xref: /openbmc/linux/arch/arm64/mm/fault.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/acpi.h>
22 #include <linux/extable.h>
23 #include <linux/signal.h>
24 #include <linux/mm.h>
25 #include <linux/hardirq.h>
26 #include <linux/init.h>
27 #include <linux/kprobes.h>
28 #include <linux/uaccess.h>
29 #include <linux/page-flags.h>
30 #include <linux/sched/signal.h>
31 #include <linux/sched/debug.h>
32 #include <linux/highmem.h>
33 #include <linux/perf_event.h>
34 #include <linux/preempt.h>
35 #include <linux/hugetlb.h>
36 
37 #include <asm/acpi.h>
38 #include <asm/bug.h>
39 #include <asm/cmpxchg.h>
40 #include <asm/cpufeature.h>
41 #include <asm/exception.h>
42 #include <asm/daifflags.h>
43 #include <asm/debug-monitors.h>
44 #include <asm/esr.h>
45 #include <asm/kasan.h>
46 #include <asm/sysreg.h>
47 #include <asm/system_misc.h>
48 #include <asm/pgtable.h>
49 #include <asm/tlbflush.h>
50 #include <asm/traps.h>
51 
52 struct fault_info {
53 	int	(*fn)(unsigned long addr, unsigned int esr,
54 		      struct pt_regs *regs);
55 	int	sig;
56 	int	code;
57 	const char *name;
58 };
59 
60 static const struct fault_info fault_info[];
61 static struct fault_info debug_fault_info[];
62 
63 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
64 {
65 	return fault_info + (esr & ESR_ELx_FSC);
66 }
67 
68 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
69 {
70 	return debug_fault_info + DBG_ESR_EVT(esr);
71 }
72 
73 #ifdef CONFIG_KPROBES
74 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
75 {
76 	int ret = 0;
77 
78 	/* kprobe_running() needs smp_processor_id() */
79 	if (!user_mode(regs)) {
80 		preempt_disable();
81 		if (kprobe_running() && kprobe_fault_handler(regs, esr))
82 			ret = 1;
83 		preempt_enable();
84 	}
85 
86 	return ret;
87 }
88 #else
89 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
90 {
91 	return 0;
92 }
93 #endif
94 
95 static void data_abort_decode(unsigned int esr)
96 {
97 	pr_alert("Data abort info:\n");
98 
99 	if (esr & ESR_ELx_ISV) {
100 		pr_alert("  Access size = %u byte(s)\n",
101 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
102 		pr_alert("  SSE = %lu, SRT = %lu\n",
103 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
104 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
105 		pr_alert("  SF = %lu, AR = %lu\n",
106 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
107 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
108 	} else {
109 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
110 	}
111 
112 	pr_alert("  CM = %lu, WnR = %lu\n",
113 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
114 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
115 }
116 
117 static void mem_abort_decode(unsigned int esr)
118 {
119 	pr_alert("Mem abort info:\n");
120 
121 	pr_alert("  ESR = 0x%08x\n", esr);
122 	pr_alert("  Exception class = %s, IL = %u bits\n",
123 		 esr_get_class_string(esr),
124 		 (esr & ESR_ELx_IL) ? 32 : 16);
125 	pr_alert("  SET = %lu, FnV = %lu\n",
126 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
127 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
128 	pr_alert("  EA = %lu, S1PTW = %lu\n",
129 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
130 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
131 
132 	if (esr_is_data_abort(esr))
133 		data_abort_decode(esr);
134 }
135 
136 static inline bool is_ttbr0_addr(unsigned long addr)
137 {
138 	/* entry assembly clears tags for TTBR0 addrs */
139 	return addr < TASK_SIZE;
140 }
141 
142 static inline bool is_ttbr1_addr(unsigned long addr)
143 {
144 	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
145 	return arch_kasan_reset_tag(addr) >= VA_START;
146 }
147 
148 /*
149  * Dump out the page tables associated with 'addr' in the currently active mm.
150  */
151 static void show_pte(unsigned long addr)
152 {
153 	struct mm_struct *mm;
154 	pgd_t *pgdp;
155 	pgd_t pgd;
156 
157 	if (is_ttbr0_addr(addr)) {
158 		/* TTBR0 */
159 		mm = current->active_mm;
160 		if (mm == &init_mm) {
161 			pr_alert("[%016lx] user address but active_mm is swapper\n",
162 				 addr);
163 			return;
164 		}
165 	} else if (is_ttbr1_addr(addr)) {
166 		/* TTBR1 */
167 		mm = &init_mm;
168 	} else {
169 		pr_alert("[%016lx] address between user and kernel address ranges\n",
170 			 addr);
171 		return;
172 	}
173 
174 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp=%016lx\n",
175 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
176 		 mm == &init_mm ? VA_BITS : (int)vabits_user,
177 		 (unsigned long)virt_to_phys(mm->pgd));
178 	pgdp = pgd_offset(mm, addr);
179 	pgd = READ_ONCE(*pgdp);
180 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
181 
182 	do {
183 		pud_t *pudp, pud;
184 		pmd_t *pmdp, pmd;
185 		pte_t *ptep, pte;
186 
187 		if (pgd_none(pgd) || pgd_bad(pgd))
188 			break;
189 
190 		pudp = pud_offset(pgdp, addr);
191 		pud = READ_ONCE(*pudp);
192 		pr_cont(", pud=%016llx", pud_val(pud));
193 		if (pud_none(pud) || pud_bad(pud))
194 			break;
195 
196 		pmdp = pmd_offset(pudp, addr);
197 		pmd = READ_ONCE(*pmdp);
198 		pr_cont(", pmd=%016llx", pmd_val(pmd));
199 		if (pmd_none(pmd) || pmd_bad(pmd))
200 			break;
201 
202 		ptep = pte_offset_map(pmdp, addr);
203 		pte = READ_ONCE(*ptep);
204 		pr_cont(", pte=%016llx", pte_val(pte));
205 		pte_unmap(ptep);
206 	} while(0);
207 
208 	pr_cont("\n");
209 }
210 
211 /*
212  * This function sets the access flags (dirty, accessed), as well as write
213  * permission, and only to a more permissive setting.
214  *
215  * It needs to cope with hardware update of the accessed/dirty state by other
216  * agents in the system and can safely skip the __sync_icache_dcache() call as,
217  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
218  *
219  * Returns whether or not the PTE actually changed.
220  */
221 int ptep_set_access_flags(struct vm_area_struct *vma,
222 			  unsigned long address, pte_t *ptep,
223 			  pte_t entry, int dirty)
224 {
225 	pteval_t old_pteval, pteval;
226 	pte_t pte = READ_ONCE(*ptep);
227 
228 	if (pte_same(pte, entry))
229 		return 0;
230 
231 	/* only preserve the access flags and write permission */
232 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
233 
234 	/*
235 	 * Setting the flags must be done atomically to avoid racing with the
236 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
237 	 * be set to the most permissive (lowest value) of *ptep and entry
238 	 * (calculated as: a & b == ~(~a | ~b)).
239 	 */
240 	pte_val(entry) ^= PTE_RDONLY;
241 	pteval = pte_val(pte);
242 	do {
243 		old_pteval = pteval;
244 		pteval ^= PTE_RDONLY;
245 		pteval |= pte_val(entry);
246 		pteval ^= PTE_RDONLY;
247 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
248 	} while (pteval != old_pteval);
249 
250 	flush_tlb_fix_spurious_fault(vma, address);
251 	return 1;
252 }
253 
254 static bool is_el1_instruction_abort(unsigned int esr)
255 {
256 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
257 }
258 
259 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
260 					   struct pt_regs *regs)
261 {
262 	unsigned int ec       = ESR_ELx_EC(esr);
263 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
264 
265 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
266 		return false;
267 
268 	if (fsc_type == ESR_ELx_FSC_PERM)
269 		return true;
270 
271 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
272 		return fsc_type == ESR_ELx_FSC_FAULT &&
273 			(regs->pstate & PSR_PAN_BIT);
274 
275 	return false;
276 }
277 
278 static void die_kernel_fault(const char *msg, unsigned long addr,
279 			     unsigned int esr, struct pt_regs *regs)
280 {
281 	bust_spinlocks(1);
282 
283 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
284 		 addr);
285 
286 	mem_abort_decode(esr);
287 
288 	show_pte(addr);
289 	die("Oops", regs, esr);
290 	bust_spinlocks(0);
291 	do_exit(SIGKILL);
292 }
293 
294 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
295 			      struct pt_regs *regs)
296 {
297 	const char *msg;
298 
299 	/*
300 	 * Are we prepared to handle this kernel fault?
301 	 * We are almost certainly not prepared to handle instruction faults.
302 	 */
303 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
304 		return;
305 
306 	if (is_el1_permission_fault(addr, esr, regs)) {
307 		if (esr & ESR_ELx_WNR)
308 			msg = "write to read-only memory";
309 		else
310 			msg = "read from unreadable memory";
311 	} else if (addr < PAGE_SIZE) {
312 		msg = "NULL pointer dereference";
313 	} else {
314 		msg = "paging request";
315 	}
316 
317 	die_kernel_fault(msg, addr, esr, regs);
318 }
319 
320 static void set_thread_esr(unsigned long address, unsigned int esr)
321 {
322 	current->thread.fault_address = address;
323 
324 	/*
325 	 * If the faulting address is in the kernel, we must sanitize the ESR.
326 	 * From userspace's point of view, kernel-only mappings don't exist
327 	 * at all, so we report them as level 0 translation faults.
328 	 * (This is not quite the way that "no mapping there at all" behaves:
329 	 * an alignment fault not caused by the memory type would take
330 	 * precedence over translation fault for a real access to empty
331 	 * space. Unfortunately we can't easily distinguish "alignment fault
332 	 * not caused by memory type" from "alignment fault caused by memory
333 	 * type", so we ignore this wrinkle and just return the translation
334 	 * fault.)
335 	 */
336 	if (!is_ttbr0_addr(current->thread.fault_address)) {
337 		switch (ESR_ELx_EC(esr)) {
338 		case ESR_ELx_EC_DABT_LOW:
339 			/*
340 			 * These bits provide only information about the
341 			 * faulting instruction, which userspace knows already.
342 			 * We explicitly clear bits which are architecturally
343 			 * RES0 in case they are given meanings in future.
344 			 * We always report the ESR as if the fault was taken
345 			 * to EL1 and so ISV and the bits in ISS[23:14] are
346 			 * clear. (In fact it always will be a fault to EL1.)
347 			 */
348 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
349 				ESR_ELx_CM | ESR_ELx_WNR;
350 			esr |= ESR_ELx_FSC_FAULT;
351 			break;
352 		case ESR_ELx_EC_IABT_LOW:
353 			/*
354 			 * Claim a level 0 translation fault.
355 			 * All other bits are architecturally RES0 for faults
356 			 * reported with that DFSC value, so we clear them.
357 			 */
358 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
359 			esr |= ESR_ELx_FSC_FAULT;
360 			break;
361 		default:
362 			/*
363 			 * This should never happen (entry.S only brings us
364 			 * into this code for insn and data aborts from a lower
365 			 * exception level). Fail safe by not providing an ESR
366 			 * context record at all.
367 			 */
368 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
369 			esr = 0;
370 			break;
371 		}
372 	}
373 
374 	current->thread.fault_code = esr;
375 }
376 
377 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
378 {
379 	/*
380 	 * If we are in kernel mode at this point, we have no context to
381 	 * handle this fault with.
382 	 */
383 	if (user_mode(regs)) {
384 		const struct fault_info *inf = esr_to_fault_info(esr);
385 
386 		set_thread_esr(addr, esr);
387 		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
388 				      inf->name);
389 	} else {
390 		__do_kernel_fault(addr, esr, regs);
391 	}
392 }
393 
394 #define VM_FAULT_BADMAP		0x010000
395 #define VM_FAULT_BADACCESS	0x020000
396 
397 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
398 			   unsigned int mm_flags, unsigned long vm_flags,
399 			   struct task_struct *tsk)
400 {
401 	struct vm_area_struct *vma;
402 	vm_fault_t fault;
403 
404 	vma = find_vma(mm, addr);
405 	fault = VM_FAULT_BADMAP;
406 	if (unlikely(!vma))
407 		goto out;
408 	if (unlikely(vma->vm_start > addr))
409 		goto check_stack;
410 
411 	/*
412 	 * Ok, we have a good vm_area for this memory access, so we can handle
413 	 * it.
414 	 */
415 good_area:
416 	/*
417 	 * Check that the permissions on the VMA allow for the fault which
418 	 * occurred.
419 	 */
420 	if (!(vma->vm_flags & vm_flags)) {
421 		fault = VM_FAULT_BADACCESS;
422 		goto out;
423 	}
424 
425 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
426 
427 check_stack:
428 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
429 		goto good_area;
430 out:
431 	return fault;
432 }
433 
434 static bool is_el0_instruction_abort(unsigned int esr)
435 {
436 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
437 }
438 
439 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
440 				   struct pt_regs *regs)
441 {
442 	const struct fault_info *inf;
443 	struct task_struct *tsk;
444 	struct mm_struct *mm;
445 	vm_fault_t fault, major = 0;
446 	unsigned long vm_flags = VM_READ | VM_WRITE;
447 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
448 
449 	if (notify_page_fault(regs, esr))
450 		return 0;
451 
452 	tsk = current;
453 	mm  = tsk->mm;
454 
455 	/*
456 	 * If we're in an interrupt or have no user context, we must not take
457 	 * the fault.
458 	 */
459 	if (faulthandler_disabled() || !mm)
460 		goto no_context;
461 
462 	if (user_mode(regs))
463 		mm_flags |= FAULT_FLAG_USER;
464 
465 	if (is_el0_instruction_abort(esr)) {
466 		vm_flags = VM_EXEC;
467 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
468 		vm_flags = VM_WRITE;
469 		mm_flags |= FAULT_FLAG_WRITE;
470 	}
471 
472 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
473 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
474 		if (regs->orig_addr_limit == KERNEL_DS)
475 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
476 					 addr, esr, regs);
477 
478 		if (is_el1_instruction_abort(esr))
479 			die_kernel_fault("execution of user memory",
480 					 addr, esr, regs);
481 
482 		if (!search_exception_tables(regs->pc))
483 			die_kernel_fault("access to user memory outside uaccess routines",
484 					 addr, esr, regs);
485 	}
486 
487 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
488 
489 	/*
490 	 * As per x86, we may deadlock here. However, since the kernel only
491 	 * validly references user space from well defined areas of the code,
492 	 * we can bug out early if this is from code which shouldn't.
493 	 */
494 	if (!down_read_trylock(&mm->mmap_sem)) {
495 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
496 			goto no_context;
497 retry:
498 		down_read(&mm->mmap_sem);
499 	} else {
500 		/*
501 		 * The above down_read_trylock() might have succeeded in which
502 		 * case, we'll have missed the might_sleep() from down_read().
503 		 */
504 		might_sleep();
505 #ifdef CONFIG_DEBUG_VM
506 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
507 			goto no_context;
508 #endif
509 	}
510 
511 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
512 	major |= fault & VM_FAULT_MAJOR;
513 
514 	if (fault & VM_FAULT_RETRY) {
515 		/*
516 		 * If we need to retry but a fatal signal is pending,
517 		 * handle the signal first. We do not need to release
518 		 * the mmap_sem because it would already be released
519 		 * in __lock_page_or_retry in mm/filemap.c.
520 		 */
521 		if (fatal_signal_pending(current)) {
522 			if (!user_mode(regs))
523 				goto no_context;
524 			return 0;
525 		}
526 
527 		/*
528 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
529 		 * starvation.
530 		 */
531 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
532 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
533 			mm_flags |= FAULT_FLAG_TRIED;
534 			goto retry;
535 		}
536 	}
537 	up_read(&mm->mmap_sem);
538 
539 	/*
540 	 * Handle the "normal" (no error) case first.
541 	 */
542 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
543 			      VM_FAULT_BADACCESS)))) {
544 		/*
545 		 * Major/minor page fault accounting is only done
546 		 * once. If we go through a retry, it is extremely
547 		 * likely that the page will be found in page cache at
548 		 * that point.
549 		 */
550 		if (major) {
551 			tsk->maj_flt++;
552 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
553 				      addr);
554 		} else {
555 			tsk->min_flt++;
556 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
557 				      addr);
558 		}
559 
560 		return 0;
561 	}
562 
563 	/*
564 	 * If we are in kernel mode at this point, we have no context to
565 	 * handle this fault with.
566 	 */
567 	if (!user_mode(regs))
568 		goto no_context;
569 
570 	if (fault & VM_FAULT_OOM) {
571 		/*
572 		 * We ran out of memory, call the OOM killer, and return to
573 		 * userspace (which will retry the fault, or kill us if we got
574 		 * oom-killed).
575 		 */
576 		pagefault_out_of_memory();
577 		return 0;
578 	}
579 
580 	inf = esr_to_fault_info(esr);
581 	set_thread_esr(addr, esr);
582 	if (fault & VM_FAULT_SIGBUS) {
583 		/*
584 		 * We had some memory, but were unable to successfully fix up
585 		 * this page fault.
586 		 */
587 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
588 				      inf->name);
589 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
590 		unsigned int lsb;
591 
592 		lsb = PAGE_SHIFT;
593 		if (fault & VM_FAULT_HWPOISON_LARGE)
594 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
595 
596 		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
597 				       inf->name);
598 	} else {
599 		/*
600 		 * Something tried to access memory that isn't in our memory
601 		 * map.
602 		 */
603 		arm64_force_sig_fault(SIGSEGV,
604 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
605 				      (void __user *)addr,
606 				      inf->name);
607 	}
608 
609 	return 0;
610 
611 no_context:
612 	__do_kernel_fault(addr, esr, regs);
613 	return 0;
614 }
615 
616 static int __kprobes do_translation_fault(unsigned long addr,
617 					  unsigned int esr,
618 					  struct pt_regs *regs)
619 {
620 	if (is_ttbr0_addr(addr))
621 		return do_page_fault(addr, esr, regs);
622 
623 	do_bad_area(addr, esr, regs);
624 	return 0;
625 }
626 
627 static int do_alignment_fault(unsigned long addr, unsigned int esr,
628 			      struct pt_regs *regs)
629 {
630 	do_bad_area(addr, esr, regs);
631 	return 0;
632 }
633 
634 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
635 {
636 	return 1; /* "fault" */
637 }
638 
639 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
640 {
641 	const struct fault_info *inf;
642 	void __user *siaddr;
643 
644 	inf = esr_to_fault_info(esr);
645 
646 	/*
647 	 * Return value ignored as we rely on signal merging.
648 	 * Future patches will make this more robust.
649 	 */
650 	apei_claim_sea(regs);
651 
652 	if (esr & ESR_ELx_FnV)
653 		siaddr = NULL;
654 	else
655 		siaddr  = (void __user *)addr;
656 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
657 
658 	return 0;
659 }
660 
661 static const struct fault_info fault_info[] = {
662 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
663 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
664 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
665 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
666 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
667 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
668 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
669 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
670 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
671 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
672 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
673 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
674 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
675 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
676 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
677 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
678 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
679 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
680 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
681 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
682 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
683 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
684 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
685 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
686 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
687 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
688 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
689 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
690 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
691 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
692 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
693 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
694 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
695 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
696 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
697 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
698 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
699 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
700 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
701 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
702 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
703 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
704 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
705 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
706 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
707 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
708 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
709 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
710 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
711 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
712 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
713 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
714 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
715 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
716 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
717 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
718 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
719 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
720 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
721 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
722 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
723 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
724 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
725 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
726 };
727 
728 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
729 					 struct pt_regs *regs)
730 {
731 	const struct fault_info *inf = esr_to_fault_info(esr);
732 
733 	if (!inf->fn(addr, esr, regs))
734 		return;
735 
736 	if (!user_mode(regs)) {
737 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
738 		mem_abort_decode(esr);
739 		show_pte(addr);
740 	}
741 
742 	arm64_notify_die(inf->name, regs,
743 			 inf->sig, inf->code, (void __user *)addr, esr);
744 }
745 
746 asmlinkage void __exception do_el0_irq_bp_hardening(void)
747 {
748 	/* PC has already been checked in entry.S */
749 	arm64_apply_bp_hardening();
750 }
751 
752 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
753 						   unsigned int esr,
754 						   struct pt_regs *regs)
755 {
756 	/*
757 	 * We've taken an instruction abort from userspace and not yet
758 	 * re-enabled IRQs. If the address is a kernel address, apply
759 	 * BP hardening prior to enabling IRQs and pre-emption.
760 	 */
761 	if (!is_ttbr0_addr(addr))
762 		arm64_apply_bp_hardening();
763 
764 	local_daif_restore(DAIF_PROCCTX);
765 	do_mem_abort(addr, esr, regs);
766 }
767 
768 
769 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
770 					   unsigned int esr,
771 					   struct pt_regs *regs)
772 {
773 	if (user_mode(regs)) {
774 		if (!is_ttbr0_addr(instruction_pointer(regs)))
775 			arm64_apply_bp_hardening();
776 		local_daif_restore(DAIF_PROCCTX);
777 	}
778 
779 	arm64_notify_die("SP/PC alignment exception", regs,
780 			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
781 }
782 
783 int __init early_brk64(unsigned long addr, unsigned int esr,
784 		       struct pt_regs *regs);
785 
786 /*
787  * __refdata because early_brk64 is __init, but the reference to it is
788  * clobbered at arch_initcall time.
789  * See traps.c and debug-monitors.c:debug_traps_init().
790  */
791 static struct fault_info __refdata debug_fault_info[] = {
792 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
793 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
794 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
795 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
796 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
797 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
798 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
799 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
800 };
801 
802 void __init hook_debug_fault_code(int nr,
803 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
804 				  int sig, int code, const char *name)
805 {
806 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
807 
808 	debug_fault_info[nr].fn		= fn;
809 	debug_fault_info[nr].sig	= sig;
810 	debug_fault_info[nr].code	= code;
811 	debug_fault_info[nr].name	= name;
812 }
813 
814 #ifdef CONFIG_ARM64_ERRATUM_1463225
815 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
816 
817 static int __exception
818 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
819 {
820 	if (user_mode(regs))
821 		return 0;
822 
823 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
824 		return 0;
825 
826 	/*
827 	 * We've taken a dummy step exception from the kernel to ensure
828 	 * that interrupts are re-enabled on the syscall path. Return back
829 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
830 	 * masked so that we can safely restore the mdscr and get on with
831 	 * handling the syscall.
832 	 */
833 	regs->pstate |= PSR_D_BIT;
834 	return 1;
835 }
836 #else
837 static int __exception
838 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
839 {
840 	return 0;
841 }
842 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
843 
844 asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
845 					       unsigned int esr,
846 					       struct pt_regs *regs)
847 {
848 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
849 	unsigned long pc = instruction_pointer(regs);
850 
851 	if (cortex_a76_erratum_1463225_debug_handler(regs))
852 		return;
853 
854 	/*
855 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
856 	 * already disabled to preserve the last enabled/disabled addresses.
857 	 */
858 	if (interrupts_enabled(regs))
859 		trace_hardirqs_off();
860 
861 	if (user_mode(regs) && !is_ttbr0_addr(pc))
862 		arm64_apply_bp_hardening();
863 
864 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
865 		arm64_notify_die(inf->name, regs,
866 				 inf->sig, inf->code, (void __user *)pc, esr);
867 	}
868 
869 	if (interrupts_enabled(regs))
870 		trace_hardirqs_on();
871 }
872 NOKPROBE_SYMBOL(do_debug_exception);
873