1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Based on arch/arm/mm/fault.c 4 * 5 * Copyright (C) 1995 Linus Torvalds 6 * Copyright (C) 1995-2004 Russell King 7 * Copyright (C) 2012 ARM Ltd. 8 */ 9 10 #include <linux/acpi.h> 11 #include <linux/bitfield.h> 12 #include <linux/extable.h> 13 #include <linux/signal.h> 14 #include <linux/mm.h> 15 #include <linux/hardirq.h> 16 #include <linux/init.h> 17 #include <linux/kprobes.h> 18 #include <linux/uaccess.h> 19 #include <linux/page-flags.h> 20 #include <linux/sched/signal.h> 21 #include <linux/sched/debug.h> 22 #include <linux/highmem.h> 23 #include <linux/perf_event.h> 24 #include <linux/preempt.h> 25 #include <linux/hugetlb.h> 26 27 #include <asm/acpi.h> 28 #include <asm/bug.h> 29 #include <asm/cmpxchg.h> 30 #include <asm/cpufeature.h> 31 #include <asm/exception.h> 32 #include <asm/daifflags.h> 33 #include <asm/debug-monitors.h> 34 #include <asm/esr.h> 35 #include <asm/kprobes.h> 36 #include <asm/processor.h> 37 #include <asm/sysreg.h> 38 #include <asm/system_misc.h> 39 #include <asm/pgtable.h> 40 #include <asm/tlbflush.h> 41 #include <asm/traps.h> 42 43 struct fault_info { 44 int (*fn)(unsigned long addr, unsigned int esr, 45 struct pt_regs *regs); 46 int sig; 47 int code; 48 const char *name; 49 }; 50 51 static const struct fault_info fault_info[]; 52 static struct fault_info debug_fault_info[]; 53 54 static inline const struct fault_info *esr_to_fault_info(unsigned int esr) 55 { 56 return fault_info + (esr & ESR_ELx_FSC); 57 } 58 59 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr) 60 { 61 return debug_fault_info + DBG_ESR_EVT(esr); 62 } 63 64 static void data_abort_decode(unsigned int esr) 65 { 66 pr_alert("Data abort info:\n"); 67 68 if (esr & ESR_ELx_ISV) { 69 pr_alert(" Access size = %u byte(s)\n", 70 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT)); 71 pr_alert(" SSE = %lu, SRT = %lu\n", 72 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT, 73 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT); 74 pr_alert(" SF = %lu, AR = %lu\n", 75 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT, 76 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT); 77 } else { 78 pr_alert(" ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK); 79 } 80 81 pr_alert(" CM = %lu, WnR = %lu\n", 82 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT, 83 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT); 84 } 85 86 static void mem_abort_decode(unsigned int esr) 87 { 88 pr_alert("Mem abort info:\n"); 89 90 pr_alert(" ESR = 0x%08x\n", esr); 91 pr_alert(" EC = 0x%02lx: %s, IL = %u bits\n", 92 ESR_ELx_EC(esr), esr_get_class_string(esr), 93 (esr & ESR_ELx_IL) ? 32 : 16); 94 pr_alert(" SET = %lu, FnV = %lu\n", 95 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT, 96 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT); 97 pr_alert(" EA = %lu, S1PTW = %lu\n", 98 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT, 99 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT); 100 101 if (esr_is_data_abort(esr)) 102 data_abort_decode(esr); 103 } 104 105 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm) 106 { 107 /* Either init_pg_dir or swapper_pg_dir */ 108 if (mm == &init_mm) 109 return __pa_symbol(mm->pgd); 110 111 return (unsigned long)virt_to_phys(mm->pgd); 112 } 113 114 /* 115 * Dump out the page tables associated with 'addr' in the currently active mm. 116 */ 117 static void show_pte(unsigned long addr) 118 { 119 struct mm_struct *mm; 120 pgd_t *pgdp; 121 pgd_t pgd; 122 123 if (is_ttbr0_addr(addr)) { 124 /* TTBR0 */ 125 mm = current->active_mm; 126 if (mm == &init_mm) { 127 pr_alert("[%016lx] user address but active_mm is swapper\n", 128 addr); 129 return; 130 } 131 } else if (is_ttbr1_addr(addr)) { 132 /* TTBR1 */ 133 mm = &init_mm; 134 } else { 135 pr_alert("[%016lx] address between user and kernel address ranges\n", 136 addr); 137 return; 138 } 139 140 pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n", 141 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K, 142 vabits_actual, mm_to_pgd_phys(mm)); 143 pgdp = pgd_offset(mm, addr); 144 pgd = READ_ONCE(*pgdp); 145 pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd)); 146 147 do { 148 p4d_t *p4dp, p4d; 149 pud_t *pudp, pud; 150 pmd_t *pmdp, pmd; 151 pte_t *ptep, pte; 152 153 if (pgd_none(pgd) || pgd_bad(pgd)) 154 break; 155 156 p4dp = p4d_offset(pgdp, addr); 157 p4d = READ_ONCE(*p4dp); 158 pr_cont(", p4d=%016llx", p4d_val(p4d)); 159 if (p4d_none(p4d) || p4d_bad(p4d)) 160 break; 161 162 pudp = pud_offset(p4dp, addr); 163 pud = READ_ONCE(*pudp); 164 pr_cont(", pud=%016llx", pud_val(pud)); 165 if (pud_none(pud) || pud_bad(pud)) 166 break; 167 168 pmdp = pmd_offset(pudp, addr); 169 pmd = READ_ONCE(*pmdp); 170 pr_cont(", pmd=%016llx", pmd_val(pmd)); 171 if (pmd_none(pmd) || pmd_bad(pmd)) 172 break; 173 174 ptep = pte_offset_map(pmdp, addr); 175 pte = READ_ONCE(*ptep); 176 pr_cont(", pte=%016llx", pte_val(pte)); 177 pte_unmap(ptep); 178 } while(0); 179 180 pr_cont("\n"); 181 } 182 183 /* 184 * This function sets the access flags (dirty, accessed), as well as write 185 * permission, and only to a more permissive setting. 186 * 187 * It needs to cope with hardware update of the accessed/dirty state by other 188 * agents in the system and can safely skip the __sync_icache_dcache() call as, 189 * like set_pte_at(), the PTE is never changed from no-exec to exec here. 190 * 191 * Returns whether or not the PTE actually changed. 192 */ 193 int ptep_set_access_flags(struct vm_area_struct *vma, 194 unsigned long address, pte_t *ptep, 195 pte_t entry, int dirty) 196 { 197 pteval_t old_pteval, pteval; 198 pte_t pte = READ_ONCE(*ptep); 199 200 if (pte_same(pte, entry)) 201 return 0; 202 203 /* only preserve the access flags and write permission */ 204 pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY; 205 206 /* 207 * Setting the flags must be done atomically to avoid racing with the 208 * hardware update of the access/dirty state. The PTE_RDONLY bit must 209 * be set to the most permissive (lowest value) of *ptep and entry 210 * (calculated as: a & b == ~(~a | ~b)). 211 */ 212 pte_val(entry) ^= PTE_RDONLY; 213 pteval = pte_val(pte); 214 do { 215 old_pteval = pteval; 216 pteval ^= PTE_RDONLY; 217 pteval |= pte_val(entry); 218 pteval ^= PTE_RDONLY; 219 pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval); 220 } while (pteval != old_pteval); 221 222 flush_tlb_fix_spurious_fault(vma, address); 223 return 1; 224 } 225 226 static bool is_el1_instruction_abort(unsigned int esr) 227 { 228 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR; 229 } 230 231 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr, 232 struct pt_regs *regs) 233 { 234 unsigned int ec = ESR_ELx_EC(esr); 235 unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE; 236 237 if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR) 238 return false; 239 240 if (fsc_type == ESR_ELx_FSC_PERM) 241 return true; 242 243 if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan()) 244 return fsc_type == ESR_ELx_FSC_FAULT && 245 (regs->pstate & PSR_PAN_BIT); 246 247 return false; 248 } 249 250 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr, 251 unsigned int esr, 252 struct pt_regs *regs) 253 { 254 unsigned long flags; 255 u64 par, dfsc; 256 257 if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR || 258 (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT) 259 return false; 260 261 local_irq_save(flags); 262 asm volatile("at s1e1r, %0" :: "r" (addr)); 263 isb(); 264 par = read_sysreg(par_el1); 265 local_irq_restore(flags); 266 267 /* 268 * If we now have a valid translation, treat the translation fault as 269 * spurious. 270 */ 271 if (!(par & SYS_PAR_EL1_F)) 272 return true; 273 274 /* 275 * If we got a different type of fault from the AT instruction, 276 * treat the translation fault as spurious. 277 */ 278 dfsc = FIELD_GET(SYS_PAR_EL1_FST, par); 279 return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT; 280 } 281 282 static void die_kernel_fault(const char *msg, unsigned long addr, 283 unsigned int esr, struct pt_regs *regs) 284 { 285 bust_spinlocks(1); 286 287 pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg, 288 addr); 289 290 mem_abort_decode(esr); 291 292 show_pte(addr); 293 die("Oops", regs, esr); 294 bust_spinlocks(0); 295 do_exit(SIGKILL); 296 } 297 298 static void __do_kernel_fault(unsigned long addr, unsigned int esr, 299 struct pt_regs *regs) 300 { 301 const char *msg; 302 303 /* 304 * Are we prepared to handle this kernel fault? 305 * We are almost certainly not prepared to handle instruction faults. 306 */ 307 if (!is_el1_instruction_abort(esr) && fixup_exception(regs)) 308 return; 309 310 if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs), 311 "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr)) 312 return; 313 314 if (is_el1_permission_fault(addr, esr, regs)) { 315 if (esr & ESR_ELx_WNR) 316 msg = "write to read-only memory"; 317 else if (is_el1_instruction_abort(esr)) 318 msg = "execute from non-executable memory"; 319 else 320 msg = "read from unreadable memory"; 321 } else if (addr < PAGE_SIZE) { 322 msg = "NULL pointer dereference"; 323 } else { 324 msg = "paging request"; 325 } 326 327 die_kernel_fault(msg, addr, esr, regs); 328 } 329 330 static void set_thread_esr(unsigned long address, unsigned int esr) 331 { 332 current->thread.fault_address = address; 333 334 /* 335 * If the faulting address is in the kernel, we must sanitize the ESR. 336 * From userspace's point of view, kernel-only mappings don't exist 337 * at all, so we report them as level 0 translation faults. 338 * (This is not quite the way that "no mapping there at all" behaves: 339 * an alignment fault not caused by the memory type would take 340 * precedence over translation fault for a real access to empty 341 * space. Unfortunately we can't easily distinguish "alignment fault 342 * not caused by memory type" from "alignment fault caused by memory 343 * type", so we ignore this wrinkle and just return the translation 344 * fault.) 345 */ 346 if (!is_ttbr0_addr(current->thread.fault_address)) { 347 switch (ESR_ELx_EC(esr)) { 348 case ESR_ELx_EC_DABT_LOW: 349 /* 350 * These bits provide only information about the 351 * faulting instruction, which userspace knows already. 352 * We explicitly clear bits which are architecturally 353 * RES0 in case they are given meanings in future. 354 * We always report the ESR as if the fault was taken 355 * to EL1 and so ISV and the bits in ISS[23:14] are 356 * clear. (In fact it always will be a fault to EL1.) 357 */ 358 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL | 359 ESR_ELx_CM | ESR_ELx_WNR; 360 esr |= ESR_ELx_FSC_FAULT; 361 break; 362 case ESR_ELx_EC_IABT_LOW: 363 /* 364 * Claim a level 0 translation fault. 365 * All other bits are architecturally RES0 for faults 366 * reported with that DFSC value, so we clear them. 367 */ 368 esr &= ESR_ELx_EC_MASK | ESR_ELx_IL; 369 esr |= ESR_ELx_FSC_FAULT; 370 break; 371 default: 372 /* 373 * This should never happen (entry.S only brings us 374 * into this code for insn and data aborts from a lower 375 * exception level). Fail safe by not providing an ESR 376 * context record at all. 377 */ 378 WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr); 379 esr = 0; 380 break; 381 } 382 } 383 384 current->thread.fault_code = esr; 385 } 386 387 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs) 388 { 389 /* 390 * If we are in kernel mode at this point, we have no context to 391 * handle this fault with. 392 */ 393 if (user_mode(regs)) { 394 const struct fault_info *inf = esr_to_fault_info(esr); 395 396 set_thread_esr(addr, esr); 397 arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr, 398 inf->name); 399 } else { 400 __do_kernel_fault(addr, esr, regs); 401 } 402 } 403 404 #define VM_FAULT_BADMAP 0x010000 405 #define VM_FAULT_BADACCESS 0x020000 406 407 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr, 408 unsigned int mm_flags, unsigned long vm_flags) 409 { 410 struct vm_area_struct *vma = find_vma(mm, addr); 411 412 if (unlikely(!vma)) 413 return VM_FAULT_BADMAP; 414 415 /* 416 * Ok, we have a good vm_area for this memory access, so we can handle 417 * it. 418 */ 419 if (unlikely(vma->vm_start > addr)) { 420 if (!(vma->vm_flags & VM_GROWSDOWN)) 421 return VM_FAULT_BADMAP; 422 if (expand_stack(vma, addr)) 423 return VM_FAULT_BADMAP; 424 } 425 426 /* 427 * Check that the permissions on the VMA allow for the fault which 428 * occurred. 429 */ 430 if (!(vma->vm_flags & vm_flags)) 431 return VM_FAULT_BADACCESS; 432 return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags); 433 } 434 435 static bool is_el0_instruction_abort(unsigned int esr) 436 { 437 return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW; 438 } 439 440 /* 441 * Note: not valid for EL1 DC IVAC, but we never use that such that it 442 * should fault. EL0 cannot issue DC IVAC (undef). 443 */ 444 static bool is_write_abort(unsigned int esr) 445 { 446 return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM); 447 } 448 449 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr, 450 struct pt_regs *regs) 451 { 452 const struct fault_info *inf; 453 struct mm_struct *mm = current->mm; 454 vm_fault_t fault, major = 0; 455 unsigned long vm_flags = VM_ACCESS_FLAGS; 456 unsigned int mm_flags = FAULT_FLAG_DEFAULT; 457 458 if (kprobe_page_fault(regs, esr)) 459 return 0; 460 461 /* 462 * If we're in an interrupt or have no user context, we must not take 463 * the fault. 464 */ 465 if (faulthandler_disabled() || !mm) 466 goto no_context; 467 468 if (user_mode(regs)) 469 mm_flags |= FAULT_FLAG_USER; 470 471 if (is_el0_instruction_abort(esr)) { 472 vm_flags = VM_EXEC; 473 mm_flags |= FAULT_FLAG_INSTRUCTION; 474 } else if (is_write_abort(esr)) { 475 vm_flags = VM_WRITE; 476 mm_flags |= FAULT_FLAG_WRITE; 477 } 478 479 if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) { 480 /* regs->orig_addr_limit may be 0 if we entered from EL0 */ 481 if (regs->orig_addr_limit == KERNEL_DS) 482 die_kernel_fault("access to user memory with fs=KERNEL_DS", 483 addr, esr, regs); 484 485 if (is_el1_instruction_abort(esr)) 486 die_kernel_fault("execution of user memory", 487 addr, esr, regs); 488 489 if (!search_exception_tables(regs->pc)) 490 die_kernel_fault("access to user memory outside uaccess routines", 491 addr, esr, regs); 492 } 493 494 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr); 495 496 /* 497 * As per x86, we may deadlock here. However, since the kernel only 498 * validly references user space from well defined areas of the code, 499 * we can bug out early if this is from code which shouldn't. 500 */ 501 if (!down_read_trylock(&mm->mmap_sem)) { 502 if (!user_mode(regs) && !search_exception_tables(regs->pc)) 503 goto no_context; 504 retry: 505 down_read(&mm->mmap_sem); 506 } else { 507 /* 508 * The above down_read_trylock() might have succeeded in which 509 * case, we'll have missed the might_sleep() from down_read(). 510 */ 511 might_sleep(); 512 #ifdef CONFIG_DEBUG_VM 513 if (!user_mode(regs) && !search_exception_tables(regs->pc)) { 514 up_read(&mm->mmap_sem); 515 goto no_context; 516 } 517 #endif 518 } 519 520 fault = __do_page_fault(mm, addr, mm_flags, vm_flags); 521 major |= fault & VM_FAULT_MAJOR; 522 523 /* Quick path to respond to signals */ 524 if (fault_signal_pending(fault, regs)) { 525 if (!user_mode(regs)) 526 goto no_context; 527 return 0; 528 } 529 530 if (fault & VM_FAULT_RETRY) { 531 if (mm_flags & FAULT_FLAG_ALLOW_RETRY) { 532 mm_flags |= FAULT_FLAG_TRIED; 533 goto retry; 534 } 535 } 536 up_read(&mm->mmap_sem); 537 538 /* 539 * Handle the "normal" (no error) case first. 540 */ 541 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | 542 VM_FAULT_BADACCESS)))) { 543 /* 544 * Major/minor page fault accounting is only done 545 * once. If we go through a retry, it is extremely 546 * likely that the page will be found in page cache at 547 * that point. 548 */ 549 if (major) { 550 current->maj_flt++; 551 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, 552 addr); 553 } else { 554 current->min_flt++; 555 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, 556 addr); 557 } 558 559 return 0; 560 } 561 562 /* 563 * If we are in kernel mode at this point, we have no context to 564 * handle this fault with. 565 */ 566 if (!user_mode(regs)) 567 goto no_context; 568 569 if (fault & VM_FAULT_OOM) { 570 /* 571 * We ran out of memory, call the OOM killer, and return to 572 * userspace (which will retry the fault, or kill us if we got 573 * oom-killed). 574 */ 575 pagefault_out_of_memory(); 576 return 0; 577 } 578 579 inf = esr_to_fault_info(esr); 580 set_thread_esr(addr, esr); 581 if (fault & VM_FAULT_SIGBUS) { 582 /* 583 * We had some memory, but were unable to successfully fix up 584 * this page fault. 585 */ 586 arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr, 587 inf->name); 588 } else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) { 589 unsigned int lsb; 590 591 lsb = PAGE_SHIFT; 592 if (fault & VM_FAULT_HWPOISON_LARGE) 593 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault)); 594 595 arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb, 596 inf->name); 597 } else { 598 /* 599 * Something tried to access memory that isn't in our memory 600 * map. 601 */ 602 arm64_force_sig_fault(SIGSEGV, 603 fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR, 604 (void __user *)addr, 605 inf->name); 606 } 607 608 return 0; 609 610 no_context: 611 __do_kernel_fault(addr, esr, regs); 612 return 0; 613 } 614 615 static int __kprobes do_translation_fault(unsigned long addr, 616 unsigned int esr, 617 struct pt_regs *regs) 618 { 619 if (is_ttbr0_addr(addr)) 620 return do_page_fault(addr, esr, regs); 621 622 do_bad_area(addr, esr, regs); 623 return 0; 624 } 625 626 static int do_alignment_fault(unsigned long addr, unsigned int esr, 627 struct pt_regs *regs) 628 { 629 do_bad_area(addr, esr, regs); 630 return 0; 631 } 632 633 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs) 634 { 635 return 1; /* "fault" */ 636 } 637 638 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs) 639 { 640 const struct fault_info *inf; 641 void __user *siaddr; 642 643 inf = esr_to_fault_info(esr); 644 645 if (user_mode(regs) && apei_claim_sea(regs) == 0) { 646 /* 647 * APEI claimed this as a firmware-first notification. 648 * Some processing deferred to task_work before ret_to_user(). 649 */ 650 return 0; 651 } 652 653 if (esr & ESR_ELx_FnV) 654 siaddr = NULL; 655 else 656 siaddr = (void __user *)addr; 657 arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr); 658 659 return 0; 660 } 661 662 static const struct fault_info fault_info[] = { 663 { do_bad, SIGKILL, SI_KERNEL, "ttbr address size fault" }, 664 { do_bad, SIGKILL, SI_KERNEL, "level 1 address size fault" }, 665 { do_bad, SIGKILL, SI_KERNEL, "level 2 address size fault" }, 666 { do_bad, SIGKILL, SI_KERNEL, "level 3 address size fault" }, 667 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 0 translation fault" }, 668 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 1 translation fault" }, 669 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 2 translation fault" }, 670 { do_translation_fault, SIGSEGV, SEGV_MAPERR, "level 3 translation fault" }, 671 { do_bad, SIGKILL, SI_KERNEL, "unknown 8" }, 672 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 access flag fault" }, 673 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 access flag fault" }, 674 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 access flag fault" }, 675 { do_bad, SIGKILL, SI_KERNEL, "unknown 12" }, 676 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 1 permission fault" }, 677 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 2 permission fault" }, 678 { do_page_fault, SIGSEGV, SEGV_ACCERR, "level 3 permission fault" }, 679 { do_sea, SIGBUS, BUS_OBJERR, "synchronous external abort" }, 680 { do_bad, SIGKILL, SI_KERNEL, "unknown 17" }, 681 { do_bad, SIGKILL, SI_KERNEL, "unknown 18" }, 682 { do_bad, SIGKILL, SI_KERNEL, "unknown 19" }, 683 { do_sea, SIGKILL, SI_KERNEL, "level 0 (translation table walk)" }, 684 { do_sea, SIGKILL, SI_KERNEL, "level 1 (translation table walk)" }, 685 { do_sea, SIGKILL, SI_KERNEL, "level 2 (translation table walk)" }, 686 { do_sea, SIGKILL, SI_KERNEL, "level 3 (translation table walk)" }, 687 { do_sea, SIGBUS, BUS_OBJERR, "synchronous parity or ECC error" }, // Reserved when RAS is implemented 688 { do_bad, SIGKILL, SI_KERNEL, "unknown 25" }, 689 { do_bad, SIGKILL, SI_KERNEL, "unknown 26" }, 690 { do_bad, SIGKILL, SI_KERNEL, "unknown 27" }, 691 { do_sea, SIGKILL, SI_KERNEL, "level 0 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 692 { do_sea, SIGKILL, SI_KERNEL, "level 1 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 693 { do_sea, SIGKILL, SI_KERNEL, "level 2 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 694 { do_sea, SIGKILL, SI_KERNEL, "level 3 synchronous parity error (translation table walk)" }, // Reserved when RAS is implemented 695 { do_bad, SIGKILL, SI_KERNEL, "unknown 32" }, 696 { do_alignment_fault, SIGBUS, BUS_ADRALN, "alignment fault" }, 697 { do_bad, SIGKILL, SI_KERNEL, "unknown 34" }, 698 { do_bad, SIGKILL, SI_KERNEL, "unknown 35" }, 699 { do_bad, SIGKILL, SI_KERNEL, "unknown 36" }, 700 { do_bad, SIGKILL, SI_KERNEL, "unknown 37" }, 701 { do_bad, SIGKILL, SI_KERNEL, "unknown 38" }, 702 { do_bad, SIGKILL, SI_KERNEL, "unknown 39" }, 703 { do_bad, SIGKILL, SI_KERNEL, "unknown 40" }, 704 { do_bad, SIGKILL, SI_KERNEL, "unknown 41" }, 705 { do_bad, SIGKILL, SI_KERNEL, "unknown 42" }, 706 { do_bad, SIGKILL, SI_KERNEL, "unknown 43" }, 707 { do_bad, SIGKILL, SI_KERNEL, "unknown 44" }, 708 { do_bad, SIGKILL, SI_KERNEL, "unknown 45" }, 709 { do_bad, SIGKILL, SI_KERNEL, "unknown 46" }, 710 { do_bad, SIGKILL, SI_KERNEL, "unknown 47" }, 711 { do_bad, SIGKILL, SI_KERNEL, "TLB conflict abort" }, 712 { do_bad, SIGKILL, SI_KERNEL, "Unsupported atomic hardware update fault" }, 713 { do_bad, SIGKILL, SI_KERNEL, "unknown 50" }, 714 { do_bad, SIGKILL, SI_KERNEL, "unknown 51" }, 715 { do_bad, SIGKILL, SI_KERNEL, "implementation fault (lockdown abort)" }, 716 { do_bad, SIGBUS, BUS_OBJERR, "implementation fault (unsupported exclusive)" }, 717 { do_bad, SIGKILL, SI_KERNEL, "unknown 54" }, 718 { do_bad, SIGKILL, SI_KERNEL, "unknown 55" }, 719 { do_bad, SIGKILL, SI_KERNEL, "unknown 56" }, 720 { do_bad, SIGKILL, SI_KERNEL, "unknown 57" }, 721 { do_bad, SIGKILL, SI_KERNEL, "unknown 58" }, 722 { do_bad, SIGKILL, SI_KERNEL, "unknown 59" }, 723 { do_bad, SIGKILL, SI_KERNEL, "unknown 60" }, 724 { do_bad, SIGKILL, SI_KERNEL, "section domain fault" }, 725 { do_bad, SIGKILL, SI_KERNEL, "page domain fault" }, 726 { do_bad, SIGKILL, SI_KERNEL, "unknown 63" }, 727 }; 728 729 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) 730 { 731 const struct fault_info *inf = esr_to_fault_info(esr); 732 733 if (!inf->fn(addr, esr, regs)) 734 return; 735 736 if (!user_mode(regs)) { 737 pr_alert("Unhandled fault at 0x%016lx\n", addr); 738 mem_abort_decode(esr); 739 show_pte(addr); 740 } 741 742 arm64_notify_die(inf->name, regs, 743 inf->sig, inf->code, (void __user *)addr, esr); 744 } 745 NOKPROBE_SYMBOL(do_mem_abort); 746 747 void do_el0_irq_bp_hardening(void) 748 { 749 /* PC has already been checked in entry.S */ 750 arm64_apply_bp_hardening(); 751 } 752 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening); 753 754 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs) 755 { 756 arm64_notify_die("SP/PC alignment exception", regs, 757 SIGBUS, BUS_ADRALN, (void __user *)addr, esr); 758 } 759 NOKPROBE_SYMBOL(do_sp_pc_abort); 760 761 int __init early_brk64(unsigned long addr, unsigned int esr, 762 struct pt_regs *regs); 763 764 /* 765 * __refdata because early_brk64 is __init, but the reference to it is 766 * clobbered at arch_initcall time. 767 * See traps.c and debug-monitors.c:debug_traps_init(). 768 */ 769 static struct fault_info __refdata debug_fault_info[] = { 770 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware breakpoint" }, 771 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware single-step" }, 772 { do_bad, SIGTRAP, TRAP_HWBKPT, "hardware watchpoint" }, 773 { do_bad, SIGKILL, SI_KERNEL, "unknown 3" }, 774 { do_bad, SIGTRAP, TRAP_BRKPT, "aarch32 BKPT" }, 775 { do_bad, SIGKILL, SI_KERNEL, "aarch32 vector catch" }, 776 { early_brk64, SIGTRAP, TRAP_BRKPT, "aarch64 BRK" }, 777 { do_bad, SIGKILL, SI_KERNEL, "unknown 7" }, 778 }; 779 780 void __init hook_debug_fault_code(int nr, 781 int (*fn)(unsigned long, unsigned int, struct pt_regs *), 782 int sig, int code, const char *name) 783 { 784 BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info)); 785 786 debug_fault_info[nr].fn = fn; 787 debug_fault_info[nr].sig = sig; 788 debug_fault_info[nr].code = code; 789 debug_fault_info[nr].name = name; 790 } 791 792 /* 793 * In debug exception context, we explicitly disable preemption despite 794 * having interrupts disabled. 795 * This serves two purposes: it makes it much less likely that we would 796 * accidentally schedule in exception context and it will force a warning 797 * if we somehow manage to schedule by accident. 798 */ 799 static void debug_exception_enter(struct pt_regs *regs) 800 { 801 /* 802 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were 803 * already disabled to preserve the last enabled/disabled addresses. 804 */ 805 if (interrupts_enabled(regs)) 806 trace_hardirqs_off(); 807 808 if (user_mode(regs)) { 809 RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU"); 810 } else { 811 /* 812 * We might have interrupted pretty much anything. In 813 * fact, if we're a debug exception, we can even interrupt 814 * NMI processing. We don't want this code makes in_nmi() 815 * to return true, but we need to notify RCU. 816 */ 817 rcu_nmi_enter(); 818 } 819 820 preempt_disable(); 821 822 /* This code is a bit fragile. Test it. */ 823 RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work"); 824 } 825 NOKPROBE_SYMBOL(debug_exception_enter); 826 827 static void debug_exception_exit(struct pt_regs *regs) 828 { 829 preempt_enable_no_resched(); 830 831 if (!user_mode(regs)) 832 rcu_nmi_exit(); 833 834 if (interrupts_enabled(regs)) 835 trace_hardirqs_on(); 836 } 837 NOKPROBE_SYMBOL(debug_exception_exit); 838 839 #ifdef CONFIG_ARM64_ERRATUM_1463225 840 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa); 841 842 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 843 { 844 if (user_mode(regs)) 845 return 0; 846 847 if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa)) 848 return 0; 849 850 /* 851 * We've taken a dummy step exception from the kernel to ensure 852 * that interrupts are re-enabled on the syscall path. Return back 853 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions 854 * masked so that we can safely restore the mdscr and get on with 855 * handling the syscall. 856 */ 857 regs->pstate |= PSR_D_BIT; 858 return 1; 859 } 860 #else 861 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs) 862 { 863 return 0; 864 } 865 #endif /* CONFIG_ARM64_ERRATUM_1463225 */ 866 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler); 867 868 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr, 869 struct pt_regs *regs) 870 { 871 const struct fault_info *inf = esr_to_debug_fault_info(esr); 872 unsigned long pc = instruction_pointer(regs); 873 874 if (cortex_a76_erratum_1463225_debug_handler(regs)) 875 return; 876 877 debug_exception_enter(regs); 878 879 if (user_mode(regs) && !is_ttbr0_addr(pc)) 880 arm64_apply_bp_hardening(); 881 882 if (inf->fn(addr_if_watchpoint, esr, regs)) { 883 arm64_notify_die(inf->name, regs, 884 inf->sig, inf->code, (void __user *)pc, esr); 885 } 886 887 debug_exception_exit(regs); 888 } 889 NOKPROBE_SYMBOL(do_debug_exception); 890