xref: /openbmc/linux/arch/arm64/mm/fault.c (revision c33c7948)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/preempt.h>
27 #include <linux/hugetlb.h>
28 
29 #include <asm/acpi.h>
30 #include <asm/bug.h>
31 #include <asm/cmpxchg.h>
32 #include <asm/cpufeature.h>
33 #include <asm/efi.h>
34 #include <asm/exception.h>
35 #include <asm/daifflags.h>
36 #include <asm/debug-monitors.h>
37 #include <asm/esr.h>
38 #include <asm/kprobes.h>
39 #include <asm/mte.h>
40 #include <asm/processor.h>
41 #include <asm/sysreg.h>
42 #include <asm/system_misc.h>
43 #include <asm/tlbflush.h>
44 #include <asm/traps.h>
45 
46 struct fault_info {
47 	int	(*fn)(unsigned long far, unsigned long esr,
48 		      struct pt_regs *regs);
49 	int	sig;
50 	int	code;
51 	const char *name;
52 };
53 
54 static const struct fault_info fault_info[];
55 static struct fault_info debug_fault_info[];
56 
57 static inline const struct fault_info *esr_to_fault_info(unsigned long esr)
58 {
59 	return fault_info + (esr & ESR_ELx_FSC);
60 }
61 
62 static inline const struct fault_info *esr_to_debug_fault_info(unsigned long esr)
63 {
64 	return debug_fault_info + DBG_ESR_EVT(esr);
65 }
66 
67 static void data_abort_decode(unsigned long esr)
68 {
69 	pr_alert("Data abort info:\n");
70 
71 	if (esr & ESR_ELx_ISV) {
72 		pr_alert("  Access size = %u byte(s)\n",
73 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
74 		pr_alert("  SSE = %lu, SRT = %lu\n",
75 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
76 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
77 		pr_alert("  SF = %lu, AR = %lu\n",
78 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
79 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
80 	} else {
81 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
82 	}
83 
84 	pr_alert("  CM = %lu, WnR = %lu\n",
85 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
86 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
87 }
88 
89 static void mem_abort_decode(unsigned long esr)
90 {
91 	pr_alert("Mem abort info:\n");
92 
93 	pr_alert("  ESR = 0x%016lx\n", esr);
94 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
95 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
96 		 (esr & ESR_ELx_IL) ? 32 : 16);
97 	pr_alert("  SET = %lu, FnV = %lu\n",
98 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
99 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
100 	pr_alert("  EA = %lu, S1PTW = %lu\n",
101 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
102 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
103 	pr_alert("  FSC = 0x%02lx: %s\n", (esr & ESR_ELx_FSC),
104 		 esr_to_fault_info(esr)->name);
105 
106 	if (esr_is_data_abort(esr))
107 		data_abort_decode(esr);
108 }
109 
110 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
111 {
112 	/* Either init_pg_dir or swapper_pg_dir */
113 	if (mm == &init_mm)
114 		return __pa_symbol(mm->pgd);
115 
116 	return (unsigned long)virt_to_phys(mm->pgd);
117 }
118 
119 /*
120  * Dump out the page tables associated with 'addr' in the currently active mm.
121  */
122 static void show_pte(unsigned long addr)
123 {
124 	struct mm_struct *mm;
125 	pgd_t *pgdp;
126 	pgd_t pgd;
127 
128 	if (is_ttbr0_addr(addr)) {
129 		/* TTBR0 */
130 		mm = current->active_mm;
131 		if (mm == &init_mm) {
132 			pr_alert("[%016lx] user address but active_mm is swapper\n",
133 				 addr);
134 			return;
135 		}
136 	} else if (is_ttbr1_addr(addr)) {
137 		/* TTBR1 */
138 		mm = &init_mm;
139 	} else {
140 		pr_alert("[%016lx] address between user and kernel address ranges\n",
141 			 addr);
142 		return;
143 	}
144 
145 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
146 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
147 		 vabits_actual, mm_to_pgd_phys(mm));
148 	pgdp = pgd_offset(mm, addr);
149 	pgd = READ_ONCE(*pgdp);
150 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
151 
152 	do {
153 		p4d_t *p4dp, p4d;
154 		pud_t *pudp, pud;
155 		pmd_t *pmdp, pmd;
156 		pte_t *ptep, pte;
157 
158 		if (pgd_none(pgd) || pgd_bad(pgd))
159 			break;
160 
161 		p4dp = p4d_offset(pgdp, addr);
162 		p4d = READ_ONCE(*p4dp);
163 		pr_cont(", p4d=%016llx", p4d_val(p4d));
164 		if (p4d_none(p4d) || p4d_bad(p4d))
165 			break;
166 
167 		pudp = pud_offset(p4dp, addr);
168 		pud = READ_ONCE(*pudp);
169 		pr_cont(", pud=%016llx", pud_val(pud));
170 		if (pud_none(pud) || pud_bad(pud))
171 			break;
172 
173 		pmdp = pmd_offset(pudp, addr);
174 		pmd = READ_ONCE(*pmdp);
175 		pr_cont(", pmd=%016llx", pmd_val(pmd));
176 		if (pmd_none(pmd) || pmd_bad(pmd))
177 			break;
178 
179 		ptep = pte_offset_map(pmdp, addr);
180 		if (!ptep)
181 			break;
182 
183 		pte = READ_ONCE(*ptep);
184 		pr_cont(", pte=%016llx", pte_val(pte));
185 		pte_unmap(ptep);
186 	} while(0);
187 
188 	pr_cont("\n");
189 }
190 
191 /*
192  * This function sets the access flags (dirty, accessed), as well as write
193  * permission, and only to a more permissive setting.
194  *
195  * It needs to cope with hardware update of the accessed/dirty state by other
196  * agents in the system and can safely skip the __sync_icache_dcache() call as,
197  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
198  *
199  * Returns whether or not the PTE actually changed.
200  */
201 int ptep_set_access_flags(struct vm_area_struct *vma,
202 			  unsigned long address, pte_t *ptep,
203 			  pte_t entry, int dirty)
204 {
205 	pteval_t old_pteval, pteval;
206 	pte_t pte = READ_ONCE(*ptep);
207 
208 	if (pte_same(pte, entry))
209 		return 0;
210 
211 	/* only preserve the access flags and write permission */
212 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
213 
214 	/*
215 	 * Setting the flags must be done atomically to avoid racing with the
216 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
217 	 * be set to the most permissive (lowest value) of *ptep and entry
218 	 * (calculated as: a & b == ~(~a | ~b)).
219 	 */
220 	pte_val(entry) ^= PTE_RDONLY;
221 	pteval = pte_val(pte);
222 	do {
223 		old_pteval = pteval;
224 		pteval ^= PTE_RDONLY;
225 		pteval |= pte_val(entry);
226 		pteval ^= PTE_RDONLY;
227 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
228 	} while (pteval != old_pteval);
229 
230 	/* Invalidate a stale read-only entry */
231 	if (dirty)
232 		flush_tlb_page(vma, address);
233 	return 1;
234 }
235 
236 static bool is_el1_instruction_abort(unsigned long esr)
237 {
238 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
239 }
240 
241 static bool is_el1_data_abort(unsigned long esr)
242 {
243 	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
244 }
245 
246 static inline bool is_el1_permission_fault(unsigned long addr, unsigned long esr,
247 					   struct pt_regs *regs)
248 {
249 	unsigned long fsc_type = esr & ESR_ELx_FSC_TYPE;
250 
251 	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
252 		return false;
253 
254 	if (fsc_type == ESR_ELx_FSC_PERM)
255 		return true;
256 
257 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
258 		return fsc_type == ESR_ELx_FSC_FAULT &&
259 			(regs->pstate & PSR_PAN_BIT);
260 
261 	return false;
262 }
263 
264 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
265 							unsigned long esr,
266 							struct pt_regs *regs)
267 {
268 	unsigned long flags;
269 	u64 par, dfsc;
270 
271 	if (!is_el1_data_abort(esr) ||
272 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
273 		return false;
274 
275 	local_irq_save(flags);
276 	asm volatile("at s1e1r, %0" :: "r" (addr));
277 	isb();
278 	par = read_sysreg_par();
279 	local_irq_restore(flags);
280 
281 	/*
282 	 * If we now have a valid translation, treat the translation fault as
283 	 * spurious.
284 	 */
285 	if (!(par & SYS_PAR_EL1_F))
286 		return true;
287 
288 	/*
289 	 * If we got a different type of fault from the AT instruction,
290 	 * treat the translation fault as spurious.
291 	 */
292 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
293 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
294 }
295 
296 static void die_kernel_fault(const char *msg, unsigned long addr,
297 			     unsigned long esr, struct pt_regs *regs)
298 {
299 	bust_spinlocks(1);
300 
301 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
302 		 addr);
303 
304 	kasan_non_canonical_hook(addr);
305 
306 	mem_abort_decode(esr);
307 
308 	show_pte(addr);
309 	die("Oops", regs, esr);
310 	bust_spinlocks(0);
311 	make_task_dead(SIGKILL);
312 }
313 
314 #ifdef CONFIG_KASAN_HW_TAGS
315 static void report_tag_fault(unsigned long addr, unsigned long esr,
316 			     struct pt_regs *regs)
317 {
318 	/*
319 	 * SAS bits aren't set for all faults reported in EL1, so we can't
320 	 * find out access size.
321 	 */
322 	bool is_write = !!(esr & ESR_ELx_WNR);
323 	kasan_report((void *)addr, 0, is_write, regs->pc);
324 }
325 #else
326 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
327 static inline void report_tag_fault(unsigned long addr, unsigned long esr,
328 				    struct pt_regs *regs) { }
329 #endif
330 
331 static void do_tag_recovery(unsigned long addr, unsigned long esr,
332 			   struct pt_regs *regs)
333 {
334 
335 	report_tag_fault(addr, esr, regs);
336 
337 	/*
338 	 * Disable MTE Tag Checking on the local CPU for the current EL.
339 	 * It will be done lazily on the other CPUs when they will hit a
340 	 * tag fault.
341 	 */
342 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
343 			 SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF, NONE));
344 	isb();
345 }
346 
347 static bool is_el1_mte_sync_tag_check_fault(unsigned long esr)
348 {
349 	unsigned long fsc = esr & ESR_ELx_FSC;
350 
351 	if (!is_el1_data_abort(esr))
352 		return false;
353 
354 	if (fsc == ESR_ELx_FSC_MTE)
355 		return true;
356 
357 	return false;
358 }
359 
360 static bool is_translation_fault(unsigned long esr)
361 {
362 	return (esr & ESR_ELx_FSC_TYPE) == ESR_ELx_FSC_FAULT;
363 }
364 
365 static void __do_kernel_fault(unsigned long addr, unsigned long esr,
366 			      struct pt_regs *regs)
367 {
368 	const char *msg;
369 
370 	/*
371 	 * Are we prepared to handle this kernel fault?
372 	 * We are almost certainly not prepared to handle instruction faults.
373 	 */
374 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
375 		return;
376 
377 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
378 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
379 		return;
380 
381 	if (is_el1_mte_sync_tag_check_fault(esr)) {
382 		do_tag_recovery(addr, esr, regs);
383 
384 		return;
385 	}
386 
387 	if (is_el1_permission_fault(addr, esr, regs)) {
388 		if (esr & ESR_ELx_WNR)
389 			msg = "write to read-only memory";
390 		else if (is_el1_instruction_abort(esr))
391 			msg = "execute from non-executable memory";
392 		else
393 			msg = "read from unreadable memory";
394 	} else if (addr < PAGE_SIZE) {
395 		msg = "NULL pointer dereference";
396 	} else {
397 		if (is_translation_fault(esr) &&
398 		    kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
399 			return;
400 
401 		msg = "paging request";
402 	}
403 
404 	if (efi_runtime_fixup_exception(regs, msg))
405 		return;
406 
407 	die_kernel_fault(msg, addr, esr, regs);
408 }
409 
410 static void set_thread_esr(unsigned long address, unsigned long esr)
411 {
412 	current->thread.fault_address = address;
413 
414 	/*
415 	 * If the faulting address is in the kernel, we must sanitize the ESR.
416 	 * From userspace's point of view, kernel-only mappings don't exist
417 	 * at all, so we report them as level 0 translation faults.
418 	 * (This is not quite the way that "no mapping there at all" behaves:
419 	 * an alignment fault not caused by the memory type would take
420 	 * precedence over translation fault for a real access to empty
421 	 * space. Unfortunately we can't easily distinguish "alignment fault
422 	 * not caused by memory type" from "alignment fault caused by memory
423 	 * type", so we ignore this wrinkle and just return the translation
424 	 * fault.)
425 	 */
426 	if (!is_ttbr0_addr(current->thread.fault_address)) {
427 		switch (ESR_ELx_EC(esr)) {
428 		case ESR_ELx_EC_DABT_LOW:
429 			/*
430 			 * These bits provide only information about the
431 			 * faulting instruction, which userspace knows already.
432 			 * We explicitly clear bits which are architecturally
433 			 * RES0 in case they are given meanings in future.
434 			 * We always report the ESR as if the fault was taken
435 			 * to EL1 and so ISV and the bits in ISS[23:14] are
436 			 * clear. (In fact it always will be a fault to EL1.)
437 			 */
438 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
439 				ESR_ELx_CM | ESR_ELx_WNR;
440 			esr |= ESR_ELx_FSC_FAULT;
441 			break;
442 		case ESR_ELx_EC_IABT_LOW:
443 			/*
444 			 * Claim a level 0 translation fault.
445 			 * All other bits are architecturally RES0 for faults
446 			 * reported with that DFSC value, so we clear them.
447 			 */
448 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
449 			esr |= ESR_ELx_FSC_FAULT;
450 			break;
451 		default:
452 			/*
453 			 * This should never happen (entry.S only brings us
454 			 * into this code for insn and data aborts from a lower
455 			 * exception level). Fail safe by not providing an ESR
456 			 * context record at all.
457 			 */
458 			WARN(1, "ESR 0x%lx is not DABT or IABT from EL0\n", esr);
459 			esr = 0;
460 			break;
461 		}
462 	}
463 
464 	current->thread.fault_code = esr;
465 }
466 
467 static void do_bad_area(unsigned long far, unsigned long esr,
468 			struct pt_regs *regs)
469 {
470 	unsigned long addr = untagged_addr(far);
471 
472 	/*
473 	 * If we are in kernel mode at this point, we have no context to
474 	 * handle this fault with.
475 	 */
476 	if (user_mode(regs)) {
477 		const struct fault_info *inf = esr_to_fault_info(esr);
478 
479 		set_thread_esr(addr, esr);
480 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
481 	} else {
482 		__do_kernel_fault(addr, esr, regs);
483 	}
484 }
485 
486 #define VM_FAULT_BADMAP		((__force vm_fault_t)0x010000)
487 #define VM_FAULT_BADACCESS	((__force vm_fault_t)0x020000)
488 
489 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
490 				  unsigned int mm_flags, unsigned long vm_flags,
491 				  struct pt_regs *regs)
492 {
493 	struct vm_area_struct *vma = find_vma(mm, addr);
494 
495 	if (unlikely(!vma))
496 		return VM_FAULT_BADMAP;
497 
498 	/*
499 	 * Ok, we have a good vm_area for this memory access, so we can handle
500 	 * it.
501 	 */
502 	if (unlikely(vma->vm_start > addr)) {
503 		if (!(vma->vm_flags & VM_GROWSDOWN))
504 			return VM_FAULT_BADMAP;
505 		if (expand_stack(vma, addr))
506 			return VM_FAULT_BADMAP;
507 	}
508 
509 	/*
510 	 * Check that the permissions on the VMA allow for the fault which
511 	 * occurred.
512 	 */
513 	if (!(vma->vm_flags & vm_flags))
514 		return VM_FAULT_BADACCESS;
515 	return handle_mm_fault(vma, addr, mm_flags, regs);
516 }
517 
518 static bool is_el0_instruction_abort(unsigned long esr)
519 {
520 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
521 }
522 
523 /*
524  * Note: not valid for EL1 DC IVAC, but we never use that such that it
525  * should fault. EL0 cannot issue DC IVAC (undef).
526  */
527 static bool is_write_abort(unsigned long esr)
528 {
529 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
530 }
531 
532 static int __kprobes do_page_fault(unsigned long far, unsigned long esr,
533 				   struct pt_regs *regs)
534 {
535 	const struct fault_info *inf;
536 	struct mm_struct *mm = current->mm;
537 	vm_fault_t fault;
538 	unsigned long vm_flags;
539 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
540 	unsigned long addr = untagged_addr(far);
541 #ifdef CONFIG_PER_VMA_LOCK
542 	struct vm_area_struct *vma;
543 #endif
544 
545 	if (kprobe_page_fault(regs, esr))
546 		return 0;
547 
548 	/*
549 	 * If we're in an interrupt or have no user context, we must not take
550 	 * the fault.
551 	 */
552 	if (faulthandler_disabled() || !mm)
553 		goto no_context;
554 
555 	if (user_mode(regs))
556 		mm_flags |= FAULT_FLAG_USER;
557 
558 	/*
559 	 * vm_flags tells us what bits we must have in vma->vm_flags
560 	 * for the fault to be benign, __do_page_fault() would check
561 	 * vma->vm_flags & vm_flags and returns an error if the
562 	 * intersection is empty
563 	 */
564 	if (is_el0_instruction_abort(esr)) {
565 		/* It was exec fault */
566 		vm_flags = VM_EXEC;
567 		mm_flags |= FAULT_FLAG_INSTRUCTION;
568 	} else if (is_write_abort(esr)) {
569 		/* It was write fault */
570 		vm_flags = VM_WRITE;
571 		mm_flags |= FAULT_FLAG_WRITE;
572 	} else {
573 		/* It was read fault */
574 		vm_flags = VM_READ;
575 		/* Write implies read */
576 		vm_flags |= VM_WRITE;
577 		/* If EPAN is absent then exec implies read */
578 		if (!cpus_have_const_cap(ARM64_HAS_EPAN))
579 			vm_flags |= VM_EXEC;
580 	}
581 
582 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
583 		if (is_el1_instruction_abort(esr))
584 			die_kernel_fault("execution of user memory",
585 					 addr, esr, regs);
586 
587 		if (!search_exception_tables(regs->pc))
588 			die_kernel_fault("access to user memory outside uaccess routines",
589 					 addr, esr, regs);
590 	}
591 
592 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
593 
594 #ifdef CONFIG_PER_VMA_LOCK
595 	if (!(mm_flags & FAULT_FLAG_USER))
596 		goto lock_mmap;
597 
598 	vma = lock_vma_under_rcu(mm, addr);
599 	if (!vma)
600 		goto lock_mmap;
601 
602 	if (!(vma->vm_flags & vm_flags)) {
603 		vma_end_read(vma);
604 		goto lock_mmap;
605 	}
606 	fault = handle_mm_fault(vma, addr & PAGE_MASK,
607 				mm_flags | FAULT_FLAG_VMA_LOCK, regs);
608 	vma_end_read(vma);
609 
610 	if (!(fault & VM_FAULT_RETRY)) {
611 		count_vm_vma_lock_event(VMA_LOCK_SUCCESS);
612 		goto done;
613 	}
614 	count_vm_vma_lock_event(VMA_LOCK_RETRY);
615 
616 	/* Quick path to respond to signals */
617 	if (fault_signal_pending(fault, regs)) {
618 		if (!user_mode(regs))
619 			goto no_context;
620 		return 0;
621 	}
622 lock_mmap:
623 #endif /* CONFIG_PER_VMA_LOCK */
624 	/*
625 	 * As per x86, we may deadlock here. However, since the kernel only
626 	 * validly references user space from well defined areas of the code,
627 	 * we can bug out early if this is from code which shouldn't.
628 	 */
629 	if (!mmap_read_trylock(mm)) {
630 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
631 			goto no_context;
632 retry:
633 		mmap_read_lock(mm);
634 	} else {
635 		/*
636 		 * The above mmap_read_trylock() might have succeeded in which
637 		 * case, we'll have missed the might_sleep() from down_read().
638 		 */
639 		might_sleep();
640 #ifdef CONFIG_DEBUG_VM
641 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
642 			mmap_read_unlock(mm);
643 			goto no_context;
644 		}
645 #endif
646 	}
647 
648 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
649 
650 	/* Quick path to respond to signals */
651 	if (fault_signal_pending(fault, regs)) {
652 		if (!user_mode(regs))
653 			goto no_context;
654 		return 0;
655 	}
656 
657 	/* The fault is fully completed (including releasing mmap lock) */
658 	if (fault & VM_FAULT_COMPLETED)
659 		return 0;
660 
661 	if (fault & VM_FAULT_RETRY) {
662 		mm_flags |= FAULT_FLAG_TRIED;
663 		goto retry;
664 	}
665 	mmap_read_unlock(mm);
666 
667 #ifdef CONFIG_PER_VMA_LOCK
668 done:
669 #endif
670 	/*
671 	 * Handle the "normal" (no error) case first.
672 	 */
673 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
674 			      VM_FAULT_BADACCESS))))
675 		return 0;
676 
677 	/*
678 	 * If we are in kernel mode at this point, we have no context to
679 	 * handle this fault with.
680 	 */
681 	if (!user_mode(regs))
682 		goto no_context;
683 
684 	if (fault & VM_FAULT_OOM) {
685 		/*
686 		 * We ran out of memory, call the OOM killer, and return to
687 		 * userspace (which will retry the fault, or kill us if we got
688 		 * oom-killed).
689 		 */
690 		pagefault_out_of_memory();
691 		return 0;
692 	}
693 
694 	inf = esr_to_fault_info(esr);
695 	set_thread_esr(addr, esr);
696 	if (fault & VM_FAULT_SIGBUS) {
697 		/*
698 		 * We had some memory, but were unable to successfully fix up
699 		 * this page fault.
700 		 */
701 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
702 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
703 		unsigned int lsb;
704 
705 		lsb = PAGE_SHIFT;
706 		if (fault & VM_FAULT_HWPOISON_LARGE)
707 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
708 
709 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
710 	} else {
711 		/*
712 		 * Something tried to access memory that isn't in our memory
713 		 * map.
714 		 */
715 		arm64_force_sig_fault(SIGSEGV,
716 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
717 				      far, inf->name);
718 	}
719 
720 	return 0;
721 
722 no_context:
723 	__do_kernel_fault(addr, esr, regs);
724 	return 0;
725 }
726 
727 static int __kprobes do_translation_fault(unsigned long far,
728 					  unsigned long esr,
729 					  struct pt_regs *regs)
730 {
731 	unsigned long addr = untagged_addr(far);
732 
733 	if (is_ttbr0_addr(addr))
734 		return do_page_fault(far, esr, regs);
735 
736 	do_bad_area(far, esr, regs);
737 	return 0;
738 }
739 
740 static int do_alignment_fault(unsigned long far, unsigned long esr,
741 			      struct pt_regs *regs)
742 {
743 	if (IS_ENABLED(CONFIG_COMPAT_ALIGNMENT_FIXUPS) &&
744 	    compat_user_mode(regs))
745 		return do_compat_alignment_fixup(far, regs);
746 	do_bad_area(far, esr, regs);
747 	return 0;
748 }
749 
750 static int do_bad(unsigned long far, unsigned long esr, struct pt_regs *regs)
751 {
752 	return 1; /* "fault" */
753 }
754 
755 static int do_sea(unsigned long far, unsigned long esr, struct pt_regs *regs)
756 {
757 	const struct fault_info *inf;
758 	unsigned long siaddr;
759 
760 	inf = esr_to_fault_info(esr);
761 
762 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
763 		/*
764 		 * APEI claimed this as a firmware-first notification.
765 		 * Some processing deferred to task_work before ret_to_user().
766 		 */
767 		return 0;
768 	}
769 
770 	if (esr & ESR_ELx_FnV) {
771 		siaddr = 0;
772 	} else {
773 		/*
774 		 * The architecture specifies that the tag bits of FAR_EL1 are
775 		 * UNKNOWN for synchronous external aborts. Mask them out now
776 		 * so that userspace doesn't see them.
777 		 */
778 		siaddr  = untagged_addr(far);
779 	}
780 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
781 
782 	return 0;
783 }
784 
785 static int do_tag_check_fault(unsigned long far, unsigned long esr,
786 			      struct pt_regs *regs)
787 {
788 	/*
789 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
790 	 * for tag check faults. Set them to corresponding bits in the untagged
791 	 * address.
792 	 */
793 	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
794 	do_bad_area(far, esr, regs);
795 	return 0;
796 }
797 
798 static const struct fault_info fault_info[] = {
799 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
800 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
801 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
802 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
803 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
804 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
805 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
806 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
807 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
808 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
809 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
810 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
811 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
812 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
813 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
814 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
815 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
816 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
817 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
818 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
819 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
820 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
821 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
822 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
823 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
824 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
825 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
826 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
827 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
828 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
829 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
830 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
831 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
832 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
833 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
834 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
835 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
836 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
837 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
838 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
839 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
840 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
841 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
842 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
843 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
844 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
845 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
846 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
847 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
848 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
849 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
850 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
851 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
852 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
853 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
854 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
855 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
856 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
857 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
858 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
859 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
860 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
861 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
862 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
863 };
864 
865 void do_mem_abort(unsigned long far, unsigned long esr, struct pt_regs *regs)
866 {
867 	const struct fault_info *inf = esr_to_fault_info(esr);
868 	unsigned long addr = untagged_addr(far);
869 
870 	if (!inf->fn(far, esr, regs))
871 		return;
872 
873 	if (!user_mode(regs))
874 		die_kernel_fault(inf->name, addr, esr, regs);
875 
876 	/*
877 	 * At this point we have an unrecognized fault type whose tag bits may
878 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
879 	 * address to the signal handler.
880 	 */
881 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
882 }
883 NOKPROBE_SYMBOL(do_mem_abort);
884 
885 void do_sp_pc_abort(unsigned long addr, unsigned long esr, struct pt_regs *regs)
886 {
887 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
888 			 addr, esr);
889 }
890 NOKPROBE_SYMBOL(do_sp_pc_abort);
891 
892 int __init early_brk64(unsigned long addr, unsigned long esr,
893 		       struct pt_regs *regs);
894 
895 /*
896  * __refdata because early_brk64 is __init, but the reference to it is
897  * clobbered at arch_initcall time.
898  * See traps.c and debug-monitors.c:debug_traps_init().
899  */
900 static struct fault_info __refdata debug_fault_info[] = {
901 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
902 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
903 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
904 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
905 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
906 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
907 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
908 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
909 };
910 
911 void __init hook_debug_fault_code(int nr,
912 				  int (*fn)(unsigned long, unsigned long, struct pt_regs *),
913 				  int sig, int code, const char *name)
914 {
915 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
916 
917 	debug_fault_info[nr].fn		= fn;
918 	debug_fault_info[nr].sig	= sig;
919 	debug_fault_info[nr].code	= code;
920 	debug_fault_info[nr].name	= name;
921 }
922 
923 /*
924  * In debug exception context, we explicitly disable preemption despite
925  * having interrupts disabled.
926  * This serves two purposes: it makes it much less likely that we would
927  * accidentally schedule in exception context and it will force a warning
928  * if we somehow manage to schedule by accident.
929  */
930 static void debug_exception_enter(struct pt_regs *regs)
931 {
932 	preempt_disable();
933 
934 	/* This code is a bit fragile.  Test it. */
935 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
936 }
937 NOKPROBE_SYMBOL(debug_exception_enter);
938 
939 static void debug_exception_exit(struct pt_regs *regs)
940 {
941 	preempt_enable_no_resched();
942 }
943 NOKPROBE_SYMBOL(debug_exception_exit);
944 
945 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned long esr,
946 			struct pt_regs *regs)
947 {
948 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
949 	unsigned long pc = instruction_pointer(regs);
950 
951 	debug_exception_enter(regs);
952 
953 	if (user_mode(regs) && !is_ttbr0_addr(pc))
954 		arm64_apply_bp_hardening();
955 
956 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
957 		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
958 	}
959 
960 	debug_exception_exit(regs);
961 }
962 NOKPROBE_SYMBOL(do_debug_exception);
963 
964 /*
965  * Used during anonymous page fault handling.
966  */
967 struct folio *vma_alloc_zeroed_movable_folio(struct vm_area_struct *vma,
968 						unsigned long vaddr)
969 {
970 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
971 
972 	/*
973 	 * If the page is mapped with PROT_MTE, initialise the tags at the
974 	 * point of allocation and page zeroing as this is usually faster than
975 	 * separate DC ZVA and STGM.
976 	 */
977 	if (vma->vm_flags & VM_MTE)
978 		flags |= __GFP_ZEROTAGS;
979 
980 	return vma_alloc_folio(flags, 0, vma, vaddr, false);
981 }
982 
983 void tag_clear_highpage(struct page *page)
984 {
985 	/* Newly allocated page, shouldn't have been tagged yet */
986 	WARN_ON_ONCE(!try_page_mte_tagging(page));
987 	mte_zero_clear_page_tags(page_address(page));
988 	set_page_mte_tagged(page);
989 }
990