xref: /openbmc/linux/arch/arm64/mm/fault.c (revision c8dbaa22)
1 /*
2  * Based on arch/arm/mm/fault.c
3  *
4  * Copyright (C) 1995  Linus Torvalds
5  * Copyright (C) 1995-2004 Russell King
6  * Copyright (C) 2012 ARM Ltd.
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include <linux/extable.h>
22 #include <linux/signal.h>
23 #include <linux/mm.h>
24 #include <linux/hardirq.h>
25 #include <linux/init.h>
26 #include <linux/kprobes.h>
27 #include <linux/uaccess.h>
28 #include <linux/page-flags.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/debug.h>
31 #include <linux/highmem.h>
32 #include <linux/perf_event.h>
33 #include <linux/preempt.h>
34 #include <linux/hugetlb.h>
35 
36 #include <asm/bug.h>
37 #include <asm/cpufeature.h>
38 #include <asm/exception.h>
39 #include <asm/debug-monitors.h>
40 #include <asm/esr.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/pgtable.h>
44 #include <asm/tlbflush.h>
45 
46 #include <acpi/ghes.h>
47 
48 struct fault_info {
49 	int	(*fn)(unsigned long addr, unsigned int esr,
50 		      struct pt_regs *regs);
51 	int	sig;
52 	int	code;
53 	const char *name;
54 };
55 
56 static const struct fault_info fault_info[];
57 
58 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
59 {
60 	return fault_info + (esr & 63);
61 }
62 
63 #ifdef CONFIG_KPROBES
64 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
65 {
66 	int ret = 0;
67 
68 	/* kprobe_running() needs smp_processor_id() */
69 	if (!user_mode(regs)) {
70 		preempt_disable();
71 		if (kprobe_running() && kprobe_fault_handler(regs, esr))
72 			ret = 1;
73 		preempt_enable();
74 	}
75 
76 	return ret;
77 }
78 #else
79 static inline int notify_page_fault(struct pt_regs *regs, unsigned int esr)
80 {
81 	return 0;
82 }
83 #endif
84 
85 /*
86  * Dump out the page tables associated with 'addr' in the currently active mm.
87  */
88 void show_pte(unsigned long addr)
89 {
90 	struct mm_struct *mm;
91 	pgd_t *pgd;
92 
93 	if (addr < TASK_SIZE) {
94 		/* TTBR0 */
95 		mm = current->active_mm;
96 		if (mm == &init_mm) {
97 			pr_alert("[%016lx] user address but active_mm is swapper\n",
98 				 addr);
99 			return;
100 		}
101 	} else if (addr >= VA_START) {
102 		/* TTBR1 */
103 		mm = &init_mm;
104 	} else {
105 		pr_alert("[%016lx] address between user and kernel address ranges\n",
106 			 addr);
107 		return;
108 	}
109 
110 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgd = %p\n",
111 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
112 		 VA_BITS, mm->pgd);
113 	pgd = pgd_offset(mm, addr);
114 	pr_alert("[%016lx] *pgd=%016llx", addr, pgd_val(*pgd));
115 
116 	do {
117 		pud_t *pud;
118 		pmd_t *pmd;
119 		pte_t *pte;
120 
121 		if (pgd_none(*pgd) || pgd_bad(*pgd))
122 			break;
123 
124 		pud = pud_offset(pgd, addr);
125 		pr_cont(", *pud=%016llx", pud_val(*pud));
126 		if (pud_none(*pud) || pud_bad(*pud))
127 			break;
128 
129 		pmd = pmd_offset(pud, addr);
130 		pr_cont(", *pmd=%016llx", pmd_val(*pmd));
131 		if (pmd_none(*pmd) || pmd_bad(*pmd))
132 			break;
133 
134 		pte = pte_offset_map(pmd, addr);
135 		pr_cont(", *pte=%016llx", pte_val(*pte));
136 		pte_unmap(pte);
137 	} while(0);
138 
139 	pr_cont("\n");
140 }
141 
142 #ifdef CONFIG_ARM64_HW_AFDBM
143 /*
144  * This function sets the access flags (dirty, accessed), as well as write
145  * permission, and only to a more permissive setting.
146  *
147  * It needs to cope with hardware update of the accessed/dirty state by other
148  * agents in the system and can safely skip the __sync_icache_dcache() call as,
149  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
150  *
151  * Returns whether or not the PTE actually changed.
152  */
153 int ptep_set_access_flags(struct vm_area_struct *vma,
154 			  unsigned long address, pte_t *ptep,
155 			  pte_t entry, int dirty)
156 {
157 	pteval_t old_pteval;
158 	unsigned int tmp;
159 
160 	if (pte_same(*ptep, entry))
161 		return 0;
162 
163 	/* only preserve the access flags and write permission */
164 	pte_val(entry) &= PTE_AF | PTE_WRITE | PTE_DIRTY;
165 
166 	/* set PTE_RDONLY if actual read-only or clean PTE */
167 	if (!pte_write(entry) || !pte_sw_dirty(entry))
168 		pte_val(entry) |= PTE_RDONLY;
169 
170 	/*
171 	 * Setting the flags must be done atomically to avoid racing with the
172 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
173 	 * be set to the most permissive (lowest value) of *ptep and entry
174 	 * (calculated as: a & b == ~(~a | ~b)).
175 	 */
176 	pte_val(entry) ^= PTE_RDONLY;
177 	asm volatile("//	ptep_set_access_flags\n"
178 	"	prfm	pstl1strm, %2\n"
179 	"1:	ldxr	%0, %2\n"
180 	"	eor	%0, %0, %3		// negate PTE_RDONLY in *ptep\n"
181 	"	orr	%0, %0, %4		// set flags\n"
182 	"	eor	%0, %0, %3		// negate final PTE_RDONLY\n"
183 	"	stxr	%w1, %0, %2\n"
184 	"	cbnz	%w1, 1b\n"
185 	: "=&r" (old_pteval), "=&r" (tmp), "+Q" (pte_val(*ptep))
186 	: "L" (PTE_RDONLY), "r" (pte_val(entry)));
187 
188 	flush_tlb_fix_spurious_fault(vma, address);
189 	return 1;
190 }
191 #endif
192 
193 static bool is_el1_instruction_abort(unsigned int esr)
194 {
195 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
196 }
197 
198 static inline bool is_permission_fault(unsigned int esr, struct pt_regs *regs,
199 				       unsigned long addr)
200 {
201 	unsigned int ec       = ESR_ELx_EC(esr);
202 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
203 
204 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
205 		return false;
206 
207 	if (fsc_type == ESR_ELx_FSC_PERM)
208 		return true;
209 
210 	if (addr < USER_DS && system_uses_ttbr0_pan())
211 		return fsc_type == ESR_ELx_FSC_FAULT &&
212 			(regs->pstate & PSR_PAN_BIT);
213 
214 	return false;
215 }
216 
217 /*
218  * The kernel tried to access some page that wasn't present.
219  */
220 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
221 			      struct pt_regs *regs)
222 {
223 	const char *msg;
224 
225 	/*
226 	 * Are we prepared to handle this kernel fault?
227 	 * We are almost certainly not prepared to handle instruction faults.
228 	 */
229 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
230 		return;
231 
232 	/*
233 	 * No handler, we'll have to terminate things with extreme prejudice.
234 	 */
235 	bust_spinlocks(1);
236 
237 	if (is_permission_fault(esr, regs, addr)) {
238 		if (esr & ESR_ELx_WNR)
239 			msg = "write to read-only memory";
240 		else
241 			msg = "read from unreadable memory";
242 	} else if (addr < PAGE_SIZE) {
243 		msg = "NULL pointer dereference";
244 	} else {
245 		msg = "paging request";
246 	}
247 
248 	pr_alert("Unable to handle kernel %s at virtual address %08lx\n", msg,
249 		 addr);
250 
251 	show_pte(addr);
252 	die("Oops", regs, esr);
253 	bust_spinlocks(0);
254 	do_exit(SIGKILL);
255 }
256 
257 /*
258  * Something tried to access memory that isn't in our memory map. User mode
259  * accesses just cause a SIGSEGV
260  */
261 static void __do_user_fault(struct task_struct *tsk, unsigned long addr,
262 			    unsigned int esr, unsigned int sig, int code,
263 			    struct pt_regs *regs, int fault)
264 {
265 	struct siginfo si;
266 	const struct fault_info *inf;
267 	unsigned int lsb = 0;
268 
269 	if (unhandled_signal(tsk, sig) && show_unhandled_signals_ratelimited()) {
270 		inf = esr_to_fault_info(esr);
271 		pr_info("%s[%d]: unhandled %s (%d) at 0x%08lx, esr 0x%03x",
272 			tsk->comm, task_pid_nr(tsk), inf->name, sig,
273 			addr, esr);
274 		print_vma_addr(KERN_CONT ", in ", regs->pc);
275 		pr_cont("\n");
276 		__show_regs(regs);
277 	}
278 
279 	tsk->thread.fault_address = addr;
280 	tsk->thread.fault_code = esr;
281 	si.si_signo = sig;
282 	si.si_errno = 0;
283 	si.si_code = code;
284 	si.si_addr = (void __user *)addr;
285 	/*
286 	 * Either small page or large page may be poisoned.
287 	 * In other words, VM_FAULT_HWPOISON_LARGE and
288 	 * VM_FAULT_HWPOISON are mutually exclusive.
289 	 */
290 	if (fault & VM_FAULT_HWPOISON_LARGE)
291 		lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
292 	else if (fault & VM_FAULT_HWPOISON)
293 		lsb = PAGE_SHIFT;
294 	si.si_addr_lsb = lsb;
295 
296 	force_sig_info(sig, &si, tsk);
297 }
298 
299 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
300 {
301 	struct task_struct *tsk = current;
302 	const struct fault_info *inf;
303 
304 	/*
305 	 * If we are in kernel mode at this point, we have no context to
306 	 * handle this fault with.
307 	 */
308 	if (user_mode(regs)) {
309 		inf = esr_to_fault_info(esr);
310 		__do_user_fault(tsk, addr, esr, inf->sig, inf->code, regs, 0);
311 	} else
312 		__do_kernel_fault(addr, esr, regs);
313 }
314 
315 #define VM_FAULT_BADMAP		0x010000
316 #define VM_FAULT_BADACCESS	0x020000
317 
318 static int __do_page_fault(struct mm_struct *mm, unsigned long addr,
319 			   unsigned int mm_flags, unsigned long vm_flags,
320 			   struct task_struct *tsk)
321 {
322 	struct vm_area_struct *vma;
323 	int fault;
324 
325 	vma = find_vma(mm, addr);
326 	fault = VM_FAULT_BADMAP;
327 	if (unlikely(!vma))
328 		goto out;
329 	if (unlikely(vma->vm_start > addr))
330 		goto check_stack;
331 
332 	/*
333 	 * Ok, we have a good vm_area for this memory access, so we can handle
334 	 * it.
335 	 */
336 good_area:
337 	/*
338 	 * Check that the permissions on the VMA allow for the fault which
339 	 * occurred.
340 	 */
341 	if (!(vma->vm_flags & vm_flags)) {
342 		fault = VM_FAULT_BADACCESS;
343 		goto out;
344 	}
345 
346 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
347 
348 check_stack:
349 	if (vma->vm_flags & VM_GROWSDOWN && !expand_stack(vma, addr))
350 		goto good_area;
351 out:
352 	return fault;
353 }
354 
355 static bool is_el0_instruction_abort(unsigned int esr)
356 {
357 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
358 }
359 
360 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
361 				   struct pt_regs *regs)
362 {
363 	struct task_struct *tsk;
364 	struct mm_struct *mm;
365 	int fault, sig, code, major = 0;
366 	unsigned long vm_flags = VM_READ | VM_WRITE;
367 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
368 
369 	if (notify_page_fault(regs, esr))
370 		return 0;
371 
372 	tsk = current;
373 	mm  = tsk->mm;
374 
375 	/*
376 	 * If we're in an interrupt or have no user context, we must not take
377 	 * the fault.
378 	 */
379 	if (faulthandler_disabled() || !mm)
380 		goto no_context;
381 
382 	if (user_mode(regs))
383 		mm_flags |= FAULT_FLAG_USER;
384 
385 	if (is_el0_instruction_abort(esr)) {
386 		vm_flags = VM_EXEC;
387 	} else if ((esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM)) {
388 		vm_flags = VM_WRITE;
389 		mm_flags |= FAULT_FLAG_WRITE;
390 	}
391 
392 	if (addr < USER_DS && is_permission_fault(esr, regs, addr)) {
393 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
394 		if (regs->orig_addr_limit == KERNEL_DS)
395 			die("Accessing user space memory with fs=KERNEL_DS", regs, esr);
396 
397 		if (is_el1_instruction_abort(esr))
398 			die("Attempting to execute userspace memory", regs, esr);
399 
400 		if (!search_exception_tables(regs->pc))
401 			die("Accessing user space memory outside uaccess.h routines", regs, esr);
402 	}
403 
404 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
405 
406 	/*
407 	 * As per x86, we may deadlock here. However, since the kernel only
408 	 * validly references user space from well defined areas of the code,
409 	 * we can bug out early if this is from code which shouldn't.
410 	 */
411 	if (!down_read_trylock(&mm->mmap_sem)) {
412 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
413 			goto no_context;
414 retry:
415 		down_read(&mm->mmap_sem);
416 	} else {
417 		/*
418 		 * The above down_read_trylock() might have succeeded in which
419 		 * case, we'll have missed the might_sleep() from down_read().
420 		 */
421 		might_sleep();
422 #ifdef CONFIG_DEBUG_VM
423 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
424 			goto no_context;
425 #endif
426 	}
427 
428 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, tsk);
429 	major |= fault & VM_FAULT_MAJOR;
430 
431 	if (fault & VM_FAULT_RETRY) {
432 		/*
433 		 * If we need to retry but a fatal signal is pending,
434 		 * handle the signal first. We do not need to release
435 		 * the mmap_sem because it would already be released
436 		 * in __lock_page_or_retry in mm/filemap.c.
437 		 */
438 		if (fatal_signal_pending(current))
439 			return 0;
440 
441 		/*
442 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
443 		 * starvation.
444 		 */
445 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
446 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
447 			mm_flags |= FAULT_FLAG_TRIED;
448 			goto retry;
449 		}
450 	}
451 	up_read(&mm->mmap_sem);
452 
453 	/*
454 	 * Handle the "normal" (no error) case first.
455 	 */
456 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
457 			      VM_FAULT_BADACCESS)))) {
458 		/*
459 		 * Major/minor page fault accounting is only done
460 		 * once. If we go through a retry, it is extremely
461 		 * likely that the page will be found in page cache at
462 		 * that point.
463 		 */
464 		if (major) {
465 			tsk->maj_flt++;
466 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
467 				      addr);
468 		} else {
469 			tsk->min_flt++;
470 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
471 				      addr);
472 		}
473 
474 		return 0;
475 	}
476 
477 	/*
478 	 * If we are in kernel mode at this point, we have no context to
479 	 * handle this fault with.
480 	 */
481 	if (!user_mode(regs))
482 		goto no_context;
483 
484 	if (fault & VM_FAULT_OOM) {
485 		/*
486 		 * We ran out of memory, call the OOM killer, and return to
487 		 * userspace (which will retry the fault, or kill us if we got
488 		 * oom-killed).
489 		 */
490 		pagefault_out_of_memory();
491 		return 0;
492 	}
493 
494 	if (fault & VM_FAULT_SIGBUS) {
495 		/*
496 		 * We had some memory, but were unable to successfully fix up
497 		 * this page fault.
498 		 */
499 		sig = SIGBUS;
500 		code = BUS_ADRERR;
501 	} else if (fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) {
502 		sig = SIGBUS;
503 		code = BUS_MCEERR_AR;
504 	} else {
505 		/*
506 		 * Something tried to access memory that isn't in our memory
507 		 * map.
508 		 */
509 		sig = SIGSEGV;
510 		code = fault == VM_FAULT_BADACCESS ?
511 			SEGV_ACCERR : SEGV_MAPERR;
512 	}
513 
514 	__do_user_fault(tsk, addr, esr, sig, code, regs, fault);
515 	return 0;
516 
517 no_context:
518 	__do_kernel_fault(addr, esr, regs);
519 	return 0;
520 }
521 
522 /*
523  * First Level Translation Fault Handler
524  *
525  * We enter here because the first level page table doesn't contain a valid
526  * entry for the address.
527  *
528  * If the address is in kernel space (>= TASK_SIZE), then we are probably
529  * faulting in the vmalloc() area.
530  *
531  * If the init_task's first level page tables contains the relevant entry, we
532  * copy the it to this task.  If not, we send the process a signal, fixup the
533  * exception, or oops the kernel.
534  *
535  * NOTE! We MUST NOT take any locks for this case. We may be in an interrupt
536  * or a critical region, and should only copy the information from the master
537  * page table, nothing more.
538  */
539 static int __kprobes do_translation_fault(unsigned long addr,
540 					  unsigned int esr,
541 					  struct pt_regs *regs)
542 {
543 	if (addr < TASK_SIZE)
544 		return do_page_fault(addr, esr, regs);
545 
546 	do_bad_area(addr, esr, regs);
547 	return 0;
548 }
549 
550 static int do_alignment_fault(unsigned long addr, unsigned int esr,
551 			      struct pt_regs *regs)
552 {
553 	do_bad_area(addr, esr, regs);
554 	return 0;
555 }
556 
557 /*
558  * This abort handler always returns "fault".
559  */
560 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
561 {
562 	return 1;
563 }
564 
565 /*
566  * This abort handler deals with Synchronous External Abort.
567  * It calls notifiers, and then returns "fault".
568  */
569 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
570 {
571 	struct siginfo info;
572 	const struct fault_info *inf;
573 	int ret = 0;
574 
575 	inf = esr_to_fault_info(esr);
576 	pr_err("Synchronous External Abort: %s (0x%08x) at 0x%016lx\n",
577 		inf->name, esr, addr);
578 
579 	/*
580 	 * Synchronous aborts may interrupt code which had interrupts masked.
581 	 * Before calling out into the wider kernel tell the interested
582 	 * subsystems.
583 	 */
584 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA)) {
585 		if (interrupts_enabled(regs))
586 			nmi_enter();
587 
588 		ret = ghes_notify_sea();
589 
590 		if (interrupts_enabled(regs))
591 			nmi_exit();
592 	}
593 
594 	info.si_signo = SIGBUS;
595 	info.si_errno = 0;
596 	info.si_code  = 0;
597 	if (esr & ESR_ELx_FnV)
598 		info.si_addr = NULL;
599 	else
600 		info.si_addr  = (void __user *)addr;
601 	arm64_notify_die("", regs, &info, esr);
602 
603 	return ret;
604 }
605 
606 static const struct fault_info fault_info[] = {
607 	{ do_bad,		SIGBUS,  0,		"ttbr address size fault"	},
608 	{ do_bad,		SIGBUS,  0,		"level 1 address size fault"	},
609 	{ do_bad,		SIGBUS,  0,		"level 2 address size fault"	},
610 	{ do_bad,		SIGBUS,  0,		"level 3 address size fault"	},
611 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
612 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
613 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
614 	{ do_page_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
615 	{ do_bad,		SIGBUS,  0,		"unknown 8"			},
616 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
617 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
618 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
619 	{ do_bad,		SIGBUS,  0,		"unknown 12"			},
620 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
621 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
622 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
623 	{ do_sea,		SIGBUS,  0,		"synchronous external abort"	},
624 	{ do_bad,		SIGBUS,  0,		"unknown 17"			},
625 	{ do_bad,		SIGBUS,  0,		"unknown 18"			},
626 	{ do_bad,		SIGBUS,  0,		"unknown 19"			},
627 	{ do_sea,		SIGBUS,  0,		"level 0 (translation table walk)"	},
628 	{ do_sea,		SIGBUS,  0,		"level 1 (translation table walk)"	},
629 	{ do_sea,		SIGBUS,  0,		"level 2 (translation table walk)"	},
630 	{ do_sea,		SIGBUS,  0,		"level 3 (translation table walk)"	},
631 	{ do_sea,		SIGBUS,  0,		"synchronous parity or ECC error" },
632 	{ do_bad,		SIGBUS,  0,		"unknown 25"			},
633 	{ do_bad,		SIGBUS,  0,		"unknown 26"			},
634 	{ do_bad,		SIGBUS,  0,		"unknown 27"			},
635 	{ do_sea,		SIGBUS,  0,		"level 0 synchronous parity error (translation table walk)"	},
636 	{ do_sea,		SIGBUS,  0,		"level 1 synchronous parity error (translation table walk)"	},
637 	{ do_sea,		SIGBUS,  0,		"level 2 synchronous parity error (translation table walk)"	},
638 	{ do_sea,		SIGBUS,  0,		"level 3 synchronous parity error (translation table walk)"	},
639 	{ do_bad,		SIGBUS,  0,		"unknown 32"			},
640 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
641 	{ do_bad,		SIGBUS,  0,		"unknown 34"			},
642 	{ do_bad,		SIGBUS,  0,		"unknown 35"			},
643 	{ do_bad,		SIGBUS,  0,		"unknown 36"			},
644 	{ do_bad,		SIGBUS,  0,		"unknown 37"			},
645 	{ do_bad,		SIGBUS,  0,		"unknown 38"			},
646 	{ do_bad,		SIGBUS,  0,		"unknown 39"			},
647 	{ do_bad,		SIGBUS,  0,		"unknown 40"			},
648 	{ do_bad,		SIGBUS,  0,		"unknown 41"			},
649 	{ do_bad,		SIGBUS,  0,		"unknown 42"			},
650 	{ do_bad,		SIGBUS,  0,		"unknown 43"			},
651 	{ do_bad,		SIGBUS,  0,		"unknown 44"			},
652 	{ do_bad,		SIGBUS,  0,		"unknown 45"			},
653 	{ do_bad,		SIGBUS,  0,		"unknown 46"			},
654 	{ do_bad,		SIGBUS,  0,		"unknown 47"			},
655 	{ do_bad,		SIGBUS,  0,		"TLB conflict abort"		},
656 	{ do_bad,		SIGBUS,  0,		"unknown 49"			},
657 	{ do_bad,		SIGBUS,  0,		"unknown 50"			},
658 	{ do_bad,		SIGBUS,  0,		"unknown 51"			},
659 	{ do_bad,		SIGBUS,  0,		"implementation fault (lockdown abort)" },
660 	{ do_bad,		SIGBUS,  0,		"implementation fault (unsupported exclusive)" },
661 	{ do_bad,		SIGBUS,  0,		"unknown 54"			},
662 	{ do_bad,		SIGBUS,  0,		"unknown 55"			},
663 	{ do_bad,		SIGBUS,  0,		"unknown 56"			},
664 	{ do_bad,		SIGBUS,  0,		"unknown 57"			},
665 	{ do_bad,		SIGBUS,  0,		"unknown 58" 			},
666 	{ do_bad,		SIGBUS,  0,		"unknown 59"			},
667 	{ do_bad,		SIGBUS,  0,		"unknown 60"			},
668 	{ do_bad,		SIGBUS,  0,		"section domain fault"		},
669 	{ do_bad,		SIGBUS,  0,		"page domain fault"		},
670 	{ do_bad,		SIGBUS,  0,		"unknown 63"			},
671 };
672 
673 /*
674  * Handle Synchronous External Aborts that occur in a guest kernel.
675  *
676  * The return value will be zero if the SEA was successfully handled
677  * and non-zero if there was an error processing the error or there was
678  * no error to process.
679  */
680 int handle_guest_sea(phys_addr_t addr, unsigned int esr)
681 {
682 	int ret = -ENOENT;
683 
684 	if (IS_ENABLED(CONFIG_ACPI_APEI_SEA))
685 		ret = ghes_notify_sea();
686 
687 	return ret;
688 }
689 
690 /*
691  * Dispatch a data abort to the relevant handler.
692  */
693 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
694 					 struct pt_regs *regs)
695 {
696 	const struct fault_info *inf = esr_to_fault_info(esr);
697 	struct siginfo info;
698 
699 	if (!inf->fn(addr, esr, regs))
700 		return;
701 
702 	pr_alert("Unhandled fault: %s (0x%08x) at 0x%016lx\n",
703 		 inf->name, esr, addr);
704 
705 	info.si_signo = inf->sig;
706 	info.si_errno = 0;
707 	info.si_code  = inf->code;
708 	info.si_addr  = (void __user *)addr;
709 	arm64_notify_die("", regs, &info, esr);
710 }
711 
712 /*
713  * Handle stack alignment exceptions.
714  */
715 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
716 					   unsigned int esr,
717 					   struct pt_regs *regs)
718 {
719 	struct siginfo info;
720 	struct task_struct *tsk = current;
721 
722 	if (show_unhandled_signals && unhandled_signal(tsk, SIGBUS))
723 		pr_info_ratelimited("%s[%d]: %s exception: pc=%p sp=%p\n",
724 				    tsk->comm, task_pid_nr(tsk),
725 				    esr_get_class_string(esr), (void *)regs->pc,
726 				    (void *)regs->sp);
727 
728 	info.si_signo = SIGBUS;
729 	info.si_errno = 0;
730 	info.si_code  = BUS_ADRALN;
731 	info.si_addr  = (void __user *)addr;
732 	arm64_notify_die("Oops - SP/PC alignment exception", regs, &info, esr);
733 }
734 
735 int __init early_brk64(unsigned long addr, unsigned int esr,
736 		       struct pt_regs *regs);
737 
738 /*
739  * __refdata because early_brk64 is __init, but the reference to it is
740  * clobbered at arch_initcall time.
741  * See traps.c and debug-monitors.c:debug_traps_init().
742  */
743 static struct fault_info __refdata debug_fault_info[] = {
744 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
745 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
746 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
747 	{ do_bad,	SIGBUS,		0,		"unknown 3"		},
748 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
749 	{ do_bad,	SIGTRAP,	0,		"aarch32 vector catch"	},
750 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
751 	{ do_bad,	SIGBUS,		0,		"unknown 7"		},
752 };
753 
754 void __init hook_debug_fault_code(int nr,
755 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
756 				  int sig, int code, const char *name)
757 {
758 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
759 
760 	debug_fault_info[nr].fn		= fn;
761 	debug_fault_info[nr].sig	= sig;
762 	debug_fault_info[nr].code	= code;
763 	debug_fault_info[nr].name	= name;
764 }
765 
766 asmlinkage int __exception do_debug_exception(unsigned long addr,
767 					      unsigned int esr,
768 					      struct pt_regs *regs)
769 {
770 	const struct fault_info *inf = debug_fault_info + DBG_ESR_EVT(esr);
771 	struct siginfo info;
772 	int rv;
773 
774 	/*
775 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
776 	 * already disabled to preserve the last enabled/disabled addresses.
777 	 */
778 	if (interrupts_enabled(regs))
779 		trace_hardirqs_off();
780 
781 	if (!inf->fn(addr, esr, regs)) {
782 		rv = 1;
783 	} else {
784 		pr_alert("Unhandled debug exception: %s (0x%08x) at 0x%016lx\n",
785 			 inf->name, esr, addr);
786 
787 		info.si_signo = inf->sig;
788 		info.si_errno = 0;
789 		info.si_code  = inf->code;
790 		info.si_addr  = (void __user *)addr;
791 		arm64_notify_die("", regs, &info, 0);
792 		rv = 0;
793 	}
794 
795 	if (interrupts_enabled(regs))
796 		trace_hardirqs_on();
797 
798 	return rv;
799 }
800 NOKPROBE_SYMBOL(do_debug_exception);
801 
802 #ifdef CONFIG_ARM64_PAN
803 int cpu_enable_pan(void *__unused)
804 {
805 	/*
806 	 * We modify PSTATE. This won't work from irq context as the PSTATE
807 	 * is discarded once we return from the exception.
808 	 */
809 	WARN_ON_ONCE(in_interrupt());
810 
811 	config_sctlr_el1(SCTLR_EL1_SPAN, 0);
812 	asm(SET_PSTATE_PAN(1));
813 	return 0;
814 }
815 #endif /* CONFIG_ARM64_PAN */
816