xref: /openbmc/linux/arch/arm64/mm/fault.c (revision cff11abeca78aa782378401ca2800bd2194aa14e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/signal.h>
14 #include <linux/mm.h>
15 #include <linux/hardirq.h>
16 #include <linux/init.h>
17 #include <linux/kprobes.h>
18 #include <linux/uaccess.h>
19 #include <linux/page-flags.h>
20 #include <linux/sched/signal.h>
21 #include <linux/sched/debug.h>
22 #include <linux/highmem.h>
23 #include <linux/perf_event.h>
24 #include <linux/preempt.h>
25 #include <linux/hugetlb.h>
26 
27 #include <asm/acpi.h>
28 #include <asm/bug.h>
29 #include <asm/cmpxchg.h>
30 #include <asm/cpufeature.h>
31 #include <asm/exception.h>
32 #include <asm/daifflags.h>
33 #include <asm/debug-monitors.h>
34 #include <asm/esr.h>
35 #include <asm/kprobes.h>
36 #include <asm/processor.h>
37 #include <asm/sysreg.h>
38 #include <asm/system_misc.h>
39 #include <asm/pgtable.h>
40 #include <asm/tlbflush.h>
41 #include <asm/traps.h>
42 
43 struct fault_info {
44 	int	(*fn)(unsigned long addr, unsigned int esr,
45 		      struct pt_regs *regs);
46 	int	sig;
47 	int	code;
48 	const char *name;
49 };
50 
51 static const struct fault_info fault_info[];
52 static struct fault_info debug_fault_info[];
53 
54 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
55 {
56 	return fault_info + (esr & ESR_ELx_FSC);
57 }
58 
59 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
60 {
61 	return debug_fault_info + DBG_ESR_EVT(esr);
62 }
63 
64 static void data_abort_decode(unsigned int esr)
65 {
66 	pr_alert("Data abort info:\n");
67 
68 	if (esr & ESR_ELx_ISV) {
69 		pr_alert("  Access size = %u byte(s)\n",
70 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
71 		pr_alert("  SSE = %lu, SRT = %lu\n",
72 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
73 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
74 		pr_alert("  SF = %lu, AR = %lu\n",
75 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
76 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
77 	} else {
78 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
79 	}
80 
81 	pr_alert("  CM = %lu, WnR = %lu\n",
82 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
83 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
84 }
85 
86 static void mem_abort_decode(unsigned int esr)
87 {
88 	pr_alert("Mem abort info:\n");
89 
90 	pr_alert("  ESR = 0x%08x\n", esr);
91 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
92 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
93 		 (esr & ESR_ELx_IL) ? 32 : 16);
94 	pr_alert("  SET = %lu, FnV = %lu\n",
95 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
96 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
97 	pr_alert("  EA = %lu, S1PTW = %lu\n",
98 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
99 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
100 
101 	if (esr_is_data_abort(esr))
102 		data_abort_decode(esr);
103 }
104 
105 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
106 {
107 	/* Either init_pg_dir or swapper_pg_dir */
108 	if (mm == &init_mm)
109 		return __pa_symbol(mm->pgd);
110 
111 	return (unsigned long)virt_to_phys(mm->pgd);
112 }
113 
114 /*
115  * Dump out the page tables associated with 'addr' in the currently active mm.
116  */
117 static void show_pte(unsigned long addr)
118 {
119 	struct mm_struct *mm;
120 	pgd_t *pgdp;
121 	pgd_t pgd;
122 
123 	if (is_ttbr0_addr(addr)) {
124 		/* TTBR0 */
125 		mm = current->active_mm;
126 		if (mm == &init_mm) {
127 			pr_alert("[%016lx] user address but active_mm is swapper\n",
128 				 addr);
129 			return;
130 		}
131 	} else if (is_ttbr1_addr(addr)) {
132 		/* TTBR1 */
133 		mm = &init_mm;
134 	} else {
135 		pr_alert("[%016lx] address between user and kernel address ranges\n",
136 			 addr);
137 		return;
138 	}
139 
140 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
141 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
142 		 vabits_actual, mm_to_pgd_phys(mm));
143 	pgdp = pgd_offset(mm, addr);
144 	pgd = READ_ONCE(*pgdp);
145 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
146 
147 	do {
148 		p4d_t *p4dp, p4d;
149 		pud_t *pudp, pud;
150 		pmd_t *pmdp, pmd;
151 		pte_t *ptep, pte;
152 
153 		if (pgd_none(pgd) || pgd_bad(pgd))
154 			break;
155 
156 		p4dp = p4d_offset(pgdp, addr);
157 		p4d = READ_ONCE(*p4dp);
158 		pr_cont(", p4d=%016llx", p4d_val(p4d));
159 		if (p4d_none(p4d) || p4d_bad(p4d))
160 			break;
161 
162 		pudp = pud_offset(p4dp, addr);
163 		pud = READ_ONCE(*pudp);
164 		pr_cont(", pud=%016llx", pud_val(pud));
165 		if (pud_none(pud) || pud_bad(pud))
166 			break;
167 
168 		pmdp = pmd_offset(pudp, addr);
169 		pmd = READ_ONCE(*pmdp);
170 		pr_cont(", pmd=%016llx", pmd_val(pmd));
171 		if (pmd_none(pmd) || pmd_bad(pmd))
172 			break;
173 
174 		ptep = pte_offset_map(pmdp, addr);
175 		pte = READ_ONCE(*ptep);
176 		pr_cont(", pte=%016llx", pte_val(pte));
177 		pte_unmap(ptep);
178 	} while(0);
179 
180 	pr_cont("\n");
181 }
182 
183 /*
184  * This function sets the access flags (dirty, accessed), as well as write
185  * permission, and only to a more permissive setting.
186  *
187  * It needs to cope with hardware update of the accessed/dirty state by other
188  * agents in the system and can safely skip the __sync_icache_dcache() call as,
189  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
190  *
191  * Returns whether or not the PTE actually changed.
192  */
193 int ptep_set_access_flags(struct vm_area_struct *vma,
194 			  unsigned long address, pte_t *ptep,
195 			  pte_t entry, int dirty)
196 {
197 	pteval_t old_pteval, pteval;
198 	pte_t pte = READ_ONCE(*ptep);
199 
200 	if (pte_same(pte, entry))
201 		return 0;
202 
203 	/* only preserve the access flags and write permission */
204 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
205 
206 	/*
207 	 * Setting the flags must be done atomically to avoid racing with the
208 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
209 	 * be set to the most permissive (lowest value) of *ptep and entry
210 	 * (calculated as: a & b == ~(~a | ~b)).
211 	 */
212 	pte_val(entry) ^= PTE_RDONLY;
213 	pteval = pte_val(pte);
214 	do {
215 		old_pteval = pteval;
216 		pteval ^= PTE_RDONLY;
217 		pteval |= pte_val(entry);
218 		pteval ^= PTE_RDONLY;
219 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
220 	} while (pteval != old_pteval);
221 
222 	flush_tlb_fix_spurious_fault(vma, address);
223 	return 1;
224 }
225 
226 static bool is_el1_instruction_abort(unsigned int esr)
227 {
228 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
229 }
230 
231 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
232 					   struct pt_regs *regs)
233 {
234 	unsigned int ec       = ESR_ELx_EC(esr);
235 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
236 
237 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
238 		return false;
239 
240 	if (fsc_type == ESR_ELx_FSC_PERM)
241 		return true;
242 
243 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
244 		return fsc_type == ESR_ELx_FSC_FAULT &&
245 			(regs->pstate & PSR_PAN_BIT);
246 
247 	return false;
248 }
249 
250 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
251 							unsigned int esr,
252 							struct pt_regs *regs)
253 {
254 	unsigned long flags;
255 	u64 par, dfsc;
256 
257 	if (ESR_ELx_EC(esr) != ESR_ELx_EC_DABT_CUR ||
258 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
259 		return false;
260 
261 	local_irq_save(flags);
262 	asm volatile("at s1e1r, %0" :: "r" (addr));
263 	isb();
264 	par = read_sysreg(par_el1);
265 	local_irq_restore(flags);
266 
267 	/*
268 	 * If we now have a valid translation, treat the translation fault as
269 	 * spurious.
270 	 */
271 	if (!(par & SYS_PAR_EL1_F))
272 		return true;
273 
274 	/*
275 	 * If we got a different type of fault from the AT instruction,
276 	 * treat the translation fault as spurious.
277 	 */
278 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
279 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
280 }
281 
282 static void die_kernel_fault(const char *msg, unsigned long addr,
283 			     unsigned int esr, struct pt_regs *regs)
284 {
285 	bust_spinlocks(1);
286 
287 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
288 		 addr);
289 
290 	mem_abort_decode(esr);
291 
292 	show_pte(addr);
293 	die("Oops", regs, esr);
294 	bust_spinlocks(0);
295 	do_exit(SIGKILL);
296 }
297 
298 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
299 			      struct pt_regs *regs)
300 {
301 	const char *msg;
302 
303 	/*
304 	 * Are we prepared to handle this kernel fault?
305 	 * We are almost certainly not prepared to handle instruction faults.
306 	 */
307 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
308 		return;
309 
310 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
311 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
312 		return;
313 
314 	if (is_el1_permission_fault(addr, esr, regs)) {
315 		if (esr & ESR_ELx_WNR)
316 			msg = "write to read-only memory";
317 		else if (is_el1_instruction_abort(esr))
318 			msg = "execute from non-executable memory";
319 		else
320 			msg = "read from unreadable memory";
321 	} else if (addr < PAGE_SIZE) {
322 		msg = "NULL pointer dereference";
323 	} else {
324 		msg = "paging request";
325 	}
326 
327 	die_kernel_fault(msg, addr, esr, regs);
328 }
329 
330 static void set_thread_esr(unsigned long address, unsigned int esr)
331 {
332 	current->thread.fault_address = address;
333 
334 	/*
335 	 * If the faulting address is in the kernel, we must sanitize the ESR.
336 	 * From userspace's point of view, kernel-only mappings don't exist
337 	 * at all, so we report them as level 0 translation faults.
338 	 * (This is not quite the way that "no mapping there at all" behaves:
339 	 * an alignment fault not caused by the memory type would take
340 	 * precedence over translation fault for a real access to empty
341 	 * space. Unfortunately we can't easily distinguish "alignment fault
342 	 * not caused by memory type" from "alignment fault caused by memory
343 	 * type", so we ignore this wrinkle and just return the translation
344 	 * fault.)
345 	 */
346 	if (!is_ttbr0_addr(current->thread.fault_address)) {
347 		switch (ESR_ELx_EC(esr)) {
348 		case ESR_ELx_EC_DABT_LOW:
349 			/*
350 			 * These bits provide only information about the
351 			 * faulting instruction, which userspace knows already.
352 			 * We explicitly clear bits which are architecturally
353 			 * RES0 in case they are given meanings in future.
354 			 * We always report the ESR as if the fault was taken
355 			 * to EL1 and so ISV and the bits in ISS[23:14] are
356 			 * clear. (In fact it always will be a fault to EL1.)
357 			 */
358 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
359 				ESR_ELx_CM | ESR_ELx_WNR;
360 			esr |= ESR_ELx_FSC_FAULT;
361 			break;
362 		case ESR_ELx_EC_IABT_LOW:
363 			/*
364 			 * Claim a level 0 translation fault.
365 			 * All other bits are architecturally RES0 for faults
366 			 * reported with that DFSC value, so we clear them.
367 			 */
368 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
369 			esr |= ESR_ELx_FSC_FAULT;
370 			break;
371 		default:
372 			/*
373 			 * This should never happen (entry.S only brings us
374 			 * into this code for insn and data aborts from a lower
375 			 * exception level). Fail safe by not providing an ESR
376 			 * context record at all.
377 			 */
378 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
379 			esr = 0;
380 			break;
381 		}
382 	}
383 
384 	current->thread.fault_code = esr;
385 }
386 
387 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
388 {
389 	/*
390 	 * If we are in kernel mode at this point, we have no context to
391 	 * handle this fault with.
392 	 */
393 	if (user_mode(regs)) {
394 		const struct fault_info *inf = esr_to_fault_info(esr);
395 
396 		set_thread_esr(addr, esr);
397 		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
398 				      inf->name);
399 	} else {
400 		__do_kernel_fault(addr, esr, regs);
401 	}
402 }
403 
404 #define VM_FAULT_BADMAP		0x010000
405 #define VM_FAULT_BADACCESS	0x020000
406 
407 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
408 			   unsigned int mm_flags, unsigned long vm_flags)
409 {
410 	struct vm_area_struct *vma = find_vma(mm, addr);
411 
412 	if (unlikely(!vma))
413 		return VM_FAULT_BADMAP;
414 
415 	/*
416 	 * Ok, we have a good vm_area for this memory access, so we can handle
417 	 * it.
418 	 */
419 	if (unlikely(vma->vm_start > addr)) {
420 		if (!(vma->vm_flags & VM_GROWSDOWN))
421 			return VM_FAULT_BADMAP;
422 		if (expand_stack(vma, addr))
423 			return VM_FAULT_BADMAP;
424 	}
425 
426 	/*
427 	 * Check that the permissions on the VMA allow for the fault which
428 	 * occurred.
429 	 */
430 	if (!(vma->vm_flags & vm_flags))
431 		return VM_FAULT_BADACCESS;
432 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
433 }
434 
435 static bool is_el0_instruction_abort(unsigned int esr)
436 {
437 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
438 }
439 
440 /*
441  * Note: not valid for EL1 DC IVAC, but we never use that such that it
442  * should fault. EL0 cannot issue DC IVAC (undef).
443  */
444 static bool is_write_abort(unsigned int esr)
445 {
446 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
447 }
448 
449 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
450 				   struct pt_regs *regs)
451 {
452 	const struct fault_info *inf;
453 	struct mm_struct *mm = current->mm;
454 	vm_fault_t fault, major = 0;
455 	unsigned long vm_flags = VM_ACCESS_FLAGS;
456 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
457 
458 	if (kprobe_page_fault(regs, esr))
459 		return 0;
460 
461 	/*
462 	 * If we're in an interrupt or have no user context, we must not take
463 	 * the fault.
464 	 */
465 	if (faulthandler_disabled() || !mm)
466 		goto no_context;
467 
468 	if (user_mode(regs))
469 		mm_flags |= FAULT_FLAG_USER;
470 
471 	if (is_el0_instruction_abort(esr)) {
472 		vm_flags = VM_EXEC;
473 		mm_flags |= FAULT_FLAG_INSTRUCTION;
474 	} else if (is_write_abort(esr)) {
475 		vm_flags = VM_WRITE;
476 		mm_flags |= FAULT_FLAG_WRITE;
477 	}
478 
479 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
480 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
481 		if (regs->orig_addr_limit == KERNEL_DS)
482 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
483 					 addr, esr, regs);
484 
485 		if (is_el1_instruction_abort(esr))
486 			die_kernel_fault("execution of user memory",
487 					 addr, esr, regs);
488 
489 		if (!search_exception_tables(regs->pc))
490 			die_kernel_fault("access to user memory outside uaccess routines",
491 					 addr, esr, regs);
492 	}
493 
494 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
495 
496 	/*
497 	 * As per x86, we may deadlock here. However, since the kernel only
498 	 * validly references user space from well defined areas of the code,
499 	 * we can bug out early if this is from code which shouldn't.
500 	 */
501 	if (!down_read_trylock(&mm->mmap_sem)) {
502 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
503 			goto no_context;
504 retry:
505 		down_read(&mm->mmap_sem);
506 	} else {
507 		/*
508 		 * The above down_read_trylock() might have succeeded in which
509 		 * case, we'll have missed the might_sleep() from down_read().
510 		 */
511 		might_sleep();
512 #ifdef CONFIG_DEBUG_VM
513 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
514 			up_read(&mm->mmap_sem);
515 			goto no_context;
516 		}
517 #endif
518 	}
519 
520 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
521 	major |= fault & VM_FAULT_MAJOR;
522 
523 	/* Quick path to respond to signals */
524 	if (fault_signal_pending(fault, regs)) {
525 		if (!user_mode(regs))
526 			goto no_context;
527 		return 0;
528 	}
529 
530 	if (fault & VM_FAULT_RETRY) {
531 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
532 			mm_flags |= FAULT_FLAG_TRIED;
533 			goto retry;
534 		}
535 	}
536 	up_read(&mm->mmap_sem);
537 
538 	/*
539 	 * Handle the "normal" (no error) case first.
540 	 */
541 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
542 			      VM_FAULT_BADACCESS)))) {
543 		/*
544 		 * Major/minor page fault accounting is only done
545 		 * once. If we go through a retry, it is extremely
546 		 * likely that the page will be found in page cache at
547 		 * that point.
548 		 */
549 		if (major) {
550 			current->maj_flt++;
551 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
552 				      addr);
553 		} else {
554 			current->min_flt++;
555 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
556 				      addr);
557 		}
558 
559 		return 0;
560 	}
561 
562 	/*
563 	 * If we are in kernel mode at this point, we have no context to
564 	 * handle this fault with.
565 	 */
566 	if (!user_mode(regs))
567 		goto no_context;
568 
569 	if (fault & VM_FAULT_OOM) {
570 		/*
571 		 * We ran out of memory, call the OOM killer, and return to
572 		 * userspace (which will retry the fault, or kill us if we got
573 		 * oom-killed).
574 		 */
575 		pagefault_out_of_memory();
576 		return 0;
577 	}
578 
579 	inf = esr_to_fault_info(esr);
580 	set_thread_esr(addr, esr);
581 	if (fault & VM_FAULT_SIGBUS) {
582 		/*
583 		 * We had some memory, but were unable to successfully fix up
584 		 * this page fault.
585 		 */
586 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
587 				      inf->name);
588 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
589 		unsigned int lsb;
590 
591 		lsb = PAGE_SHIFT;
592 		if (fault & VM_FAULT_HWPOISON_LARGE)
593 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
594 
595 		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
596 				       inf->name);
597 	} else {
598 		/*
599 		 * Something tried to access memory that isn't in our memory
600 		 * map.
601 		 */
602 		arm64_force_sig_fault(SIGSEGV,
603 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
604 				      (void __user *)addr,
605 				      inf->name);
606 	}
607 
608 	return 0;
609 
610 no_context:
611 	__do_kernel_fault(addr, esr, regs);
612 	return 0;
613 }
614 
615 static int __kprobes do_translation_fault(unsigned long addr,
616 					  unsigned int esr,
617 					  struct pt_regs *regs)
618 {
619 	if (is_ttbr0_addr(addr))
620 		return do_page_fault(addr, esr, regs);
621 
622 	do_bad_area(addr, esr, regs);
623 	return 0;
624 }
625 
626 static int do_alignment_fault(unsigned long addr, unsigned int esr,
627 			      struct pt_regs *regs)
628 {
629 	do_bad_area(addr, esr, regs);
630 	return 0;
631 }
632 
633 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
634 {
635 	return 1; /* "fault" */
636 }
637 
638 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
639 {
640 	const struct fault_info *inf;
641 	void __user *siaddr;
642 
643 	inf = esr_to_fault_info(esr);
644 
645 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
646 		/*
647 		 * APEI claimed this as a firmware-first notification.
648 		 * Some processing deferred to task_work before ret_to_user().
649 		 */
650 		return 0;
651 	}
652 
653 	if (esr & ESR_ELx_FnV)
654 		siaddr = NULL;
655 	else
656 		siaddr  = (void __user *)addr;
657 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
658 
659 	return 0;
660 }
661 
662 static const struct fault_info fault_info[] = {
663 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
664 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
665 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
666 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
667 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
668 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
669 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
670 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
671 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
672 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
673 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
674 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
675 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
676 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
677 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
678 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
679 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
680 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
681 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
682 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
683 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
684 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
685 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
686 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
687 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
688 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
689 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
690 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
691 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
692 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
693 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
694 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
695 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
696 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
697 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
698 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
699 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
700 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
701 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
702 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
703 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
704 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
705 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
706 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
707 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
708 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
709 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
710 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
711 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
712 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
713 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
714 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
715 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
716 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
717 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
718 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
719 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
720 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
721 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
722 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
723 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
724 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
725 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
726 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
727 };
728 
729 void do_mem_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
730 {
731 	const struct fault_info *inf = esr_to_fault_info(esr);
732 
733 	if (!inf->fn(addr, esr, regs))
734 		return;
735 
736 	if (!user_mode(regs)) {
737 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
738 		mem_abort_decode(esr);
739 		show_pte(addr);
740 	}
741 
742 	arm64_notify_die(inf->name, regs,
743 			 inf->sig, inf->code, (void __user *)addr, esr);
744 }
745 NOKPROBE_SYMBOL(do_mem_abort);
746 
747 void do_el0_irq_bp_hardening(void)
748 {
749 	/* PC has already been checked in entry.S */
750 	arm64_apply_bp_hardening();
751 }
752 NOKPROBE_SYMBOL(do_el0_irq_bp_hardening);
753 
754 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
755 {
756 	arm64_notify_die("SP/PC alignment exception", regs,
757 			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
758 }
759 NOKPROBE_SYMBOL(do_sp_pc_abort);
760 
761 int __init early_brk64(unsigned long addr, unsigned int esr,
762 		       struct pt_regs *regs);
763 
764 /*
765  * __refdata because early_brk64 is __init, but the reference to it is
766  * clobbered at arch_initcall time.
767  * See traps.c and debug-monitors.c:debug_traps_init().
768  */
769 static struct fault_info __refdata debug_fault_info[] = {
770 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
771 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
772 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
773 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
774 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
775 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
776 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
777 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
778 };
779 
780 void __init hook_debug_fault_code(int nr,
781 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
782 				  int sig, int code, const char *name)
783 {
784 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
785 
786 	debug_fault_info[nr].fn		= fn;
787 	debug_fault_info[nr].sig	= sig;
788 	debug_fault_info[nr].code	= code;
789 	debug_fault_info[nr].name	= name;
790 }
791 
792 /*
793  * In debug exception context, we explicitly disable preemption despite
794  * having interrupts disabled.
795  * This serves two purposes: it makes it much less likely that we would
796  * accidentally schedule in exception context and it will force a warning
797  * if we somehow manage to schedule by accident.
798  */
799 static void debug_exception_enter(struct pt_regs *regs)
800 {
801 	/*
802 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
803 	 * already disabled to preserve the last enabled/disabled addresses.
804 	 */
805 	if (interrupts_enabled(regs))
806 		trace_hardirqs_off();
807 
808 	if (user_mode(regs)) {
809 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
810 	} else {
811 		/*
812 		 * We might have interrupted pretty much anything.  In
813 		 * fact, if we're a debug exception, we can even interrupt
814 		 * NMI processing. We don't want this code makes in_nmi()
815 		 * to return true, but we need to notify RCU.
816 		 */
817 		rcu_nmi_enter();
818 	}
819 
820 	preempt_disable();
821 
822 	/* This code is a bit fragile.  Test it. */
823 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
824 }
825 NOKPROBE_SYMBOL(debug_exception_enter);
826 
827 static void debug_exception_exit(struct pt_regs *regs)
828 {
829 	preempt_enable_no_resched();
830 
831 	if (!user_mode(regs))
832 		rcu_nmi_exit();
833 
834 	if (interrupts_enabled(regs))
835 		trace_hardirqs_on();
836 }
837 NOKPROBE_SYMBOL(debug_exception_exit);
838 
839 #ifdef CONFIG_ARM64_ERRATUM_1463225
840 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
841 
842 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
843 {
844 	if (user_mode(regs))
845 		return 0;
846 
847 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
848 		return 0;
849 
850 	/*
851 	 * We've taken a dummy step exception from the kernel to ensure
852 	 * that interrupts are re-enabled on the syscall path. Return back
853 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
854 	 * masked so that we can safely restore the mdscr and get on with
855 	 * handling the syscall.
856 	 */
857 	regs->pstate |= PSR_D_BIT;
858 	return 1;
859 }
860 #else
861 static int cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
862 {
863 	return 0;
864 }
865 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
866 NOKPROBE_SYMBOL(cortex_a76_erratum_1463225_debug_handler);
867 
868 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
869 			struct pt_regs *regs)
870 {
871 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
872 	unsigned long pc = instruction_pointer(regs);
873 
874 	if (cortex_a76_erratum_1463225_debug_handler(regs))
875 		return;
876 
877 	debug_exception_enter(regs);
878 
879 	if (user_mode(regs) && !is_ttbr0_addr(pc))
880 		arm64_apply_bp_hardening();
881 
882 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
883 		arm64_notify_die(inf->name, regs,
884 				 inf->sig, inf->code, (void __user *)pc, esr);
885 	}
886 
887 	debug_exception_exit(regs);
888 }
889 NOKPROBE_SYMBOL(do_debug_exception);
890