xref: /openbmc/linux/arch/arm64/mm/fault.c (revision c0891ac1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/bitfield.h>
12 #include <linux/extable.h>
13 #include <linux/kfence.h>
14 #include <linux/signal.h>
15 #include <linux/mm.h>
16 #include <linux/hardirq.h>
17 #include <linux/init.h>
18 #include <linux/kasan.h>
19 #include <linux/kprobes.h>
20 #include <linux/uaccess.h>
21 #include <linux/page-flags.h>
22 #include <linux/sched/signal.h>
23 #include <linux/sched/debug.h>
24 #include <linux/highmem.h>
25 #include <linux/perf_event.h>
26 #include <linux/preempt.h>
27 #include <linux/hugetlb.h>
28 
29 #include <asm/acpi.h>
30 #include <asm/bug.h>
31 #include <asm/cmpxchg.h>
32 #include <asm/cpufeature.h>
33 #include <asm/exception.h>
34 #include <asm/daifflags.h>
35 #include <asm/debug-monitors.h>
36 #include <asm/esr.h>
37 #include <asm/kprobes.h>
38 #include <asm/mte.h>
39 #include <asm/processor.h>
40 #include <asm/sysreg.h>
41 #include <asm/system_misc.h>
42 #include <asm/tlbflush.h>
43 #include <asm/traps.h>
44 
45 struct fault_info {
46 	int	(*fn)(unsigned long far, unsigned int esr,
47 		      struct pt_regs *regs);
48 	int	sig;
49 	int	code;
50 	const char *name;
51 };
52 
53 static const struct fault_info fault_info[];
54 static struct fault_info debug_fault_info[];
55 
56 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
57 {
58 	return fault_info + (esr & ESR_ELx_FSC);
59 }
60 
61 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
62 {
63 	return debug_fault_info + DBG_ESR_EVT(esr);
64 }
65 
66 static void data_abort_decode(unsigned int esr)
67 {
68 	pr_alert("Data abort info:\n");
69 
70 	if (esr & ESR_ELx_ISV) {
71 		pr_alert("  Access size = %u byte(s)\n",
72 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
73 		pr_alert("  SSE = %lu, SRT = %lu\n",
74 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
75 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
76 		pr_alert("  SF = %lu, AR = %lu\n",
77 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
78 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
79 	} else {
80 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
81 	}
82 
83 	pr_alert("  CM = %lu, WnR = %lu\n",
84 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
85 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
86 }
87 
88 static void mem_abort_decode(unsigned int esr)
89 {
90 	pr_alert("Mem abort info:\n");
91 
92 	pr_alert("  ESR = 0x%08x\n", esr);
93 	pr_alert("  EC = 0x%02lx: %s, IL = %u bits\n",
94 		 ESR_ELx_EC(esr), esr_get_class_string(esr),
95 		 (esr & ESR_ELx_IL) ? 32 : 16);
96 	pr_alert("  SET = %lu, FnV = %lu\n",
97 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
98 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
99 	pr_alert("  EA = %lu, S1PTW = %lu\n",
100 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
101 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
102 	pr_alert("  FSC = 0x%02x: %s\n", (esr & ESR_ELx_FSC),
103 		 esr_to_fault_info(esr)->name);
104 
105 	if (esr_is_data_abort(esr))
106 		data_abort_decode(esr);
107 }
108 
109 static inline unsigned long mm_to_pgd_phys(struct mm_struct *mm)
110 {
111 	/* Either init_pg_dir or swapper_pg_dir */
112 	if (mm == &init_mm)
113 		return __pa_symbol(mm->pgd);
114 
115 	return (unsigned long)virt_to_phys(mm->pgd);
116 }
117 
118 /*
119  * Dump out the page tables associated with 'addr' in the currently active mm.
120  */
121 static void show_pte(unsigned long addr)
122 {
123 	struct mm_struct *mm;
124 	pgd_t *pgdp;
125 	pgd_t pgd;
126 
127 	if (is_ttbr0_addr(addr)) {
128 		/* TTBR0 */
129 		mm = current->active_mm;
130 		if (mm == &init_mm) {
131 			pr_alert("[%016lx] user address but active_mm is swapper\n",
132 				 addr);
133 			return;
134 		}
135 	} else if (is_ttbr1_addr(addr)) {
136 		/* TTBR1 */
137 		mm = &init_mm;
138 	} else {
139 		pr_alert("[%016lx] address between user and kernel address ranges\n",
140 			 addr);
141 		return;
142 	}
143 
144 	pr_alert("%s pgtable: %luk pages, %llu-bit VAs, pgdp=%016lx\n",
145 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
146 		 vabits_actual, mm_to_pgd_phys(mm));
147 	pgdp = pgd_offset(mm, addr);
148 	pgd = READ_ONCE(*pgdp);
149 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
150 
151 	do {
152 		p4d_t *p4dp, p4d;
153 		pud_t *pudp, pud;
154 		pmd_t *pmdp, pmd;
155 		pte_t *ptep, pte;
156 
157 		if (pgd_none(pgd) || pgd_bad(pgd))
158 			break;
159 
160 		p4dp = p4d_offset(pgdp, addr);
161 		p4d = READ_ONCE(*p4dp);
162 		pr_cont(", p4d=%016llx", p4d_val(p4d));
163 		if (p4d_none(p4d) || p4d_bad(p4d))
164 			break;
165 
166 		pudp = pud_offset(p4dp, addr);
167 		pud = READ_ONCE(*pudp);
168 		pr_cont(", pud=%016llx", pud_val(pud));
169 		if (pud_none(pud) || pud_bad(pud))
170 			break;
171 
172 		pmdp = pmd_offset(pudp, addr);
173 		pmd = READ_ONCE(*pmdp);
174 		pr_cont(", pmd=%016llx", pmd_val(pmd));
175 		if (pmd_none(pmd) || pmd_bad(pmd))
176 			break;
177 
178 		ptep = pte_offset_map(pmdp, addr);
179 		pte = READ_ONCE(*ptep);
180 		pr_cont(", pte=%016llx", pte_val(pte));
181 		pte_unmap(ptep);
182 	} while(0);
183 
184 	pr_cont("\n");
185 }
186 
187 /*
188  * This function sets the access flags (dirty, accessed), as well as write
189  * permission, and only to a more permissive setting.
190  *
191  * It needs to cope with hardware update of the accessed/dirty state by other
192  * agents in the system and can safely skip the __sync_icache_dcache() call as,
193  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
194  *
195  * Returns whether or not the PTE actually changed.
196  */
197 int ptep_set_access_flags(struct vm_area_struct *vma,
198 			  unsigned long address, pte_t *ptep,
199 			  pte_t entry, int dirty)
200 {
201 	pteval_t old_pteval, pteval;
202 	pte_t pte = READ_ONCE(*ptep);
203 
204 	if (pte_same(pte, entry))
205 		return 0;
206 
207 	/* only preserve the access flags and write permission */
208 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
209 
210 	/*
211 	 * Setting the flags must be done atomically to avoid racing with the
212 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
213 	 * be set to the most permissive (lowest value) of *ptep and entry
214 	 * (calculated as: a & b == ~(~a | ~b)).
215 	 */
216 	pte_val(entry) ^= PTE_RDONLY;
217 	pteval = pte_val(pte);
218 	do {
219 		old_pteval = pteval;
220 		pteval ^= PTE_RDONLY;
221 		pteval |= pte_val(entry);
222 		pteval ^= PTE_RDONLY;
223 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
224 	} while (pteval != old_pteval);
225 
226 	/* Invalidate a stale read-only entry */
227 	if (dirty)
228 		flush_tlb_page(vma, address);
229 	return 1;
230 }
231 
232 static bool is_el1_instruction_abort(unsigned int esr)
233 {
234 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
235 }
236 
237 static bool is_el1_data_abort(unsigned int esr)
238 {
239 	return ESR_ELx_EC(esr) == ESR_ELx_EC_DABT_CUR;
240 }
241 
242 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
243 					   struct pt_regs *regs)
244 {
245 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
246 
247 	if (!is_el1_data_abort(esr) && !is_el1_instruction_abort(esr))
248 		return false;
249 
250 	if (fsc_type == ESR_ELx_FSC_PERM)
251 		return true;
252 
253 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
254 		return fsc_type == ESR_ELx_FSC_FAULT &&
255 			(regs->pstate & PSR_PAN_BIT);
256 
257 	return false;
258 }
259 
260 static bool __kprobes is_spurious_el1_translation_fault(unsigned long addr,
261 							unsigned int esr,
262 							struct pt_regs *regs)
263 {
264 	unsigned long flags;
265 	u64 par, dfsc;
266 
267 	if (!is_el1_data_abort(esr) ||
268 	    (esr & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT)
269 		return false;
270 
271 	local_irq_save(flags);
272 	asm volatile("at s1e1r, %0" :: "r" (addr));
273 	isb();
274 	par = read_sysreg_par();
275 	local_irq_restore(flags);
276 
277 	/*
278 	 * If we now have a valid translation, treat the translation fault as
279 	 * spurious.
280 	 */
281 	if (!(par & SYS_PAR_EL1_F))
282 		return true;
283 
284 	/*
285 	 * If we got a different type of fault from the AT instruction,
286 	 * treat the translation fault as spurious.
287 	 */
288 	dfsc = FIELD_GET(SYS_PAR_EL1_FST, par);
289 	return (dfsc & ESR_ELx_FSC_TYPE) != ESR_ELx_FSC_FAULT;
290 }
291 
292 static void die_kernel_fault(const char *msg, unsigned long addr,
293 			     unsigned int esr, struct pt_regs *regs)
294 {
295 	bust_spinlocks(1);
296 
297 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
298 		 addr);
299 
300 	mem_abort_decode(esr);
301 
302 	show_pte(addr);
303 	die("Oops", regs, esr);
304 	bust_spinlocks(0);
305 	do_exit(SIGKILL);
306 }
307 
308 #ifdef CONFIG_KASAN_HW_TAGS
309 static void report_tag_fault(unsigned long addr, unsigned int esr,
310 			     struct pt_regs *regs)
311 {
312 	static bool reported;
313 	bool is_write;
314 
315 	if (READ_ONCE(reported))
316 		return;
317 
318 	/*
319 	 * This is used for KASAN tests and assumes that no MTE faults
320 	 * happened before running the tests.
321 	 */
322 	if (mte_report_once())
323 		WRITE_ONCE(reported, true);
324 
325 	/*
326 	 * SAS bits aren't set for all faults reported in EL1, so we can't
327 	 * find out access size.
328 	 */
329 	is_write = !!(esr & ESR_ELx_WNR);
330 	kasan_report(addr, 0, is_write, regs->pc);
331 }
332 #else
333 /* Tag faults aren't enabled without CONFIG_KASAN_HW_TAGS. */
334 static inline void report_tag_fault(unsigned long addr, unsigned int esr,
335 				    struct pt_regs *regs) { }
336 #endif
337 
338 static void do_tag_recovery(unsigned long addr, unsigned int esr,
339 			   struct pt_regs *regs)
340 {
341 
342 	report_tag_fault(addr, esr, regs);
343 
344 	/*
345 	 * Disable MTE Tag Checking on the local CPU for the current EL.
346 	 * It will be done lazily on the other CPUs when they will hit a
347 	 * tag fault.
348 	 */
349 	sysreg_clear_set(sctlr_el1, SCTLR_ELx_TCF_MASK, SCTLR_ELx_TCF_NONE);
350 	isb();
351 }
352 
353 static bool is_el1_mte_sync_tag_check_fault(unsigned int esr)
354 {
355 	unsigned int fsc = esr & ESR_ELx_FSC;
356 
357 	if (!is_el1_data_abort(esr))
358 		return false;
359 
360 	if (fsc == ESR_ELx_FSC_MTE)
361 		return true;
362 
363 	return false;
364 }
365 
366 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
367 			      struct pt_regs *regs)
368 {
369 	const char *msg;
370 
371 	/*
372 	 * Are we prepared to handle this kernel fault?
373 	 * We are almost certainly not prepared to handle instruction faults.
374 	 */
375 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
376 		return;
377 
378 	if (WARN_RATELIMIT(is_spurious_el1_translation_fault(addr, esr, regs),
379 	    "Ignoring spurious kernel translation fault at virtual address %016lx\n", addr))
380 		return;
381 
382 	if (is_el1_mte_sync_tag_check_fault(esr)) {
383 		do_tag_recovery(addr, esr, regs);
384 
385 		return;
386 	}
387 
388 	if (is_el1_permission_fault(addr, esr, regs)) {
389 		if (esr & ESR_ELx_WNR)
390 			msg = "write to read-only memory";
391 		else if (is_el1_instruction_abort(esr))
392 			msg = "execute from non-executable memory";
393 		else
394 			msg = "read from unreadable memory";
395 	} else if (addr < PAGE_SIZE) {
396 		msg = "NULL pointer dereference";
397 	} else {
398 		if (kfence_handle_page_fault(addr, esr & ESR_ELx_WNR, regs))
399 			return;
400 
401 		msg = "paging request";
402 	}
403 
404 	die_kernel_fault(msg, addr, esr, regs);
405 }
406 
407 static void set_thread_esr(unsigned long address, unsigned int esr)
408 {
409 	current->thread.fault_address = address;
410 
411 	/*
412 	 * If the faulting address is in the kernel, we must sanitize the ESR.
413 	 * From userspace's point of view, kernel-only mappings don't exist
414 	 * at all, so we report them as level 0 translation faults.
415 	 * (This is not quite the way that "no mapping there at all" behaves:
416 	 * an alignment fault not caused by the memory type would take
417 	 * precedence over translation fault for a real access to empty
418 	 * space. Unfortunately we can't easily distinguish "alignment fault
419 	 * not caused by memory type" from "alignment fault caused by memory
420 	 * type", so we ignore this wrinkle and just return the translation
421 	 * fault.)
422 	 */
423 	if (!is_ttbr0_addr(current->thread.fault_address)) {
424 		switch (ESR_ELx_EC(esr)) {
425 		case ESR_ELx_EC_DABT_LOW:
426 			/*
427 			 * These bits provide only information about the
428 			 * faulting instruction, which userspace knows already.
429 			 * We explicitly clear bits which are architecturally
430 			 * RES0 in case they are given meanings in future.
431 			 * We always report the ESR as if the fault was taken
432 			 * to EL1 and so ISV and the bits in ISS[23:14] are
433 			 * clear. (In fact it always will be a fault to EL1.)
434 			 */
435 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
436 				ESR_ELx_CM | ESR_ELx_WNR;
437 			esr |= ESR_ELx_FSC_FAULT;
438 			break;
439 		case ESR_ELx_EC_IABT_LOW:
440 			/*
441 			 * Claim a level 0 translation fault.
442 			 * All other bits are architecturally RES0 for faults
443 			 * reported with that DFSC value, so we clear them.
444 			 */
445 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
446 			esr |= ESR_ELx_FSC_FAULT;
447 			break;
448 		default:
449 			/*
450 			 * This should never happen (entry.S only brings us
451 			 * into this code for insn and data aborts from a lower
452 			 * exception level). Fail safe by not providing an ESR
453 			 * context record at all.
454 			 */
455 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
456 			esr = 0;
457 			break;
458 		}
459 	}
460 
461 	current->thread.fault_code = esr;
462 }
463 
464 static void do_bad_area(unsigned long far, unsigned int esr,
465 			struct pt_regs *regs)
466 {
467 	unsigned long addr = untagged_addr(far);
468 
469 	/*
470 	 * If we are in kernel mode at this point, we have no context to
471 	 * handle this fault with.
472 	 */
473 	if (user_mode(regs)) {
474 		const struct fault_info *inf = esr_to_fault_info(esr);
475 
476 		set_thread_esr(addr, esr);
477 		arm64_force_sig_fault(inf->sig, inf->code, far, inf->name);
478 	} else {
479 		__do_kernel_fault(addr, esr, regs);
480 	}
481 }
482 
483 #define VM_FAULT_BADMAP		0x010000
484 #define VM_FAULT_BADACCESS	0x020000
485 
486 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
487 				  unsigned int mm_flags, unsigned long vm_flags,
488 				  struct pt_regs *regs)
489 {
490 	struct vm_area_struct *vma = find_vma(mm, addr);
491 
492 	if (unlikely(!vma))
493 		return VM_FAULT_BADMAP;
494 
495 	/*
496 	 * Ok, we have a good vm_area for this memory access, so we can handle
497 	 * it.
498 	 */
499 	if (unlikely(vma->vm_start > addr)) {
500 		if (!(vma->vm_flags & VM_GROWSDOWN))
501 			return VM_FAULT_BADMAP;
502 		if (expand_stack(vma, addr))
503 			return VM_FAULT_BADMAP;
504 	}
505 
506 	/*
507 	 * Check that the permissions on the VMA allow for the fault which
508 	 * occurred.
509 	 */
510 	if (!(vma->vm_flags & vm_flags))
511 		return VM_FAULT_BADACCESS;
512 	return handle_mm_fault(vma, addr, mm_flags, regs);
513 }
514 
515 static bool is_el0_instruction_abort(unsigned int esr)
516 {
517 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
518 }
519 
520 /*
521  * Note: not valid for EL1 DC IVAC, but we never use that such that it
522  * should fault. EL0 cannot issue DC IVAC (undef).
523  */
524 static bool is_write_abort(unsigned int esr)
525 {
526 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
527 }
528 
529 static int __kprobes do_page_fault(unsigned long far, unsigned int esr,
530 				   struct pt_regs *regs)
531 {
532 	const struct fault_info *inf;
533 	struct mm_struct *mm = current->mm;
534 	vm_fault_t fault;
535 	unsigned long vm_flags;
536 	unsigned int mm_flags = FAULT_FLAG_DEFAULT;
537 	unsigned long addr = untagged_addr(far);
538 
539 	if (kprobe_page_fault(regs, esr))
540 		return 0;
541 
542 	/*
543 	 * If we're in an interrupt or have no user context, we must not take
544 	 * the fault.
545 	 */
546 	if (faulthandler_disabled() || !mm)
547 		goto no_context;
548 
549 	if (user_mode(regs))
550 		mm_flags |= FAULT_FLAG_USER;
551 
552 	/*
553 	 * vm_flags tells us what bits we must have in vma->vm_flags
554 	 * for the fault to be benign, __do_page_fault() would check
555 	 * vma->vm_flags & vm_flags and returns an error if the
556 	 * intersection is empty
557 	 */
558 	if (is_el0_instruction_abort(esr)) {
559 		/* It was exec fault */
560 		vm_flags = VM_EXEC;
561 		mm_flags |= FAULT_FLAG_INSTRUCTION;
562 	} else if (is_write_abort(esr)) {
563 		/* It was write fault */
564 		vm_flags = VM_WRITE;
565 		mm_flags |= FAULT_FLAG_WRITE;
566 	} else {
567 		/* It was read fault */
568 		vm_flags = VM_READ;
569 		/* Write implies read */
570 		vm_flags |= VM_WRITE;
571 		/* If EPAN is absent then exec implies read */
572 		if (!cpus_have_const_cap(ARM64_HAS_EPAN))
573 			vm_flags |= VM_EXEC;
574 	}
575 
576 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
577 		if (is_el1_instruction_abort(esr))
578 			die_kernel_fault("execution of user memory",
579 					 addr, esr, regs);
580 
581 		if (!search_exception_tables(regs->pc))
582 			die_kernel_fault("access to user memory outside uaccess routines",
583 					 addr, esr, regs);
584 	}
585 
586 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
587 
588 	/*
589 	 * As per x86, we may deadlock here. However, since the kernel only
590 	 * validly references user space from well defined areas of the code,
591 	 * we can bug out early if this is from code which shouldn't.
592 	 */
593 	if (!mmap_read_trylock(mm)) {
594 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
595 			goto no_context;
596 retry:
597 		mmap_read_lock(mm);
598 	} else {
599 		/*
600 		 * The above mmap_read_trylock() might have succeeded in which
601 		 * case, we'll have missed the might_sleep() from down_read().
602 		 */
603 		might_sleep();
604 #ifdef CONFIG_DEBUG_VM
605 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
606 			mmap_read_unlock(mm);
607 			goto no_context;
608 		}
609 #endif
610 	}
611 
612 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags, regs);
613 
614 	/* Quick path to respond to signals */
615 	if (fault_signal_pending(fault, regs)) {
616 		if (!user_mode(regs))
617 			goto no_context;
618 		return 0;
619 	}
620 
621 	if (fault & VM_FAULT_RETRY) {
622 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
623 			mm_flags |= FAULT_FLAG_TRIED;
624 			goto retry;
625 		}
626 	}
627 	mmap_read_unlock(mm);
628 
629 	/*
630 	 * Handle the "normal" (no error) case first.
631 	 */
632 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
633 			      VM_FAULT_BADACCESS))))
634 		return 0;
635 
636 	/*
637 	 * If we are in kernel mode at this point, we have no context to
638 	 * handle this fault with.
639 	 */
640 	if (!user_mode(regs))
641 		goto no_context;
642 
643 	if (fault & VM_FAULT_OOM) {
644 		/*
645 		 * We ran out of memory, call the OOM killer, and return to
646 		 * userspace (which will retry the fault, or kill us if we got
647 		 * oom-killed).
648 		 */
649 		pagefault_out_of_memory();
650 		return 0;
651 	}
652 
653 	inf = esr_to_fault_info(esr);
654 	set_thread_esr(addr, esr);
655 	if (fault & VM_FAULT_SIGBUS) {
656 		/*
657 		 * We had some memory, but were unable to successfully fix up
658 		 * this page fault.
659 		 */
660 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, far, inf->name);
661 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
662 		unsigned int lsb;
663 
664 		lsb = PAGE_SHIFT;
665 		if (fault & VM_FAULT_HWPOISON_LARGE)
666 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
667 
668 		arm64_force_sig_mceerr(BUS_MCEERR_AR, far, lsb, inf->name);
669 	} else {
670 		/*
671 		 * Something tried to access memory that isn't in our memory
672 		 * map.
673 		 */
674 		arm64_force_sig_fault(SIGSEGV,
675 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
676 				      far, inf->name);
677 	}
678 
679 	return 0;
680 
681 no_context:
682 	__do_kernel_fault(addr, esr, regs);
683 	return 0;
684 }
685 
686 static int __kprobes do_translation_fault(unsigned long far,
687 					  unsigned int esr,
688 					  struct pt_regs *regs)
689 {
690 	unsigned long addr = untagged_addr(far);
691 
692 	if (is_ttbr0_addr(addr))
693 		return do_page_fault(far, esr, regs);
694 
695 	do_bad_area(far, esr, regs);
696 	return 0;
697 }
698 
699 static int do_alignment_fault(unsigned long far, unsigned int esr,
700 			      struct pt_regs *regs)
701 {
702 	do_bad_area(far, esr, regs);
703 	return 0;
704 }
705 
706 static int do_bad(unsigned long far, unsigned int esr, struct pt_regs *regs)
707 {
708 	return 1; /* "fault" */
709 }
710 
711 static int do_sea(unsigned long far, unsigned int esr, struct pt_regs *regs)
712 {
713 	const struct fault_info *inf;
714 	unsigned long siaddr;
715 
716 	inf = esr_to_fault_info(esr);
717 
718 	if (user_mode(regs) && apei_claim_sea(regs) == 0) {
719 		/*
720 		 * APEI claimed this as a firmware-first notification.
721 		 * Some processing deferred to task_work before ret_to_user().
722 		 */
723 		return 0;
724 	}
725 
726 	if (esr & ESR_ELx_FnV) {
727 		siaddr = 0;
728 	} else {
729 		/*
730 		 * The architecture specifies that the tag bits of FAR_EL1 are
731 		 * UNKNOWN for synchronous external aborts. Mask them out now
732 		 * so that userspace doesn't see them.
733 		 */
734 		siaddr  = untagged_addr(far);
735 	}
736 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
737 
738 	return 0;
739 }
740 
741 static int do_tag_check_fault(unsigned long far, unsigned int esr,
742 			      struct pt_regs *regs)
743 {
744 	/*
745 	 * The architecture specifies that bits 63:60 of FAR_EL1 are UNKNOWN
746 	 * for tag check faults. Set them to corresponding bits in the untagged
747 	 * address.
748 	 */
749 	far = (__untagged_addr(far) & ~MTE_TAG_MASK) | (far & MTE_TAG_MASK);
750 	do_bad_area(far, esr, regs);
751 	return 0;
752 }
753 
754 static const struct fault_info fault_info[] = {
755 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
756 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
757 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
758 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
759 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
760 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
761 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
762 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
763 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
764 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
765 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
766 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
767 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
768 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
769 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
770 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
771 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
772 	{ do_tag_check_fault,	SIGSEGV, SEGV_MTESERR,	"synchronous tag check fault"	},
773 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
774 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
775 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
776 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
777 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
778 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
779 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
780 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
781 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
782 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
783 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
784 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
785 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
786 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
787 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
788 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
789 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
790 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
791 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
792 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
793 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
794 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
795 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
796 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
797 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
798 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
799 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
800 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
801 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
802 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
803 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
804 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
805 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
806 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
807 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
808 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
809 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
810 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
811 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
812 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
813 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
814 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
815 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
816 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
817 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
818 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
819 };
820 
821 void do_mem_abort(unsigned long far, unsigned int esr, struct pt_regs *regs)
822 {
823 	const struct fault_info *inf = esr_to_fault_info(esr);
824 	unsigned long addr = untagged_addr(far);
825 
826 	if (!inf->fn(far, esr, regs))
827 		return;
828 
829 	if (!user_mode(regs)) {
830 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
831 		mem_abort_decode(esr);
832 		show_pte(addr);
833 	}
834 
835 	/*
836 	 * At this point we have an unrecognized fault type whose tag bits may
837 	 * have been defined as UNKNOWN. Therefore we only expose the untagged
838 	 * address to the signal handler.
839 	 */
840 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, addr, esr);
841 }
842 NOKPROBE_SYMBOL(do_mem_abort);
843 
844 void do_sp_pc_abort(unsigned long addr, unsigned int esr, struct pt_regs *regs)
845 {
846 	arm64_notify_die("SP/PC alignment exception", regs, SIGBUS, BUS_ADRALN,
847 			 addr, esr);
848 }
849 NOKPROBE_SYMBOL(do_sp_pc_abort);
850 
851 int __init early_brk64(unsigned long addr, unsigned int esr,
852 		       struct pt_regs *regs);
853 
854 /*
855  * __refdata because early_brk64 is __init, but the reference to it is
856  * clobbered at arch_initcall time.
857  * See traps.c and debug-monitors.c:debug_traps_init().
858  */
859 static struct fault_info __refdata debug_fault_info[] = {
860 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
861 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
862 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
863 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
864 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
865 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
866 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
867 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
868 };
869 
870 void __init hook_debug_fault_code(int nr,
871 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
872 				  int sig, int code, const char *name)
873 {
874 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
875 
876 	debug_fault_info[nr].fn		= fn;
877 	debug_fault_info[nr].sig	= sig;
878 	debug_fault_info[nr].code	= code;
879 	debug_fault_info[nr].name	= name;
880 }
881 
882 /*
883  * In debug exception context, we explicitly disable preemption despite
884  * having interrupts disabled.
885  * This serves two purposes: it makes it much less likely that we would
886  * accidentally schedule in exception context and it will force a warning
887  * if we somehow manage to schedule by accident.
888  */
889 static void debug_exception_enter(struct pt_regs *regs)
890 {
891 	preempt_disable();
892 
893 	/* This code is a bit fragile.  Test it. */
894 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
895 }
896 NOKPROBE_SYMBOL(debug_exception_enter);
897 
898 static void debug_exception_exit(struct pt_regs *regs)
899 {
900 	preempt_enable_no_resched();
901 }
902 NOKPROBE_SYMBOL(debug_exception_exit);
903 
904 void do_debug_exception(unsigned long addr_if_watchpoint, unsigned int esr,
905 			struct pt_regs *regs)
906 {
907 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
908 	unsigned long pc = instruction_pointer(regs);
909 
910 	debug_exception_enter(regs);
911 
912 	if (user_mode(regs) && !is_ttbr0_addr(pc))
913 		arm64_apply_bp_hardening();
914 
915 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
916 		arm64_notify_die(inf->name, regs, inf->sig, inf->code, pc, esr);
917 	}
918 
919 	debug_exception_exit(regs);
920 }
921 NOKPROBE_SYMBOL(do_debug_exception);
922 
923 /*
924  * Used during anonymous page fault handling.
925  */
926 struct page *alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
927 						unsigned long vaddr)
928 {
929 	gfp_t flags = GFP_HIGHUSER_MOVABLE | __GFP_ZERO;
930 
931 	/*
932 	 * If the page is mapped with PROT_MTE, initialise the tags at the
933 	 * point of allocation and page zeroing as this is usually faster than
934 	 * separate DC ZVA and STGM.
935 	 */
936 	if (vma->vm_flags & VM_MTE)
937 		flags |= __GFP_ZEROTAGS;
938 
939 	return alloc_page_vma(flags, vma, vaddr);
940 }
941 
942 void tag_clear_highpage(struct page *page)
943 {
944 	mte_zero_clear_page_tags(page_address(page));
945 	page_kasan_tag_reset(page);
946 	set_bit(PG_mte_tagged, &page->flags);
947 }
948