1 /* 2 * Based on arch/arm/mm/fault.c 3 * 4 * Copyright (C) 1995 Linus Torvalds 5 * Copyright (C) 1995-2004 Russell King 6 * Copyright (C) 2012 ARM Ltd. 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License version 2 as 10 * published by the Free Software Foundation. 11 * 12 * This program is distributed in the hope that it will be useful, 13 * but WITHOUT ANY WARRANTY; without even the implied warranty of 14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 15 * GNU General Public License for more details. 16 * 17 * You should have received a copy of the GNU General Public License 18 * along with this program. If not, see <http://www.gnu.org/licenses/>. 19 */ 20 21 #include <linux/extable.h> 22 #include <linux/signal.h> 23 #include <linux/mm.h> 24 #include <linux/hardirq.h> 25 #include <linux/init.h> 26 #include <linux/kprobes.h> 27 #include <linux/uaccess.h> 28 #include <linux/page-flags.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/debug.h> 31 #include <linux/highmem.h> 32 #include <linux/perf_event.h> 33 #include <linux/preempt.h> 34 #include <linux/hugetlb.h> 35 36 #include <asm/bug.h> 37 #include <asm/cmpxchg.h> 38 #include <asm/cpufeature.h> 39 #include <asm/exception.h> 40 #include <asm/debug-monitors.h> 41 #include <asm/esr.h> 42 #include <asm/sysreg.h> 43 #include <asm/system_misc.h> 44 #include <asm/pgtable.h> 45 #include <asm/tlbflush.h> 46 47 #include <acpi/ghes.h> 48 49 struct fault_info { 50 int (*fn)(unsigned long addr, unsigned int esr, 51 struct pt_regs *regs); 52 int sig; 53 int code; 54 const char *name; 55 }; 56 57 static const struct fault_info fault_info[]; 58 59 static inline const struct fault_info *esr_to_fault_info(unsigned int esr) 60 { 61 return fault_info + (esr & 63); 62 } 63 64 #ifdef CONFIG_KPROBES 65 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 66 { 67 int ret = 0; 68 69 /* kprobe_running() needs smp_processor_id() */ 70 if (!user_mode(regs)) { 71 preempt_disable(); 72 if (kprobe_running() && kprobe_fault_handler(regs, esr)) 73 ret = 1; 74 preempt_enable(); 75 } 76 77 return ret; 78 } 79 #else 80 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr) 81 { 82 return 0; 83 } 84 #endif 85 86 static void data_abort_decode(unsigned int esr) 87 { 88 pr_alert("Data abort info:\n"); 89 90 if (esr & ESR_ELx_ISV) { 91 pr_alert(" Access size = %u byte(s)\n", 92 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 93 pr_alert(" SSE = %lu, SRT = %lu\n", 94 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 95 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 96 pr_alert(" SF = %lu, AR = %lu\n", 97 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 98 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 99 } else { 100 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); 101 } 102 103 pr_alert(" CM = %lu, WnR = %lu\n", 104 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 105 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); 106 } 107 108 /* 109 * Decode mem abort information 110 */ 111 static void mem_abort_decode(unsigned int esr) 112 { 113 pr_alert("Mem abort info:\n"); 114 115 pr_alert(" Exception class = %s, IL = %u bits\n", 116 esr_get_class_string(esr), 117 (esr & ESR_ELx_IL) ? 32 : 16); 118 pr_alert(" SET = %lu, FnV = %lu\n", 119 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 120 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 121 pr_alert(" EA = %lu, S1PTW = %lu\n", 122 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 123 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 124 125 if (esr_is_data_abort(esr)) 126 data_abort_decode(esr); 127 } 128 129 /* 130 * Dump out the page tables associated with 'addr' in the currently active mm. 131 */ 132 void show_pte(unsigned long addr) 133 { 134 struct mm_struct *mm; 135 pgd_t *pgd; 136 137 if (addr < TASK_SIZE) { 138 /* TTBR0 */ 139 mm = current->active_mm; 140 if (mm == &init_mm) { 141 pr_alert("[%016lx] user address but active_mm is swapper\n", 142 addr); 143 return; 144 } 145 } else if (addr >= VA_START) { 146 /* TTBR1 */ 147 mm = &init_mm; 148 } else { 149 pr_alert("[%016lx] address between user and kernel address ranges\n", 150 addr); 151 return; 152 } 153 154 pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n", 155 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 156 VA_BITS, mm->pgd); 157 pgd = pgd_offset(mm, addr); 158 pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd)); 159 160 do { 161 pud_t *pud; 162 pmd_t *pmd; 163 pte_t *pte; 164 165 if (pgd_none(*pgd) || pgd_bad(*pgd)) 166 break; 167 168 pud = pud_offset(pgd, addr); 169 pr_cont(", *pud=%016llx", pud_val(*pud)); 170 if (pud_none(*pud) || pud_bad(*pud)) 171 break; 172 173 pmd = pmd_offset(pud, addr); 174 pr_cont(", *pmd=%016llx", pmd_val(*pmd)); 175 if (pmd_none(*pmd) || pmd_bad(*pmd)) 176 break; 177 178 pte = pte_offset_map(pmd, addr); 179 pr_cont(", *pte=%016llx", pte_val(*pte)); 180 pte_unmap(pte); 181 } while(0); 182 183 pr_cont("\n"); 184 } 185 186 /* 187 * This function sets the access flags (dirty, accessed), as well as write 188 * permission, and only to a more permissive setting. 189 * 190 * It needs to cope with hardware update of the accessed/dirty state by other 191 * agents in the system and can safely skip the __sync_icache_dcache() call as, 192 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 193 * 194 * Returns whether or not the PTE actually changed. 195 */ 196 int ptep_set_access_flags(struct vm_area_struct *vma, 197 unsigned long address, pte_t *ptep, 198 pte_t entry, int dirty) 199 { 200 pteval_t old_pteval, pteval; 201 202 if (pte_same(*ptep, entry)) 203 return 0; 204 205 /* only preserve the access flags and write permission */ 206 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 207 208 /* 209 * Setting the flags must be done atomically to avoid racing with the 210 * hardware update of the access/dirty state. The PTE_RDONLY bit must 211 * be set to the most permissive (lowest value) of *ptep and entry 212 * (calculated as: a & b == ~(~a | ~b)). 213 */ 214 pte_val(entry) ^= PTE_RDONLY; 215 pteval = READ_ONCE(pte_val(*ptep)); 216 do { 217 old_pteval = pteval; 218 pteval ^= PTE_RDONLY; 219 pteval |= pte_val(entry); 220 pteval ^= PTE_RDONLY; 221 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 222 } while (pteval != old_pteval); 223 224 flush_tlb_fix_spurious_fault(vma, address); 225 return 1; 226 } 227 228 static bool is_el1_instruction_abort(unsigned int esr) 229 { 230 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 231 } 232 233 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs, 234 unsigned long addr) 235 { 236 unsigned int ec = ESR_ELx_EC(esr); 237 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 238 239 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 240 return false; 241 242 if (fsc_type == ESR_ELx_FSC_PERM) 243 return true; 244 245 if (addr < USER_DS && system_uses_ttbr0_pan()) 246 return fsc_type == ESR_ELx_FSC_FAULT && 247 (regs->pstate & PSR_PAN_BIT); 248 249 return false; 250 } 251 252 /* 253 * The kernel tried to access some page that wasn't present. 254 */ 255 static void __do_kernel_fault(unsigned long addr, unsigned int esr, 256 struct pt_regs *regs) 257 { 258 const char *msg; 259 260 /* 261 * Are we prepared to handle this kernel fault? 262 * We are almost certainly not prepared to handle instruction faults. 263 */ 264 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 265 return; 266 267 /* 268 * No handler, we'll have to terminate things with extreme prejudice. 269 */ 270 bust_spinlocks(1); 271 272 if (is_permission_fault(esr, regs, addr)) { 273 if (esr & ESR_ELx_WNR) 274 msg = "write to read-only memory"; 275 else 276 msg = "read from unreadable memory"; 277 } else if (addr < PAGE_SIZE) { 278 msg = "NULL pointer dereference"; 279 } else { 280 msg = "paging request"; 281 } 282 283 pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg, 284 addr); 285 286 mem_abort_decode(esr); 287 288 show_pte(addr); 289 die("Oops", regs, esr); 290 bust_spinlocks(0); 291 do_exit(SIGKILL); 292 } 293 294 /* 295 * Something tried to access memory that isn't in our memory map. User mode 296 * accesses just cause a SIGSEGV 297 */ 298 static void __do_user_fault(struct task_struct *tsk, unsigned long addr, 299 unsigned int esr, unsigned int sig, int code, 300 struct pt_regs *regs, int fault) 301 { 302 struct siginfo si; 303 const struct fault_info *inf; 304 unsigned int lsb = 0; 305 306 if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) { 307 inf = esr_to_fault_info(esr); 308 pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x", 309 tsk->comm, task_pid_nr(tsk), inf->name, sig, 310 addr, esr); 311 print_vma_addr(KERN_CONT ", in ", regs->pc); 312 pr_cont("\n"); 313 __show_regs(regs); 314 } 315 316 tsk->thread.fault_address = addr; 317 tsk->thread.fault_code = esr; 318 si.si_signo = sig; 319 si.si_errno = 0; 320 si.si_code = code; 321 si.si_addr = (void __user *)addr; 322 /* 323 * Either small page or large page may be poisoned. 324 * In other words, VM_FAULT_HWPOISON_LARGE and 325 * VM_FAULT_HWPOISON are mutually exclusive. 326 */ 327 if (fault & VM_FAULT_HWPOISON_LARGE) 328 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 329 else if (fault & VM_FAULT_HWPOISON) 330 lsb = PAGE_SHIFT; 331 si.si_addr_lsb = lsb; 332 333 force_sig_info(sig, &si, tsk); 334 } 335 336 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) 337 { 338 struct task_struct *tsk = current; 339 const struct fault_info *inf; 340 341 /* 342 * If we are in kernel mode at this point, we have no context to 343 * handle this fault with. 344 */ 345 if (user_mode(regs)) { 346 inf = esr_to_fault_info(esr); 347 __do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0); 348 } else 349 __do_kernel_fault(addr, esr, regs); 350 } 351 352 #define VM_FAULT_BADMAP 0x010000 353 #define VM_FAULT_BADACCESS 0x020000 354 355 static int __do_page_fault(struct mm_struct *mm, unsigned long addr, 356 unsigned int mm_flags, unsigned long vm_flags, 357 struct task_struct *tsk) 358 { 359 struct vm_area_struct *vma; 360 int fault; 361 362 vma = find_vma(mm, addr); 363 fault = VM_FAULT_BADMAP; 364 if (unlikely(!vma)) 365 goto out; 366 if (unlikely(vma->vm_start > addr)) 367 goto check_stack; 368 369 /* 370 * Ok, we have a good vm_area for this memory access, so we can handle 371 * it. 372 */ 373 good_area: 374 /* 375 * Check that the permissions on the VMA allow for the fault which 376 * occurred. 377 */ 378 if (!(vma->vm_flags & vm_flags)) { 379 fault = VM_FAULT_BADACCESS; 380 goto out; 381 } 382 383 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); 384 385 check_stack: 386 if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr)) 387 goto good_area; 388 out: 389 return fault; 390 } 391 392 static bool is_el0_instruction_abort(unsigned int esr) 393 { 394 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 395 } 396 397 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, 398 struct pt_regs *regs) 399 { 400 struct task_struct *tsk; 401 struct mm_struct *mm; 402 int fault, sig, code, major = 0; 403 unsigned long vm_flags = VM_READ | VM_WRITE; 404 unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE; 405 406 if (notify_page_fault(regs, esr)) 407 return 0; 408 409 tsk = current; 410 mm = tsk->mm; 411 412 /* 413 * If we're in an interrupt or have no user context, we must not take 414 * the fault. 415 */ 416 if (faulthandler_disabled() || !mm) 417 goto no_context; 418 419 if (user_mode(regs)) 420 mm_flags |= FAULT_FLAG_USER; 421 422 if (is_el0_instruction_abort(esr)) { 423 vm_flags = VM_EXEC; 424 } else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) { 425 vm_flags = VM_WRITE; 426 mm_flags |= FAULT_FLAG_WRITE; 427 } 428 429 if (addr < USER_DS && is_permission_fault(esr, regs, addr)) { 430 /* regs->orig_addr_limit may be 0 if we entered from EL0 */ 431 if (regs->orig_addr_limit == KERNEL_DS) 432 die("Accessing user space memory with fs=KERNEL_DS", regs, esr); 433 434 if (is_el1_instruction_abort(esr)) 435 die("Attempting to execute userspace memory", regs, esr); 436 437 if (!search_exception_tables(regs->pc)) 438 die("Accessing user space memory outside uaccess.h routines", regs, esr); 439 } 440 441 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 442 443 /* 444 * As per x86, we may deadlock here. However, since the kernel only 445 * validly references user space from well defined areas of the code, 446 * we can bug out early if this is from code which shouldn't. 447 */ 448 if (!down_read_trylock(&mm->mmap_sem)) { 449 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 450 goto no_context; 451 retry: 452 down_read(&mm->mmap_sem); 453 } else { 454 /* 455 * The above down_read_trylock() might have succeeded in which 456 * case, we'll have missed the might_sleep() from down_read(). 457 */ 458 might_sleep(); 459 #ifdef CONFIG_DEBUG_VM 460 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 461 goto no_context; 462 #endif 463 } 464 465 fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk); 466 major |= fault & VM_FAULT_MAJOR; 467 468 if (fault & VM_FAULT_RETRY) { 469 /* 470 * If we need to retry but a fatal signal is pending, 471 * handle the signal first. We do not need to release 472 * the mmap_sem because it would already be released 473 * in __lock_page_or_retry in mm/filemap.c. 474 */ 475 if (fatal_signal_pending(current)) { 476 if (!user_mode(regs)) 477 goto no_context; 478 return 0; 479 } 480 481 /* 482 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of 483 * starvation. 484 */ 485 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 486 mm_flags &= ~FAULT_FLAG_ALLOW_RETRY; 487 mm_flags |= FAULT_FLAG_TRIED; 488 goto retry; 489 } 490 } 491 up_read(&mm->mmap_sem); 492 493 /* 494 * Handle the "normal" (no error) case first. 495 */ 496 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 497 VM_FAULT_BADACCESS)))) { 498 /* 499 * Major/minor page fault accounting is only done 500 * once. If we go through a retry, it is extremely 501 * likely that the page will be found in page cache at 502 * that point. 503 */ 504 if (major) { 505 tsk->maj_flt++; 506 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, 507 addr); 508 } else { 509 tsk->min_flt++; 510 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, 511 addr); 512 } 513 514 return 0; 515 } 516 517 /* 518 * If we are in kernel mode at this point, we have no context to 519 * handle this fault with. 520 */ 521 if (!user_mode(regs)) 522 goto no_context; 523 524 if (fault & VM_FAULT_OOM) { 525 /* 526 * We ran out of memory, call the OOM killer, and return to 527 * userspace (which will retry the fault, or kill us if we got 528 * oom-killed). 529 */ 530 pagefault_out_of_memory(); 531 return 0; 532 } 533 534 if (fault & VM_FAULT_SIGBUS) { 535 /* 536 * We had some memory, but were unable to successfully fix up 537 * this page fault. 538 */ 539 sig = SIGBUS; 540 code = BUS_ADRERR; 541 } else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) { 542 sig = SIGBUS; 543 code = BUS_MCEERR_AR; 544 } else { 545 /* 546 * Something tried to access memory that isn't in our memory 547 * map. 548 */ 549 sig = SIGSEGV; 550 code = fault == VM_FAULT_BADACCESS ? 551 SEGV_ACCERR : SEGV_MAPERR; 552 } 553 554 __do_user_fault(tsk, addr, esr, sig, code, regs, fault); 555 return 0; 556 557 no_context: 558 __do_kernel_fault(addr, esr, regs); 559 return 0; 560 } 561 562 /* 563 * First Level Translation Fault Handler 564 * 565 * We enter here because the first level page table doesn't contain a valid 566 * entry for the address. 567 * 568 * If the address is in kernel space (>= TASK_SIZE), then we are probably 569 * faulting in the vmalloc() area. 570 * 571 * If the init_task's first level page tables contains the relevant entry, we 572 * copy the it to this task. If not, we send the process a signal, fixup the 573 * exception, or oops the kernel. 574 * 575 * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt 576 * or a critical region, and should only copy the information from the master 577 * page table, nothing more. 578 */ 579 static int __kprobes do_translation_fault(unsigned long addr, 580 unsigned int esr, 581 struct pt_regs *regs) 582 { 583 if (addr < TASK_SIZE) 584 return do_page_fault(addr, esr, regs); 585 586 do_bad_area(addr, esr, regs); 587 return 0; 588 } 589 590 static int do_alignment_fault(unsigned long addr, unsigned int esr, 591 struct pt_regs *regs) 592 { 593 do_bad_area(addr, esr, regs); 594 return 0; 595 } 596 597 /* 598 * This abort handler always returns "fault". 599 */ 600 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) 601 { 602 return 1; 603 } 604 605 /* 606 * This abort handler deals with Synchronous External Abort. 607 * It calls notifiers, and then returns "fault". 608 */ 609 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) 610 { 611 struct siginfo info; 612 const struct fault_info *inf; 613 int ret = 0; 614 615 inf = esr_to_fault_info(esr); 616 pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n", 617 inf->name, esr, addr); 618 619 /* 620 * Synchronous aborts may interrupt code which had interrupts masked. 621 * Before calling out into the wider kernel tell the interested 622 * subsystems. 623 */ 624 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) { 625 if (interrupts_enabled(regs)) 626 nmi_enter(); 627 628 ret = ghes_notify_sea(); 629 630 if (interrupts_enabled(regs)) 631 nmi_exit(); 632 } 633 634 info.si_signo = SIGBUS; 635 info.si_errno = 0; 636 info.si_code = 0; 637 if (esr & ESR_ELx_FnV) 638 info.si_addr = NULL; 639 else 640 info.si_addr = (void __user *)addr; 641 arm64_notify_die("", regs, &info, esr); 642 643 return ret; 644 } 645 646 static const struct fault_info fault_info[] = { 647 { do_bad, SIGBUS, 0, "ttbr address size fault" }, 648 { do_bad, SIGBUS, 0, "level 1 address size fault" }, 649 { do_bad, SIGBUS, 0, "level 2 address size fault" }, 650 { do_bad, SIGBUS, 0, "level 3 address size fault" }, 651 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 652 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 653 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 654 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 655 { do_bad, SIGBUS, 0, "unknown 8" }, 656 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 657 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 658 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 659 { do_bad, SIGBUS, 0, "unknown 12" }, 660 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 661 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 662 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 663 { do_sea, SIGBUS, 0, "synchronous external abort" }, 664 { do_bad, SIGBUS, 0, "unknown 17" }, 665 { do_bad, SIGBUS, 0, "unknown 18" }, 666 { do_bad, SIGBUS, 0, "unknown 19" }, 667 { do_sea, SIGBUS, 0, "level 0 (translation table walk)" }, 668 { do_sea, SIGBUS, 0, "level 1 (translation table walk)" }, 669 { do_sea, SIGBUS, 0, "level 2 (translation table walk)" }, 670 { do_sea, SIGBUS, 0, "level 3 (translation table walk)" }, 671 { do_sea, SIGBUS, 0, "synchronous parity or ECC error" }, 672 { do_bad, SIGBUS, 0, "unknown 25" }, 673 { do_bad, SIGBUS, 0, "unknown 26" }, 674 { do_bad, SIGBUS, 0, "unknown 27" }, 675 { do_sea, SIGBUS, 0, "level 0 synchronous parity error (translation table walk)" }, 676 { do_sea, SIGBUS, 0, "level 1 synchronous parity error (translation table walk)" }, 677 { do_sea, SIGBUS, 0, "level 2 synchronous parity error (translation table walk)" }, 678 { do_sea, SIGBUS, 0, "level 3 synchronous parity error (translation table walk)" }, 679 { do_bad, SIGBUS, 0, "unknown 32" }, 680 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 681 { do_bad, SIGBUS, 0, "unknown 34" }, 682 { do_bad, SIGBUS, 0, "unknown 35" }, 683 { do_bad, SIGBUS, 0, "unknown 36" }, 684 { do_bad, SIGBUS, 0, "unknown 37" }, 685 { do_bad, SIGBUS, 0, "unknown 38" }, 686 { do_bad, SIGBUS, 0, "unknown 39" }, 687 { do_bad, SIGBUS, 0, "unknown 40" }, 688 { do_bad, SIGBUS, 0, "unknown 41" }, 689 { do_bad, SIGBUS, 0, "unknown 42" }, 690 { do_bad, SIGBUS, 0, "unknown 43" }, 691 { do_bad, SIGBUS, 0, "unknown 44" }, 692 { do_bad, SIGBUS, 0, "unknown 45" }, 693 { do_bad, SIGBUS, 0, "unknown 46" }, 694 { do_bad, SIGBUS, 0, "unknown 47" }, 695 { do_bad, SIGBUS, 0, "TLB conflict abort" }, 696 { do_bad, SIGBUS, 0, "unknown 49" }, 697 { do_bad, SIGBUS, 0, "unknown 50" }, 698 { do_bad, SIGBUS, 0, "unknown 51" }, 699 { do_bad, SIGBUS, 0, "implementation fault (lockdown abort)" }, 700 { do_bad, SIGBUS, 0, "implementation fault (unsupported exclusive)" }, 701 { do_bad, SIGBUS, 0, "unknown 54" }, 702 { do_bad, SIGBUS, 0, "unknown 55" }, 703 { do_bad, SIGBUS, 0, "unknown 56" }, 704 { do_bad, SIGBUS, 0, "unknown 57" }, 705 { do_bad, SIGBUS, 0, "unknown 58" }, 706 { do_bad, SIGBUS, 0, "unknown 59" }, 707 { do_bad, SIGBUS, 0, "unknown 60" }, 708 { do_bad, SIGBUS, 0, "section domain fault" }, 709 { do_bad, SIGBUS, 0, "page domain fault" }, 710 { do_bad, SIGBUS, 0, "unknown 63" }, 711 }; 712 713 /* 714 * Handle Synchronous External Aborts that occur in a guest kernel. 715 * 716 * The return value will be zero if the SEA was successfully handled 717 * and non-zero if there was an error processing the error or there was 718 * no error to process. 719 */ 720 int handle_guest_sea(phys_addr_t addr, unsigned int esr) 721 { 722 int ret = -ENOENT; 723 724 if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) 725 ret = ghes_notify_sea(); 726 727 return ret; 728 } 729 730 /* 731 * Dispatch a data abort to the relevant handler. 732 */ 733 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr, 734 struct pt_regs *regs) 735 { 736 const struct fault_info *inf = esr_to_fault_info(esr); 737 struct siginfo info; 738 739 if (!inf->fn(addr, esr, regs)) 740 return; 741 742 pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n", 743 inf->name, esr, addr); 744 745 mem_abort_decode(esr); 746 747 info.si_signo = inf->sig; 748 info.si_errno = 0; 749 info.si_code = inf->code; 750 info.si_addr = (void __user *)addr; 751 arm64_notify_die("", regs, &info, esr); 752 } 753 754 /* 755 * Handle stack alignment exceptions. 756 */ 757 asmlinkage void __exception do_sp_pc_abort(unsigned long addr, 758 unsigned int esr, 759 struct pt_regs *regs) 760 { 761 struct siginfo info; 762 struct task_struct *tsk = current; 763 764 if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS)) 765 pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n", 766 tsk->comm, task_pid_nr(tsk), 767 esr_get_class_string(esr), (void *)regs->pc, 768 (void *)regs->sp); 769 770 info.si_signo = SIGBUS; 771 info.si_errno = 0; 772 info.si_code = BUS_ADRALN; 773 info.si_addr = (void __user *)addr; 774 arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr); 775 } 776 777 int __init early_brk64(unsigned long addr, unsigned int esr, 778 struct pt_regs *regs); 779 780 /* 781 * __refdata because early_brk64 is __init, but the reference to it is 782 * clobbered at arch_initcall time. 783 * See traps.c and debug-monitors.c:debug_traps_init(). 784 */ 785 static struct fault_info __refdata debug_fault_info[] = { 786 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 787 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 788 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 789 { do_bad, SIGBUS, 0, "unknown 3" }, 790 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 791 { do_bad, SIGTRAP, 0, "aarch32 vector catch" }, 792 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 793 { do_bad, SIGBUS, 0, "unknown 7" }, 794 }; 795 796 void __init hook_debug_fault_code(int nr, 797 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 798 int sig, int code, const char *name) 799 { 800 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 801 802 debug_fault_info[nr].fn = fn; 803 debug_fault_info[nr].sig = sig; 804 debug_fault_info[nr].code = code; 805 debug_fault_info[nr].name = name; 806 } 807 808 asmlinkage int __exception do_debug_exception(unsigned long addr, 809 unsigned int esr, 810 struct pt_regs *regs) 811 { 812 const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr); 813 struct siginfo info; 814 int rv; 815 816 /* 817 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were 818 * already disabled to preserve the last enabled/disabled addresses. 819 */ 820 if (interrupts_enabled(regs)) 821 trace_hardirqs_off(); 822 823 if (!inf->fn(addr, esr, regs)) { 824 rv = 1; 825 } else { 826 pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n", 827 inf->name, esr, addr); 828 829 info.si_signo = inf->sig; 830 info.si_errno = 0; 831 info.si_code = inf->code; 832 info.si_addr = (void __user *)addr; 833 arm64_notify_die("", regs, &info, 0); 834 rv = 0; 835 } 836 837 if (interrupts_enabled(regs)) 838 trace_hardirqs_on(); 839 840 return rv; 841 } 842 NOKPROBE_SYMBOL(do_debug_exception); 843 844 #ifdef CONFIG_ARM64_PAN 845 int cpu_enable_pan(void *__unused) 846 { 847 /* 848 * We modify PSTATE. This won't work from irq context as the PSTATE 849 * is discarded once we return from the exception. 850 */ 851 WARN_ON_ONCE(in_interrupt()); 852 853 config_sctlr_el1(SCTLR_EL1_SPAN, 0); 854 asm(SET_PSTATE_PAN(1)); 855 return 0; 856 } 857 #endif /* CONFIG_ARM64_PAN */ 858