1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/hardirq.h> 16 #include <linux/init.h> 17 #include <linux/kasan.h> 18 #include <linux/kprobes.h> 19 #include <linux/uaccess.h> 20 #include <linux/page-flags.h> 21 #include <linux/sched/signal.h> 22 #include <linux/sched/debug.h> 23 #include <linux/highmem.h> 24 #include <linux/perf_event.h> 25 #include <linux/preempt.h> 26 #include <linux/hugetlb.h> 27 28 #include <asm/acpi.h> 29 #include <asm/bug.h> 30 #include <asm/cmpxchg.h> 31 #include <asm/cpufeature.h> 32 #include <asm/exception.h> 33 #include <asm/daifflags.h> 34 #include <asm/debug-monitors.h> 35 #include <asm/esr.h> 36 #include <asm/kprobes.h> 37 #include <asm/mte.h> 38 #include <asm/processor.h> 39 #include <asm/sysreg.h> 40 #include <asm/system_misc.h> 41 #include <asm/tlbflush.h> 42 #include <asm/traps.h> 43 44 struct fault_info { 45 int (*fn)(unsigned long far, unsigned int esr, 46 struct pt_regs *regs); 47 int sig; 48 int code; 49 const char *name; 50 }; 51 52 static const struct fault_info fault_info[]; 53 static struct fault_info debug_fault_info[]; 54 55 static inline const struct fault_info *esr_to_fault_info(unsigned int esr) 56 { 57 return fault_info + (esr & ESR_ELx_FSC); 58 } 59 60 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr) 61 { 62 return debug_fault_info + DBG_ESR_EVT(esr); 63 } 64 65 static void data_abort_decode(unsigned int esr) 66 { 67 pr_alert("Data abort info:\n"); 68 69 if (esr & ESR_ELx_ISV) { 70 pr_alert(" Access size = %u byte(s)\n", 71 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 72 pr_alert(" SSE = %lu, SRT = %lu\n", 73 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 74 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 75 pr_alert(" SF = %lu, AR = %lu\n", 76 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 77 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 78 } else { 79 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); 80 } 81 82 pr_alert(" CM = %lu, WnR = %lu\n", 83 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 84 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); 85 } 86 87 static void mem_abort_decode(unsigned int esr) 88 { 89 pr_alert("Mem abort info:\n"); 90 91 pr_alert(" ESR = 0x%08x\n", esr); 92 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 93 ESR_ELx_EC(esr), esr_get_class_string(esr), 94 (esr & ESR_ELx_IL) ? 32 : 16); 95 pr_alert(" SET = %lu, FnV = %lu\n", 96 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 97 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 98 pr_alert(" EA = %lu, S1PTW = %lu\n", 99 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 100 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 101 102 if (esr_is_data_abort(esr)) 103 data_abort_decode(esr); 104 } 105 106 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 107 { 108 /* Either init_pg_dir or swapper_pg_dir */ 109 if (mm == &init_mm) 110 return __pa_symbol(mm->pgd); 111 112 return (unsigned long)virt_to_phys(mm->pgd); 113 } 114 115 /* 116 * Dump out the page tables associated with 'addr' in the currently active mm. 117 */ 118 static void show_pte(unsigned long addr) 119 { 120 struct mm_struct *mm; 121 pgd_t *pgdp; 122 pgd_t pgd; 123 124 if (is_ttbr0_addr(addr)) { 125 /* TTBR0 */ 126 mm = current->active_mm; 127 if (mm == &init_mm) { 128 pr_alert("[%016lx] user address but active_mm is swapper\n", 129 addr); 130 return; 131 } 132 } else if (is_ttbr1_addr(addr)) { 133 /* TTBR1 */ 134 mm = &init_mm; 135 } else { 136 pr_alert("[%016lx] address between user and kernel address ranges\n", 137 addr); 138 return; 139 } 140 141 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 142 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 143 vabits_actual, mm_to_pgd_phys(mm)); 144 pgdp = pgd_offset(mm, addr); 145 pgd = READ_ONCE(*pgdp); 146 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 147 148 do { 149 p4d_t *p4dp, p4d; 150 pud_t *pudp, pud; 151 pmd_t *pmdp, pmd; 152 pte_t *ptep, pte; 153 154 if (pgd_none(pgd) || pgd_bad(pgd)) 155 break; 156 157 p4dp = p4d_offset(pgdp, addr); 158 p4d = READ_ONCE(*p4dp); 159 pr_cont(", p4d=%016llx", p4d_val(p4d)); 160 if (p4d_none(p4d) || p4d_bad(p4d)) 161 break; 162 163 pudp = pud_offset(p4dp, addr); 164 pud = READ_ONCE(*pudp); 165 pr_cont(", pud=%016llx", pud_val(pud)); 166 if (pud_none(pud) || pud_bad(pud)) 167 break; 168 169 pmdp = pmd_offset(pudp, addr); 170 pmd = READ_ONCE(*pmdp); 171 pr_cont(", pmd=%016llx", pmd_val(pmd)); 172 if (pmd_none(pmd) || pmd_bad(pmd)) 173 break; 174 175 ptep = pte_offset_map(pmdp, addr); 176 pte = READ_ONCE(*ptep); 177 pr_cont(", pte=%016llx", pte_val(pte)); 178 pte_unmap(ptep); 179 } while(0); 180 181 pr_cont("\n"); 182 } 183 184 /* 185 * This function sets the access flags (dirty, accessed), as well as write 186 * permission, and only to a more permissive setting. 187 * 188 * It needs to cope with hardware update of the accessed/dirty state by other 189 * agents in the system and can safely skip the __sync_icache_dcache() call as, 190 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 191 * 192 * Returns whether or not the PTE actually changed. 193 */ 194 int ptep_set_access_flags(struct vm_area_struct *vma, 195 unsigned long address, pte_t *ptep, 196 pte_t entry, int dirty) 197 { 198 pteval_t old_pteval, pteval; 199 pte_t pte = READ_ONCE(*ptep); 200 201 if (pte_same(pte, entry)) 202 return 0; 203 204 /* only preserve the access flags and write permission */ 205 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 206 207 /* 208 * Setting the flags must be done atomically to avoid racing with the 209 * hardware update of the access/dirty state. The PTE_RDONLY bit must 210 * be set to the most permissive (lowest value) of *ptep and entry 211 * (calculated as: a & b == ~(~a | ~b)). 212 */ 213 pte_val(entry) ^= PTE_RDONLY; 214 pteval = pte_val(pte); 215 do { 216 old_pteval = pteval; 217 pteval ^= PTE_RDONLY; 218 pteval |= pte_val(entry); 219 pteval ^= PTE_RDONLY; 220 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 221 } while (pteval != old_pteval); 222 223 /* Invalidate a stale read-only entry */ 224 if (dirty) 225 flush_tlb_page(vma, address); 226 return 1; 227 } 228 229 static bool is_el1_instruction_abort(unsigned int esr) 230 { 231 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 232 } 233 234 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr, 235 struct pt_regs *regs) 236 { 237 unsigned int ec = ESR_ELx_EC(esr); 238 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 239 240 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 241 return false; 242 243 if (fsc_type == ESR_ELx_FSC_PERM) 244 return true; 245 246 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 247 return fsc_type == ESR_ELx_FSC_FAULT && 248 (regs->pstate & PSR_PAN_BIT); 249 250 return false; 251 } 252 253 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 254 unsigned int esr, 255 struct pt_regs *regs) 256 { 257 unsigned long flags; 258 u64 par, dfsc; 259 260 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR || 261 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) 262 return false; 263 264 local_irq_save(flags); 265 asm volatile("at s1e1r, %0" :: "r" (addr)); 266 isb(); 267 par = read_sysreg_par(); 268 local_irq_restore(flags); 269 270 /* 271 * If we now have a valid translation, treat the translation fault as 272 * spurious. 273 */ 274 if (!(par & SYS_PAR_EL1_F)) 275 return true; 276 277 /* 278 * If we got a different type of fault from the AT instruction, 279 * treat the translation fault as spurious. 280 */ 281 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 282 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; 283 } 284 285 static void die_kernel_fault(const char *msg, unsigned long addr, 286 unsigned int esr, struct pt_regs *regs) 287 { 288 bust_spinlocks(1); 289 290 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 291 addr); 292 293 mem_abort_decode(esr); 294 295 show_pte(addr); 296 die("Oops", regs, esr); 297 bust_spinlocks(0); 298 do_exit(SIGKILL); 299 } 300 301 #ifdef CONFIG_KASAN_HW_TAGS 302 static void report_tag_fault(unsigned long addr, unsigned int esr, 303 struct pt_regs *regs) 304 { 305 bool is_write = ((esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT) != 0; 306 307 /* 308 * SAS bits aren't set for all faults reported in EL1, so we can't 309 * find out access size. 310 */ 311 kasan_report(addr, 0, is_write, regs->pc); 312 } 313 #else 314 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */ 315 static inline void report_tag_fault(unsigned long addr, unsigned int esr, 316 struct pt_regs *regs) { } 317 #endif 318 319 static void do_tag_recovery(unsigned long addr, unsigned int esr, 320 struct pt_regs *regs) 321 { 322 static bool reported; 323 324 if (!READ_ONCE(reported)) { 325 report_tag_fault(addr, esr, regs); 326 WRITE_ONCE(reported, true); 327 } 328 329 /* 330 * Disable MTE Tag Checking on the local CPU for the current EL. 331 * It will be done lazily on the other CPUs when they will hit a 332 * tag fault. 333 */ 334 sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE); 335 isb(); 336 } 337 338 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr) 339 { 340 unsigned int ec = ESR_ELx_EC(esr); 341 unsigned int fsc = esr & ESR_ELx_FSC; 342 343 if (ec != ESR_ELx_EC_DABT_CUR) 344 return false; 345 346 if (fsc == ESR_ELx_FSC_MTE) 347 return true; 348 349 return false; 350 } 351 352 static void __do_kernel_fault(unsigned long addr, unsigned int esr, 353 struct pt_regs *regs) 354 { 355 const char *msg; 356 357 /* 358 * Are we prepared to handle this kernel fault? 359 * We are almost certainly not prepared to handle instruction faults. 360 */ 361 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 362 return; 363 364 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 365 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 366 return; 367 368 if (is_el1_mte_sync_tag_check_fault(esr)) { 369 do_tag_recovery(addr, esr, regs); 370 371 return; 372 } 373 374 if (is_el1_permission_fault(addr, esr, regs)) { 375 if (esr & ESR_ELx_WNR) 376 msg = "write to read-only memory"; 377 else if (is_el1_instruction_abort(esr)) 378 msg = "execute from non-executable memory"; 379 else 380 msg = "read from unreadable memory"; 381 } else if (addr < PAGE_SIZE) { 382 msg = "NULL pointer dereference"; 383 } else { 384 msg = "paging request"; 385 } 386 387 die_kernel_fault(msg, addr, esr, regs); 388 } 389 390 static void set_thread_esr(unsigned long address, unsigned int esr) 391 { 392 current->thread.fault_address = address; 393 394 /* 395 * If the faulting address is in the kernel, we must sanitize the ESR. 396 * From userspace's point of view, kernel-only mappings don't exist 397 * at all, so we report them as level 0 translation faults. 398 * (This is not quite the way that "no mapping there at all" behaves: 399 * an alignment fault not caused by the memory type would take 400 * precedence over translation fault for a real access to empty 401 * space. Unfortunately we can't easily distinguish "alignment fault 402 * not caused by memory type" from "alignment fault caused by memory 403 * type", so we ignore this wrinkle and just return the translation 404 * fault.) 405 */ 406 if (!is_ttbr0_addr(current->thread.fault_address)) { 407 switch (ESR_ELx_EC(esr)) { 408 case ESR_ELx_EC_DABT_LOW: 409 /* 410 * These bits provide only information about the 411 * faulting instruction, which userspace knows already. 412 * We explicitly clear bits which are architecturally 413 * RES0 in case they are given meanings in future. 414 * We always report the ESR as if the fault was taken 415 * to EL1 and so ISV and the bits in ISS[23:14] are 416 * clear. (In fact it always will be a fault to EL1.) 417 */ 418 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 419 ESR_ELx_CM | ESR_ELx_WNR; 420 esr |= ESR_ELx_FSC_FAULT; 421 break; 422 case ESR_ELx_EC_IABT_LOW: 423 /* 424 * Claim a level 0 translation fault. 425 * All other bits are architecturally RES0 for faults 426 * reported with that DFSC value, so we clear them. 427 */ 428 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 429 esr |= ESR_ELx_FSC_FAULT; 430 break; 431 default: 432 /* 433 * This should never happen (entry.S only brings us 434 * into this code for insn and data aborts from a lower 435 * exception level). Fail safe by not providing an ESR 436 * context record at all. 437 */ 438 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); 439 esr = 0; 440 break; 441 } 442 } 443 444 current->thread.fault_code = esr; 445 } 446 447 static void do_bad_area(unsigned long far, unsigned int esr, 448 struct pt_regs *regs) 449 { 450 unsigned long addr = untagged_addr(far); 451 452 /* 453 * If we are in kernel mode at this point, we have no context to 454 * handle this fault with. 455 */ 456 if (user_mode(regs)) { 457 const struct fault_info *inf = esr_to_fault_info(esr); 458 459 set_thread_esr(addr, esr); 460 arm64_force_sig_fault(inf->sig, inf->code, far, inf->name); 461 } else { 462 __do_kernel_fault(addr, esr, regs); 463 } 464 } 465 466 #define VM_FAULT_BADMAP 0x010000 467 #define VM_FAULT_BADACCESS 0x020000 468 469 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, 470 unsigned int mm_flags, unsigned long vm_flags, 471 struct pt_regs *regs) 472 { 473 struct vm_area_struct *vma = find_vma(mm, addr); 474 475 if (unlikely(!vma)) 476 return VM_FAULT_BADMAP; 477 478 /* 479 * Ok, we have a good vm_area for this memory access, so we can handle 480 * it. 481 */ 482 if (unlikely(vma->vm_start > addr)) { 483 if (!(vma->vm_flags & VM_GROWSDOWN)) 484 return VM_FAULT_BADMAP; 485 if (expand_stack(vma, addr)) 486 return VM_FAULT_BADMAP; 487 } 488 489 /* 490 * Check that the permissions on the VMA allow for the fault which 491 * occurred. 492 */ 493 if (!(vma->vm_flags & vm_flags)) 494 return VM_FAULT_BADACCESS; 495 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags, regs); 496 } 497 498 static bool is_el0_instruction_abort(unsigned int esr) 499 { 500 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 501 } 502 503 /* 504 * Note: not valid for EL1 DC IVAC, but we never use that such that it 505 * should fault. EL0 cannot issue DC IVAC (undef). 506 */ 507 static bool is_write_abort(unsigned int esr) 508 { 509 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 510 } 511 512 static int __kprobes do_page_fault(unsigned long far, unsigned int esr, 513 struct pt_regs *regs) 514 { 515 const struct fault_info *inf; 516 struct mm_struct *mm = current->mm; 517 vm_fault_t fault; 518 unsigned long vm_flags = VM_ACCESS_FLAGS; 519 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 520 unsigned long addr = untagged_addr(far); 521 522 if (kprobe_page_fault(regs, esr)) 523 return 0; 524 525 /* 526 * If we're in an interrupt or have no user context, we must not take 527 * the fault. 528 */ 529 if (faulthandler_disabled() || !mm) 530 goto no_context; 531 532 if (user_mode(regs)) 533 mm_flags |= FAULT_FLAG_USER; 534 535 if (is_el0_instruction_abort(esr)) { 536 vm_flags = VM_EXEC; 537 mm_flags |= FAULT_FLAG_INSTRUCTION; 538 } else if (is_write_abort(esr)) { 539 vm_flags = VM_WRITE; 540 mm_flags |= FAULT_FLAG_WRITE; 541 } 542 543 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 544 if (is_el1_instruction_abort(esr)) 545 die_kernel_fault("execution of user memory", 546 addr, esr, regs); 547 548 if (!search_exception_tables(regs->pc)) 549 die_kernel_fault("access to user memory outside uaccess routines", 550 addr, esr, regs); 551 } 552 553 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 554 555 /* 556 * As per x86, we may deadlock here. However, since the kernel only 557 * validly references user space from well defined areas of the code, 558 * we can bug out early if this is from code which shouldn't. 559 */ 560 if (!mmap_read_trylock(mm)) { 561 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 562 goto no_context; 563 retry: 564 mmap_read_lock(mm); 565 } else { 566 /* 567 * The above mmap_read_trylock() might have succeeded in which 568 * case, we'll have missed the might_sleep() from down_read(). 569 */ 570 might_sleep(); 571 #ifdef CONFIG_DEBUG_VM 572 if (!user_mode(regs) && !search_exception_tables(regs->pc)) { 573 mmap_read_unlock(mm); 574 goto no_context; 575 } 576 #endif 577 } 578 579 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs); 580 581 /* Quick path to respond to signals */ 582 if (fault_signal_pending(fault, regs)) { 583 if (!user_mode(regs)) 584 goto no_context; 585 return 0; 586 } 587 588 if (fault & VM_FAULT_RETRY) { 589 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 590 mm_flags |= FAULT_FLAG_TRIED; 591 goto retry; 592 } 593 } 594 mmap_read_unlock(mm); 595 596 /* 597 * Handle the "normal" (no error) case first. 598 */ 599 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 600 VM_FAULT_BADACCESS)))) 601 return 0; 602 603 /* 604 * If we are in kernel mode at this point, we have no context to 605 * handle this fault with. 606 */ 607 if (!user_mode(regs)) 608 goto no_context; 609 610 if (fault & VM_FAULT_OOM) { 611 /* 612 * We ran out of memory, call the OOM killer, and return to 613 * userspace (which will retry the fault, or kill us if we got 614 * oom-killed). 615 */ 616 pagefault_out_of_memory(); 617 return 0; 618 } 619 620 inf = esr_to_fault_info(esr); 621 set_thread_esr(addr, esr); 622 if (fault & VM_FAULT_SIGBUS) { 623 /* 624 * We had some memory, but were unable to successfully fix up 625 * this page fault. 626 */ 627 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name); 628 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 629 unsigned int lsb; 630 631 lsb = PAGE_SHIFT; 632 if (fault & VM_FAULT_HWPOISON_LARGE) 633 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 634 635 arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name); 636 } else { 637 /* 638 * Something tried to access memory that isn't in our memory 639 * map. 640 */ 641 arm64_force_sig_fault(SIGSEGV, 642 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, 643 far, inf->name); 644 } 645 646 return 0; 647 648 no_context: 649 __do_kernel_fault(addr, esr, regs); 650 return 0; 651 } 652 653 static int __kprobes do_translation_fault(unsigned long far, 654 unsigned int esr, 655 struct pt_regs *regs) 656 { 657 unsigned long addr = untagged_addr(far); 658 659 if (is_ttbr0_addr(addr)) 660 return do_page_fault(far, esr, regs); 661 662 do_bad_area(far, esr, regs); 663 return 0; 664 } 665 666 static int do_alignment_fault(unsigned long far, unsigned int esr, 667 struct pt_regs *regs) 668 { 669 do_bad_area(far, esr, regs); 670 return 0; 671 } 672 673 static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs) 674 { 675 return 1; /* "fault" */ 676 } 677 678 static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs) 679 { 680 const struct fault_info *inf; 681 unsigned long siaddr; 682 683 inf = esr_to_fault_info(esr); 684 685 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 686 /* 687 * APEI claimed this as a firmware-first notification. 688 * Some processing deferred to task_work before ret_to_user(). 689 */ 690 return 0; 691 } 692 693 if (esr & ESR_ELx_FnV) { 694 siaddr = 0; 695 } else { 696 /* 697 * The architecture specifies that the tag bits of FAR_EL1 are 698 * UNKNOWN for synchronous external aborts. Mask them out now 699 * so that userspace doesn't see them. 700 */ 701 siaddr = untagged_addr(far); 702 } 703 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 704 705 return 0; 706 } 707 708 static int do_tag_check_fault(unsigned long far, unsigned int esr, 709 struct pt_regs *regs) 710 { 711 /* 712 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN 713 * for tag check faults. Set them to corresponding bits in the untagged 714 * address. 715 */ 716 far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK); 717 do_bad_area(far, esr, regs); 718 return 0; 719 } 720 721 static const struct fault_info fault_info[] = { 722 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 723 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 724 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 725 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 726 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 727 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 728 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 729 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 730 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, 731 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 732 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 733 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 734 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, 735 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 736 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 737 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 738 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 739 { do_tag_check_fault, SIGSEGV, SEGV_MTESERR, "synchronous tag check fault" }, 740 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 741 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, 742 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 743 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 744 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 745 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 746 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 747 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 748 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 749 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, 750 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 751 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 752 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 753 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 754 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 755 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 756 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 757 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 758 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 759 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 760 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 761 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 762 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 763 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, 764 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 765 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, 766 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 767 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 768 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 769 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 770 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 771 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 772 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 773 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 774 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 775 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 776 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 777 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 778 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 779 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 780 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 781 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 782 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 783 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 784 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 785 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 786 }; 787 788 void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs) 789 { 790 const struct fault_info *inf = esr_to_fault_info(esr); 791 unsigned long addr = untagged_addr(far); 792 793 if (!inf->fn(far, esr, regs)) 794 return; 795 796 if (!user_mode(regs)) { 797 pr_alert("Unhandled fault at 0x%016lx\n", addr); 798 mem_abort_decode(esr); 799 show_pte(addr); 800 } 801 802 /* 803 * At this point we have an unrecognized fault type whose tag bits may 804 * have been defined as UNKNOWN. Therefore we only expose the untagged 805 * address to the signal handler. 806 */ 807 arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr); 808 } 809 NOKPROBE_SYMBOL(do_mem_abort); 810 811 void do_el0_irq_bp_hardening(void) 812 { 813 /* PC has already been checked in entry.S */ 814 arm64_apply_bp_hardening(); 815 } 816 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening); 817 818 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) 819 { 820 arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN, 821 addr, esr); 822 } 823 NOKPROBE_SYMBOL(do_sp_pc_abort); 824 825 int __init early_brk64(unsigned long addr, unsigned int esr, 826 struct pt_regs *regs); 827 828 /* 829 * __refdata because early_brk64 is __init, but the reference to it is 830 * clobbered at arch_initcall time. 831 * See traps.c and debug-monitors.c:debug_traps_init(). 832 */ 833 static struct fault_info __refdata debug_fault_info[] = { 834 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 835 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 836 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 837 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 838 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 839 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 840 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 841 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 842 }; 843 844 void __init hook_debug_fault_code(int nr, 845 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 846 int sig, int code, const char *name) 847 { 848 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 849 850 debug_fault_info[nr].fn = fn; 851 debug_fault_info[nr].sig = sig; 852 debug_fault_info[nr].code = code; 853 debug_fault_info[nr].name = name; 854 } 855 856 /* 857 * In debug exception context, we explicitly disable preemption despite 858 * having interrupts disabled. 859 * This serves two purposes: it makes it much less likely that we would 860 * accidentally schedule in exception context and it will force a warning 861 * if we somehow manage to schedule by accident. 862 */ 863 static void debug_exception_enter(struct pt_regs *regs) 864 { 865 preempt_disable(); 866 867 /* This code is a bit fragile. Test it. */ 868 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 869 } 870 NOKPROBE_SYMBOL(debug_exception_enter); 871 872 static void debug_exception_exit(struct pt_regs *regs) 873 { 874 preempt_enable_no_resched(); 875 } 876 NOKPROBE_SYMBOL(debug_exception_exit); 877 878 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr, 879 struct pt_regs *regs) 880 { 881 const struct fault_info *inf = esr_to_debug_fault_info(esr); 882 unsigned long pc = instruction_pointer(regs); 883 884 debug_exception_enter(regs); 885 886 if (user_mode(regs) && !is_ttbr0_addr(pc)) 887 arm64_apply_bp_hardening(); 888 889 if (inf->fn(addr_if_watchpoint, esr, regs)) { 890 arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr); 891 } 892 893 debug_exception_exit(regs); 894 } 895 NOKPROBE_SYMBOL(do_debug_exception); 896