 	debug_exception_exit(regs);
879 }
880 NOKPROBE_SYMBOL(do_debug_exception);
881