1 /* 2 * Based on arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1995-2004 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <linux/extable.h> 22 #include <linux/signal.h> 23 #include <linux/mm.h> 24 #include <linux/hardirq.h> 25 #include <linux/init.h> 26 #include <linux/kprobes.h> 27 #include <linux/uaccess.h> 28 #include <linux/page-flags.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/debug.h> 31 #include <linux/highmem.h> 32 #include <linux/perf_event.h> 33 #include <linux/preempt.h> 34 #include <linux/hugetlb.h> 35 36 #include <asm/bug.h> 37 #include <asm/cpufeature.h> 38 #include <asm/exception.h> 39 #include <asm/debug-monitors.h> 40 #include <asm/esr.h> 41 #include <asm/sysreg.h> 42 #include <asm/system_misc.h> 43 #include <asm/pgtable.h> 44 #include <asm/tlbflush.h> 45 46 #include <acpi/ghes.h> 47 48 struct fault_info { 49 int (*fn)(unsigned long addr, unsigned int esr, 50 struct pt_regs *regs); 51 int sig; 52 int code; 53 const char *name; 54 }; 55 56 static const struct fault_info fault_info[]; 57 58 static inline const struct fault_info *esr_to_fault_info(unsigned int esr) 59 { 60 return fault_info + (esr & 63); 61 } 62 63 #ifdef CONFIG_KPROBES 64 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 65 { 66 int ret = 0; 67 68 /* kprobe_running() needs smp_processor_id() */ 69 if (!user_mode(regs)) { 70 preempt_disable(); 71 if (kprobe_running() && kprobe_fault_handler(regs, esr)) 72 ret = 1; 73 preempt_enable(); 74 } 75 76 return ret; 77 } 78 #else 79 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 80 { 81 return 0; 82 } 83 #endif 84 85 /* 86 * Dump out the page tables associated with 'addr' in the currently active mm. 87 */ 88 void show_pte(unsigned long addr) 89 { 90 struct mm_struct *mm; 91 pgd_t *pgd; 92 93 if (addr < TASK_SIZE) { 94 /* TTBR0 */ 95 mm = current->active_mm; 96 if (mm == &init_mm) { 97 pr_alert("[%016lx] user address but active_mm is swapper\n", 98 addr); 99 return; 100 } 101 } else if (addr >= VA_START) { 102 /* TTBR1 */ 103 mm = &init_mm; 104 } else { 105 pr_alert("[%016lx] address between user and kernel address ranges\n", 106 addr); 107 return; 108 } 109 110 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n", 111 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 112 VA_BITS, mm->pgd); 113 pgd = pgd_offset(mm, addr); 114 pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd)); 115 116 do { 117 pud_t *pud; 118 pmd_t *pmd; 119 pte_t *pte; 120 121 if (pgd_none(*pgd) || pgd_bad(*pgd)) 122 break; 123 124 pud = pud_offset(pgd, addr); 125 pr_cont(", *pud=%016llx", pud_val(*pud)); 126 if (pud_none(*pud) || pud_bad(*pud)) 127 break; 128 129 pmd = pmd_offset(pud, addr); 130 pr_cont(", *pmd=%016llx", pmd_val(*pmd)); 131 if (pmd_none(*pmd) || pmd_bad(*pmd)) 132 break; 133 134 pte = pte_offset_map(pmd, addr); 135 pr_cont(", *pte=%016llx", pte_val(*pte)); 136 pte_unmap(pte); 137 } while(0); 138 139 pr_cont("\n"); 140 } 141 142 #ifdef CONFIG_ARM64_HW_AFDBM 143 /* 144 * This function sets the access flags (dirty, accessed), as well as write 145 * permission, and only to a more permissive setting. 146 * 147 * It needs to cope with hardware update of the accessed/dirty state by other 148 * agents in the system and can safely skip the __sync_icache_dcache() call as, 149 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 150 * 151 * Returns whether or not the PTE actually changed. 152 */ 153 int ptep_set_access_flags(struct vm_area_struct *vma, 154 unsigned long address, pte_t *ptep, 155 pte_t entry, int dirty) 156 { 157 pteval_t old_pteval; 158 unsigned int tmp; 159 160 if (pte_same(*ptep, entry)) 161 return 0; 162 163 /* only preserve the access flags and write permission */ 164 pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY; 165 166 /* set PTE_RDONLY if actual read-only or clean PTE */ 167 if (!pte_write(entry) || !pte_sw_dirty(entry)) 168 pte_val(entry) |= PTE_RDONLY; 169 170 /* 171 * Setting the flags must be done atomically to avoid racing with the 172 * hardware update of the access/dirty state. The PTE_RDONLY bit must 173 * be set to the most permissive (lowest value) of *ptep and entry 174 * (calculated as: a & b == ~(~a | ~b)). 175 */ 176 pte_val(entry) ^= PTE_RDONLY; 177 asm volatile("// ptep_set_access_flags\n" 178 " prfm pstl1strm, %2\n" 179 "1: ldxr %0, %2\n" 180 " eor %0, %0, %3 // negate PTE_RDONLY in *ptep\n" 181 " orr %0, %0, %4 // set flags\n" 182 " eor %0, %0, %3 // negate final PTE_RDONLY\n" 183 " stxr %w1, %0, %2\n" 184 " cbnz %w1, 1b\n" 185 : "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep)) 186 : "L" (PTE_RDONLY), "r" (pte_val(entry))); 187 188 flush_tlb_fix_spurious_fault(vma, address); 189 return 1; 190 } 191 #endif 192 193 static bool is_el1_instruction_abort(unsigned int esr) 194 { 195 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 196 } 197 198 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs, 199 unsigned long addr) 200 { 201 unsigned int ec = ESR_ELx_EC(esr); 202 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 203 204 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 205 return false; 206 207 if (fsc_type == ESR_ELx_FSC_PERM) 208 return true; 209 210 if (addr < USER_DS && system_uses_ttbr0_pan()) 211 return fsc_type == ESR_ELx_FSC_FAULT && 212 (regs->pstate & PSR_PAN_BIT); 213 214 return false; 215 } 216 217 /* 218 * The kernel tried to access some page that wasn't present. 219 */ 220 static void __do_kernel_fault(unsigned long addr, unsigned int esr, 221 struct pt_regs *regs) 222 { 223 const char *msg; 224 225 /* 226 * Are we prepared to handle this kernel fault? 227 * We are almost certainly not prepared to handle instruction faults. 228 */ 229 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 230 return; 231 232 /* 233 * No handler, we'll have to terminate things with extreme prejudice. 234 */ 235 bust_spinlocks(1); 236 237 if (is_permission_fault(esr, regs, addr)) { 238 if (esr & ESR_ELx_WNR) 239 msg = "write to read-only memory"; 240 else 241 msg = "read from unreadable memory"; 242 } else if (addr < PAGE_SIZE) { 243 msg = "NULL pointer dereference"; 244 } else { 245 msg = "paging request"; 246 } 247 248 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg, 249 addr); 250 251 show_pte(addr); 252 die("Oops", regs, esr); 253 bust_spinlocks(0); 254 do_exit(SIGKILL); 255 } 256 257 /* 258 * Something tried to access memory that isn't in our memory map. User mode 259 * accesses just cause a SIGSEGV 260 */ 261 static void __do_user_fault(struct task_struct *tsk, unsigned long addr, 262 unsigned int esr, unsigned int sig, int code, 263 struct pt_regs *regs, int fault) 264 { 265 struct siginfo si; 266 const struct fault_info *inf; 267 unsigned int lsb = 0; 268 269 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) { 270 inf = esr_to_fault_info(esr); 271 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x", 272 tsk->comm, task_pid_nr(tsk), inf->name, sig, 273 addr, esr); 274 print_vma_addr(KERN_CONT ", in ", regs->pc); 275 pr_cont("\n"); 276 __show_regs(regs); 277 } 278 279 tsk->thread.fault_address = addr; 280 tsk->thread.fault_code = esr; 281 si.si_signo = sig; 282 si.si_errno = 0; 283 si.si_code = code; 284 si.si_addr = (void __user *)addr; 285 /* 286 * Either small page or large page may be poisoned. 287 * In other words, VM_FAULT_HWPOISON_LARGE and 288 * VM_FAULT_HWPOISON are mutually exclusive. 289 */ 290 if (fault & VM_FAULT_HWPOISON_LARGE) 291 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 292 else if (fault & VM_FAULT_HWPOISON) 293 lsb = PAGE_SHIFT; 294 si.si_addr_lsb = lsb; 295 296 force_sig_info(sig, &si, tsk); 297 } 298 299 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) 300 { 301 struct task_struct *tsk = current; 302 const struct fault_info *inf; 303 304 /* 305 * If we are in kernel mode at this point, we have no context to 306 * handle this fault with. 307 */ 308 if (user_mode(regs)) { 309 inf = esr_to_fault_info(esr); 310 __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0); 311 } else 312 __do_kernel_fault(addr, esr, regs); 313 } 314 315 #define VM_FAULT_BADMAP 0x010000 316 #define VM_FAULT_BADACCESS 0x020000 317 318 static int __do_page_fault(struct mm_struct *mm, unsigned long addr, 319 unsigned int mm_flags, unsigned long vm_flags, 320 struct task_struct *tsk) 321 { 322 struct vm_area_struct *vma; 323 int fault; 324 325 vma = find_vma(mm, addr); 326 fault = VM_FAULT_BADMAP; 327 if (unlikely(!vma)) 328 goto out; 329 if (unlikely(vma->vm_start > addr)) 330 goto check_stack; 331 332 /* 333 * Ok, we have a good vm_area for this memory access, so we can handle 334 * it. 335 */ 336 good_area: 337 /* 338 * Check that the permissions on the VMA allow for the fault which 339 * occurred. 340 */ 341 if (!(vma->vm_flags & vm_flags)) { 342 fault = VM_FAULT_BADACCESS; 343 goto out; 344 } 345 346 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); 347 348 check_stack: 349 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) 350 goto good_area; 351 out: 352 return fault; 353 } 354 355 static bool is_el0_instruction_abort(unsigned int esr) 356 { 357 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 358 } 359 360 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, 361 struct pt_regs *regs) 362 { 363 struct task_struct *tsk; 364 struct mm_struct *mm; 365 int fault, sig, code, major = 0; 366 unsigned long vm_flags = VM_READ | VM_WRITE; 367 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 368 369 if (notify_page_fault(regs, esr)) 370 return 0; 371 372 tsk = current; 373 mm = tsk->mm; 374 375 /* 376 * If we're in an interrupt or have no user context, we must not take 377 * the fault. 378 */ 379 if (faulthandler_disabled() || !mm) 380 goto no_context; 381 382 if (user_mode(regs)) 383 mm_flags |= FAULT_FLAG_USER; 384 385 if (is_el0_instruction_abort(esr)) { 386 vm_flags = VM_EXEC; 387 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) { 388 vm_flags = VM_WRITE; 389 mm_flags |= FAULT_FLAG_WRITE; 390 } 391 392 if (addr < USER_DS && is_permission_fault(esr, regs, addr)) { 393 /* regs->orig_addr_limit may be 0 if we entered from EL0 */ 394 if (regs->orig_addr_limit == KERNEL_DS) 395 die("Accessing user space memory with fs=KERNEL_DS", regs, esr); 396 397 if (is_el1_instruction_abort(esr)) 398 die("Attempting to execute userspace memory", regs, esr); 399 400 if (!search_exception_tables(regs->pc)) 401 die("Accessing user space memory outside uaccess.h routines", regs, esr); 402 } 403 404 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 405 406 /* 407 * As per x86, we may deadlock here. However, since the kernel only 408 * validly references user space from well defined areas of the code, 409 * we can bug out early if this is from code which shouldn't. 410 */ 411 if (!down_read_trylock(&mm->mmap_sem)) { 412 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 413 goto no_context; 414 retry: 415 down_read(&mm->mmap_sem); 416 } else { 417 /* 418 * The above down_read_trylock() might have succeeded in which 419 * case, we'll have missed the might_sleep() from down_read(). 420 */ 421 might_sleep(); 422 #ifdef CONFIG_DEBUG_VM 423 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 424 goto no_context; 425 #endif 426 } 427 428 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk); 429 major |= fault & VM_FAULT_MAJOR; 430 431 if (fault & VM_FAULT_RETRY) { 432 /* 433 * If we need to retry but a fatal signal is pending, 434 * handle the signal first. We do not need to release 435 * the mmap_sem because it would already be released 436 * in __lock_page_or_retry in mm/filemap.c. 437 */ 438 if (fatal_signal_pending(current)) { 439 if (!user_mode(regs)) 440 goto no_context; 441 return 0; 442 } 443 444 /* 445 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of 446 * starvation. 447 */ 448 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 449 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; 450 mm_flags |= FAULT_FLAG_TRIED; 451 goto retry; 452 } 453 } 454 up_read(&mm->mmap_sem); 455 456 /* 457 * Handle the "normal" (no error) case first. 458 */ 459 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 460 VM_FAULT_BADACCESS)))) { 461 /* 462 * Major/minor page fault accounting is only done 463 * once. If we go through a retry, it is extremely 464 * likely that the page will be found in page cache at 465 * that point. 466 */ 467 if (major) { 468 tsk->maj_flt++; 469 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, 470 addr); 471 } else { 472 tsk->min_flt++; 473 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, 474 addr); 475 } 476 477 return 0; 478 } 479 480 /* 481 * If we are in kernel mode at this point, we have no context to 482 * handle this fault with. 483 */ 484 if (!user_mode(regs)) 485 goto no_context; 486 487 if (fault & VM_FAULT_OOM) { 488 /* 489 * We ran out of memory, call the OOM killer, and return to 490 * userspace (which will retry the fault, or kill us if we got 491 * oom-killed). 492 */ 493 pagefault_out_of_memory(); 494 return 0; 495 } 496 497 if (fault & VM_FAULT_SIGBUS) { 498 /* 499 * We had some memory, but were unable to successfully fix up 500 * this page fault. 501 */ 502 sig = SIGBUS; 503 code = BUS_ADRERR; 504 } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) { 505 sig = SIGBUS; 506 code = BUS_MCEERR_AR; 507 } else { 508 /* 509 * Something tried to access memory that isn't in our memory 510 * map. 511 */ 512 sig = SIGSEGV; 513 code = fault == VM_FAULT_BADACCESS ? 514 SEGV_ACCERR : SEGV_MAPERR; 515 } 516 517 __do_user_fault(tsk, addr, esr, sig, code, regs, fault); 518 return 0; 519 520 no_context: 521 __do_kernel_fault(addr, esr, regs); 522 return 0; 523 } 524 525 /* 526 * First Level Translation Fault Handler 527 * 528 * We enter here because the first level page table doesn't contain a valid 529 * entry for the address. 530 * 531 * If the address is in kernel space (>= TASK_SIZE), then we are probably 532 * faulting in the vmalloc() area. 533 * 534 * If the init_task's first level page tables contains the relevant entry, we 535 * copy the it to this task. If not, we send the process a signal, fixup the 536 * exception, or oops the kernel. 537 * 538 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt 539 * or a critical region, and should only copy the information from the master 540 * page table, nothing more. 541 */ 542 static int __kprobes do_translation_fault(unsigned long addr, 543 unsigned int esr, 544 struct pt_regs *regs) 545 { 546 if (addr < TASK_SIZE) 547 return do_page_fault(addr, esr, regs); 548 549 do_bad_area(addr, esr, regs); 550 return 0; 551 } 552 553 static int do_alignment_fault(unsigned long addr, unsigned int esr, 554 struct pt_regs *regs) 555 { 556 do_bad_area(addr, esr, regs); 557 return 0; 558 } 559 560 /* 561 * This abort handler always returns "fault". 562 */ 563 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) 564 { 565 return 1; 566 } 567 568 /* 569 * This abort handler deals with Synchronous External Abort. 570 * It calls notifiers, and then returns "fault". 571 */ 572 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) 573 { 574 struct siginfo info; 575 const struct fault_info *inf; 576 int ret = 0; 577 578 inf = esr_to_fault_info(esr); 579 pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n", 580 inf->name, esr, addr); 581 582 /* 583 * Synchronous aborts may interrupt code which had interrupts masked. 584 * Before calling out into the wider kernel tell the interested 585 * subsystems. 586 */ 587 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) { 588 if (interrupts_enabled(regs)) 589 nmi_enter(); 590 591 ret = ghes_notify_sea(); 592 593 if (interrupts_enabled(regs)) 594 nmi_exit(); 595 } 596 597 info.si_signo = SIGBUS; 598 info.si_errno = 0; 599 info.si_code = 0; 600 if (esr & ESR_ELx_FnV) 601 info.si_addr = NULL; 602 else 603 info.si_addr = (void __user *)addr; 604 arm64_notify_die("", regs, &info, esr); 605 606 return ret; 607 } 608 609 static const struct fault_info fault_info[] = { 610 { do_bad, SIGBUS, 0, "ttbr address size fault" }, 611 { do_bad, SIGBUS, 0, "level 1 address size fault" }, 612 { do_bad, SIGBUS, 0, "level 2 address size fault" }, 613 { do_bad, SIGBUS, 0, "level 3 address size fault" }, 614 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 615 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 616 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 617 { do_page_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 618 { do_bad, SIGBUS, 0, "unknown 8" }, 619 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 620 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 621 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 622 { do_bad, SIGBUS, 0, "unknown 12" }, 623 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 624 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 625 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 626 { do_sea, SIGBUS, 0, "synchronous external abort" }, 627 { do_bad, SIGBUS, 0, "unknown 17" }, 628 { do_bad, SIGBUS, 0, "unknown 18" }, 629 { do_bad, SIGBUS, 0, "unknown 19" }, 630 { do_sea, SIGBUS, 0, "level 0 (translation table walk)" }, 631 { do_sea, SIGBUS, 0, "level 1 (translation table walk)" }, 632 { do_sea, SIGBUS, 0, "level 2 (translation table walk)" }, 633 { do_sea, SIGBUS, 0, "level 3 (translation table walk)" }, 634 { do_sea, SIGBUS, 0, "synchronous parity or ECC error" }, 635 { do_bad, SIGBUS, 0, "unknown 25" }, 636 { do_bad, SIGBUS, 0, "unknown 26" }, 637 { do_bad, SIGBUS, 0, "unknown 27" }, 638 { do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" }, 639 { do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" }, 640 { do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" }, 641 { do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" }, 642 { do_bad, SIGBUS, 0, "unknown 32" }, 643 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 644 { do_bad, SIGBUS, 0, "unknown 34" }, 645 { do_bad, SIGBUS, 0, "unknown 35" }, 646 { do_bad, SIGBUS, 0, "unknown 36" }, 647 { do_bad, SIGBUS, 0, "unknown 37" }, 648 { do_bad, SIGBUS, 0, "unknown 38" }, 649 { do_bad, SIGBUS, 0, "unknown 39" }, 650 { do_bad, SIGBUS, 0, "unknown 40" }, 651 { do_bad, SIGBUS, 0, "unknown 41" }, 652 { do_bad, SIGBUS, 0, "unknown 42" }, 653 { do_bad, SIGBUS, 0, "unknown 43" }, 654 { do_bad, SIGBUS, 0, "unknown 44" }, 655 { do_bad, SIGBUS, 0, "unknown 45" }, 656 { do_bad, SIGBUS, 0, "unknown 46" }, 657 { do_bad, SIGBUS, 0, "unknown 47" }, 658 { do_bad, SIGBUS, 0, "TLB conflict abort" }, 659 { do_bad, SIGBUS, 0, "unknown 49" }, 660 { do_bad, SIGBUS, 0, "unknown 50" }, 661 { do_bad, SIGBUS, 0, "unknown 51" }, 662 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" }, 663 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" }, 664 { do_bad, SIGBUS, 0, "unknown 54" }, 665 { do_bad, SIGBUS, 0, "unknown 55" }, 666 { do_bad, SIGBUS, 0, "unknown 56" }, 667 { do_bad, SIGBUS, 0, "unknown 57" }, 668 { do_bad, SIGBUS, 0, "unknown 58" }, 669 { do_bad, SIGBUS, 0, "unknown 59" }, 670 { do_bad, SIGBUS, 0, "unknown 60" }, 671 { do_bad, SIGBUS, 0, "section domain fault" }, 672 { do_bad, SIGBUS, 0, "page domain fault" }, 673 { do_bad, SIGBUS, 0, "unknown 63" }, 674 }; 675 676 /* 677 * Handle Synchronous External Aborts that occur in a guest kernel. 678 * 679 * The return value will be zero if the SEA was successfully handled 680 * and non-zero if there was an error processing the error or there was 681 * no error to process. 682 */ 683 int handle_guest_sea(phys_addr_t addr, unsigned int esr) 684 { 685 int ret = -ENOENT; 686 687 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) 688 ret = ghes_notify_sea(); 689 690 return ret; 691 } 692 693 /* 694 * Dispatch a data abort to the relevant handler. 695 */ 696 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr, 697 struct pt_regs *regs) 698 { 699 const struct fault_info *inf = esr_to_fault_info(esr); 700 struct siginfo info; 701 702 if (!inf->fn(addr, esr, regs)) 703 return; 704 705 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n", 706 inf->name, esr, addr); 707 708 info.si_signo = inf->sig; 709 info.si_errno = 0; 710 info.si_code = inf->code; 711 info.si_addr = (void __user *)addr; 712 arm64_notify_die("", regs, &info, esr); 713 } 714 715 /* 716 * Handle stack alignment exceptions. 717 */ 718 asmlinkage void __exception do_sp_pc_abort(unsigned long addr, 719 unsigned int esr, 720 struct pt_regs *regs) 721 { 722 struct siginfo info; 723 struct task_struct *tsk = current; 724 725 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS)) 726 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n", 727 tsk->comm, task_pid_nr(tsk), 728 esr_get_class_string(esr), (void *)regs->pc, 729 (void *)regs->sp); 730 731 info.si_signo = SIGBUS; 732 info.si_errno = 0; 733 info.si_code = BUS_ADRALN; 734 info.si_addr = (void __user *)addr; 735 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr); 736 } 737 738 int __init early_brk64(unsigned long addr, unsigned int esr, 739 struct pt_regs *regs); 740 741 /* 742 * __refdata because early_brk64 is __init, but the reference to it is 743 * clobbered at arch_initcall time. 744 * See traps.c and debug-monitors.c:debug_traps_init(). 745 */ 746 static struct fault_info __refdata debug_fault_info[] = { 747 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 748 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 749 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 750 { do_bad, SIGBUS, 0, "unknown 3" }, 751 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 752 { do_bad, SIGTRAP, 0, "aarch32 vector catch" }, 753 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 754 { do_bad, SIGBUS, 0, "unknown 7" }, 755 }; 756 757 void __init hook_debug_fault_code(int nr, 758 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 759 int sig, int code, const char *name) 760 { 761 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 762 763 debug_fault_info[nr].fn = fn; 764 debug_fault_info[nr].sig = sig; 765 debug_fault_info[nr].code = code; 766 debug_fault_info[nr].name = name; 767 } 768 769 asmlinkage int __exception do_debug_exception(unsigned long addr, 770 unsigned int esr, 771 struct pt_regs *regs) 772 { 773 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr); 774 struct siginfo info; 775 int rv; 776 777 /* 778 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were 779 * already disabled to preserve the last enabled/disabled addresses. 780 */ 781 if (interrupts_enabled(regs)) 782 trace_hardirqs_off(); 783 784 if (!inf->fn(addr, esr, regs)) { 785 rv = 1; 786 } else { 787 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n", 788 inf->name, esr, addr); 789 790 info.si_signo = inf->sig; 791 info.si_errno = 0; 792 info.si_code = inf->code; 793 info.si_addr = (void __user *)addr; 794 arm64_notify_die("", regs, &info, 0); 795 rv = 0; 796 } 797 798 if (interrupts_enabled(regs)) 799 trace_hardirqs_on(); 800 801 return rv; 802 } 803 NOKPROBE_SYMBOL(do_debug_exception); 804 805 #ifdef CONFIG_ARM64_PAN 806 int cpu_enable_pan(void *__unused) 807 { 808 /* 809 * We modify PSTATE. This won't work from irq context as the PSTATE 810 * is discarded once we return from the exception. 811 */ 812 WARN_ON_ONCE(in_interrupt()); 813 814 config_sctlr_el1(SCTLR_EL1_SPAN, 0); 815 asm(SET_PSTATE_PAN(1)); 816 return 0; 817 } 818 #endif /* CONFIG_ARM64_PAN */ 819