xref: /openbmc/linux/arch/arm64/mm/fault.c (revision b593bce5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Based on arch/arm/mm/fault.c
4  *
5  * Copyright (C) 1995  Linus Torvalds
6  * Copyright (C) 1995-2004 Russell King
7  * Copyright (C) 2012 ARM Ltd.
8  */
9 
10 #include <linux/acpi.h>
11 #include <linux/extable.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched/signal.h>
20 #include <linux/sched/debug.h>
21 #include <linux/highmem.h>
22 #include <linux/perf_event.h>
23 #include <linux/preempt.h>
24 #include <linux/hugetlb.h>
25 
26 #include <asm/acpi.h>
27 #include <asm/bug.h>
28 #include <asm/cmpxchg.h>
29 #include <asm/cpufeature.h>
30 #include <asm/exception.h>
31 #include <asm/daifflags.h>
32 #include <asm/debug-monitors.h>
33 #include <asm/esr.h>
34 #include <asm/kasan.h>
35 #include <asm/sysreg.h>
36 #include <asm/system_misc.h>
37 #include <asm/pgtable.h>
38 #include <asm/tlbflush.h>
39 #include <asm/traps.h>
40 
41 struct fault_info {
42 	int	(*fn)(unsigned long addr, unsigned int esr,
43 		      struct pt_regs *regs);
44 	int	sig;
45 	int	code;
46 	const char *name;
47 };
48 
49 static const struct fault_info fault_info[];
50 static struct fault_info debug_fault_info[];
51 
52 static inline const struct fault_info *esr_to_fault_info(unsigned int esr)
53 {
54 	return fault_info + (esr & ESR_ELx_FSC);
55 }
56 
57 static inline const struct fault_info *esr_to_debug_fault_info(unsigned int esr)
58 {
59 	return debug_fault_info + DBG_ESR_EVT(esr);
60 }
61 
62 static void data_abort_decode(unsigned int esr)
63 {
64 	pr_alert("Data abort info:\n");
65 
66 	if (esr & ESR_ELx_ISV) {
67 		pr_alert("  Access size = %u byte(s)\n",
68 			 1U << ((esr & ESR_ELx_SAS) >> ESR_ELx_SAS_SHIFT));
69 		pr_alert("  SSE = %lu, SRT = %lu\n",
70 			 (esr & ESR_ELx_SSE) >> ESR_ELx_SSE_SHIFT,
71 			 (esr & ESR_ELx_SRT_MASK) >> ESR_ELx_SRT_SHIFT);
72 		pr_alert("  SF = %lu, AR = %lu\n",
73 			 (esr & ESR_ELx_SF) >> ESR_ELx_SF_SHIFT,
74 			 (esr & ESR_ELx_AR) >> ESR_ELx_AR_SHIFT);
75 	} else {
76 		pr_alert("  ISV = 0, ISS = 0x%08lx\n", esr & ESR_ELx_ISS_MASK);
77 	}
78 
79 	pr_alert("  CM = %lu, WnR = %lu\n",
80 		 (esr & ESR_ELx_CM) >> ESR_ELx_CM_SHIFT,
81 		 (esr & ESR_ELx_WNR) >> ESR_ELx_WNR_SHIFT);
82 }
83 
84 static void mem_abort_decode(unsigned int esr)
85 {
86 	pr_alert("Mem abort info:\n");
87 
88 	pr_alert("  ESR = 0x%08x\n", esr);
89 	pr_alert("  Exception class = %s, IL = %u bits\n",
90 		 esr_get_class_string(esr),
91 		 (esr & ESR_ELx_IL) ? 32 : 16);
92 	pr_alert("  SET = %lu, FnV = %lu\n",
93 		 (esr & ESR_ELx_SET_MASK) >> ESR_ELx_SET_SHIFT,
94 		 (esr & ESR_ELx_FnV) >> ESR_ELx_FnV_SHIFT);
95 	pr_alert("  EA = %lu, S1PTW = %lu\n",
96 		 (esr & ESR_ELx_EA) >> ESR_ELx_EA_SHIFT,
97 		 (esr & ESR_ELx_S1PTW) >> ESR_ELx_S1PTW_SHIFT);
98 
99 	if (esr_is_data_abort(esr))
100 		data_abort_decode(esr);
101 }
102 
103 static inline bool is_ttbr0_addr(unsigned long addr)
104 {
105 	/* entry assembly clears tags for TTBR0 addrs */
106 	return addr < TASK_SIZE;
107 }
108 
109 static inline bool is_ttbr1_addr(unsigned long addr)
110 {
111 	/* TTBR1 addresses may have a tag if KASAN_SW_TAGS is in use */
112 	return arch_kasan_reset_tag(addr) >= VA_START;
113 }
114 
115 /*
116  * Dump out the page tables associated with 'addr' in the currently active mm.
117  */
118 static void show_pte(unsigned long addr)
119 {
120 	struct mm_struct *mm;
121 	pgd_t *pgdp;
122 	pgd_t pgd;
123 
124 	if (is_ttbr0_addr(addr)) {
125 		/* TTBR0 */
126 		mm = current->active_mm;
127 		if (mm == &init_mm) {
128 			pr_alert("[%016lx] user address but active_mm is swapper\n",
129 				 addr);
130 			return;
131 		}
132 	} else if (is_ttbr1_addr(addr)) {
133 		/* TTBR1 */
134 		mm = &init_mm;
135 	} else {
136 		pr_alert("[%016lx] address between user and kernel address ranges\n",
137 			 addr);
138 		return;
139 	}
140 
141 	pr_alert("%s pgtable: %luk pages, %u-bit VAs, pgdp=%016lx\n",
142 		 mm == &init_mm ? "swapper" : "user", PAGE_SIZE / SZ_1K,
143 		 mm == &init_mm ? VA_BITS : (int)vabits_user,
144 		 (unsigned long)virt_to_phys(mm->pgd));
145 	pgdp = pgd_offset(mm, addr);
146 	pgd = READ_ONCE(*pgdp);
147 	pr_alert("[%016lx] pgd=%016llx", addr, pgd_val(pgd));
148 
149 	do {
150 		pud_t *pudp, pud;
151 		pmd_t *pmdp, pmd;
152 		pte_t *ptep, pte;
153 
154 		if (pgd_none(pgd) || pgd_bad(pgd))
155 			break;
156 
157 		pudp = pud_offset(pgdp, addr);
158 		pud = READ_ONCE(*pudp);
159 		pr_cont(", pud=%016llx", pud_val(pud));
160 		if (pud_none(pud) || pud_bad(pud))
161 			break;
162 
163 		pmdp = pmd_offset(pudp, addr);
164 		pmd = READ_ONCE(*pmdp);
165 		pr_cont(", pmd=%016llx", pmd_val(pmd));
166 		if (pmd_none(pmd) || pmd_bad(pmd))
167 			break;
168 
169 		ptep = pte_offset_map(pmdp, addr);
170 		pte = READ_ONCE(*ptep);
171 		pr_cont(", pte=%016llx", pte_val(pte));
172 		pte_unmap(ptep);
173 	} while(0);
174 
175 	pr_cont("\n");
176 }
177 
178 /*
179  * This function sets the access flags (dirty, accessed), as well as write
180  * permission, and only to a more permissive setting.
181  *
182  * It needs to cope with hardware update of the accessed/dirty state by other
183  * agents in the system and can safely skip the __sync_icache_dcache() call as,
184  * like set_pte_at(), the PTE is never changed from no-exec to exec here.
185  *
186  * Returns whether or not the PTE actually changed.
187  */
188 int ptep_set_access_flags(struct vm_area_struct *vma,
189 			  unsigned long address, pte_t *ptep,
190 			  pte_t entry, int dirty)
191 {
192 	pteval_t old_pteval, pteval;
193 	pte_t pte = READ_ONCE(*ptep);
194 
195 	if (pte_same(pte, entry))
196 		return 0;
197 
198 	/* only preserve the access flags and write permission */
199 	pte_val(entry) &= PTE_RDONLY | PTE_AF | PTE_WRITE | PTE_DIRTY;
200 
201 	/*
202 	 * Setting the flags must be done atomically to avoid racing with the
203 	 * hardware update of the access/dirty state. The PTE_RDONLY bit must
204 	 * be set to the most permissive (lowest value) of *ptep and entry
205 	 * (calculated as: a & b == ~(~a | ~b)).
206 	 */
207 	pte_val(entry) ^= PTE_RDONLY;
208 	pteval = pte_val(pte);
209 	do {
210 		old_pteval = pteval;
211 		pteval ^= PTE_RDONLY;
212 		pteval |= pte_val(entry);
213 		pteval ^= PTE_RDONLY;
214 		pteval = cmpxchg_relaxed(&pte_val(*ptep), old_pteval, pteval);
215 	} while (pteval != old_pteval);
216 
217 	flush_tlb_fix_spurious_fault(vma, address);
218 	return 1;
219 }
220 
221 static bool is_el1_instruction_abort(unsigned int esr)
222 {
223 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_CUR;
224 }
225 
226 static inline bool is_el1_permission_fault(unsigned long addr, unsigned int esr,
227 					   struct pt_regs *regs)
228 {
229 	unsigned int ec       = ESR_ELx_EC(esr);
230 	unsigned int fsc_type = esr & ESR_ELx_FSC_TYPE;
231 
232 	if (ec != ESR_ELx_EC_DABT_CUR && ec != ESR_ELx_EC_IABT_CUR)
233 		return false;
234 
235 	if (fsc_type == ESR_ELx_FSC_PERM)
236 		return true;
237 
238 	if (is_ttbr0_addr(addr) && system_uses_ttbr0_pan())
239 		return fsc_type == ESR_ELx_FSC_FAULT &&
240 			(regs->pstate & PSR_PAN_BIT);
241 
242 	return false;
243 }
244 
245 static void die_kernel_fault(const char *msg, unsigned long addr,
246 			     unsigned int esr, struct pt_regs *regs)
247 {
248 	bust_spinlocks(1);
249 
250 	pr_alert("Unable to handle kernel %s at virtual address %016lx\n", msg,
251 		 addr);
252 
253 	mem_abort_decode(esr);
254 
255 	show_pte(addr);
256 	die("Oops", regs, esr);
257 	bust_spinlocks(0);
258 	do_exit(SIGKILL);
259 }
260 
261 static void __do_kernel_fault(unsigned long addr, unsigned int esr,
262 			      struct pt_regs *regs)
263 {
264 	const char *msg;
265 
266 	/*
267 	 * Are we prepared to handle this kernel fault?
268 	 * We are almost certainly not prepared to handle instruction faults.
269 	 */
270 	if (!is_el1_instruction_abort(esr) && fixup_exception(regs))
271 		return;
272 
273 	if (is_el1_permission_fault(addr, esr, regs)) {
274 		if (esr & ESR_ELx_WNR)
275 			msg = "write to read-only memory";
276 		else
277 			msg = "read from unreadable memory";
278 	} else if (addr < PAGE_SIZE) {
279 		msg = "NULL pointer dereference";
280 	} else {
281 		msg = "paging request";
282 	}
283 
284 	die_kernel_fault(msg, addr, esr, regs);
285 }
286 
287 static void set_thread_esr(unsigned long address, unsigned int esr)
288 {
289 	current->thread.fault_address = address;
290 
291 	/*
292 	 * If the faulting address is in the kernel, we must sanitize the ESR.
293 	 * From userspace's point of view, kernel-only mappings don't exist
294 	 * at all, so we report them as level 0 translation faults.
295 	 * (This is not quite the way that "no mapping there at all" behaves:
296 	 * an alignment fault not caused by the memory type would take
297 	 * precedence over translation fault for a real access to empty
298 	 * space. Unfortunately we can't easily distinguish "alignment fault
299 	 * not caused by memory type" from "alignment fault caused by memory
300 	 * type", so we ignore this wrinkle and just return the translation
301 	 * fault.)
302 	 */
303 	if (!is_ttbr0_addr(current->thread.fault_address)) {
304 		switch (ESR_ELx_EC(esr)) {
305 		case ESR_ELx_EC_DABT_LOW:
306 			/*
307 			 * These bits provide only information about the
308 			 * faulting instruction, which userspace knows already.
309 			 * We explicitly clear bits which are architecturally
310 			 * RES0 in case they are given meanings in future.
311 			 * We always report the ESR as if the fault was taken
312 			 * to EL1 and so ISV and the bits in ISS[23:14] are
313 			 * clear. (In fact it always will be a fault to EL1.)
314 			 */
315 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL |
316 				ESR_ELx_CM | ESR_ELx_WNR;
317 			esr |= ESR_ELx_FSC_FAULT;
318 			break;
319 		case ESR_ELx_EC_IABT_LOW:
320 			/*
321 			 * Claim a level 0 translation fault.
322 			 * All other bits are architecturally RES0 for faults
323 			 * reported with that DFSC value, so we clear them.
324 			 */
325 			esr &= ESR_ELx_EC_MASK | ESR_ELx_IL;
326 			esr |= ESR_ELx_FSC_FAULT;
327 			break;
328 		default:
329 			/*
330 			 * This should never happen (entry.S only brings us
331 			 * into this code for insn and data aborts from a lower
332 			 * exception level). Fail safe by not providing an ESR
333 			 * context record at all.
334 			 */
335 			WARN(1, "ESR 0x%x is not DABT or IABT from EL0\n", esr);
336 			esr = 0;
337 			break;
338 		}
339 	}
340 
341 	current->thread.fault_code = esr;
342 }
343 
344 static void do_bad_area(unsigned long addr, unsigned int esr, struct pt_regs *regs)
345 {
346 	/*
347 	 * If we are in kernel mode at this point, we have no context to
348 	 * handle this fault with.
349 	 */
350 	if (user_mode(regs)) {
351 		const struct fault_info *inf = esr_to_fault_info(esr);
352 
353 		set_thread_esr(addr, esr);
354 		arm64_force_sig_fault(inf->sig, inf->code, (void __user *)addr,
355 				      inf->name);
356 	} else {
357 		__do_kernel_fault(addr, esr, regs);
358 	}
359 }
360 
361 #define VM_FAULT_BADMAP		0x010000
362 #define VM_FAULT_BADACCESS	0x020000
363 
364 static vm_fault_t __do_page_fault(struct mm_struct *mm, unsigned long addr,
365 			   unsigned int mm_flags, unsigned long vm_flags)
366 {
367 	struct vm_area_struct *vma = find_vma(mm, addr);
368 
369 	if (unlikely(!vma))
370 		return VM_FAULT_BADMAP;
371 
372 	/*
373 	 * Ok, we have a good vm_area for this memory access, so we can handle
374 	 * it.
375 	 */
376 	if (unlikely(vma->vm_start > addr)) {
377 		if (!(vma->vm_flags & VM_GROWSDOWN))
378 			return VM_FAULT_BADMAP;
379 		if (expand_stack(vma, addr))
380 			return VM_FAULT_BADMAP;
381 	}
382 
383 	/*
384 	 * Check that the permissions on the VMA allow for the fault which
385 	 * occurred.
386 	 */
387 	if (!(vma->vm_flags & vm_flags))
388 		return VM_FAULT_BADACCESS;
389 	return handle_mm_fault(vma, addr & PAGE_MASK, mm_flags);
390 }
391 
392 static bool is_el0_instruction_abort(unsigned int esr)
393 {
394 	return ESR_ELx_EC(esr) == ESR_ELx_EC_IABT_LOW;
395 }
396 
397 /*
398  * Note: not valid for EL1 DC IVAC, but we never use that such that it
399  * should fault. EL0 cannot issue DC IVAC (undef).
400  */
401 static bool is_write_abort(unsigned int esr)
402 {
403 	return (esr & ESR_ELx_WNR) && !(esr & ESR_ELx_CM);
404 }
405 
406 static int __kprobes do_page_fault(unsigned long addr, unsigned int esr,
407 				   struct pt_regs *regs)
408 {
409 	const struct fault_info *inf;
410 	struct mm_struct *mm = current->mm;
411 	vm_fault_t fault, major = 0;
412 	unsigned long vm_flags = VM_READ | VM_WRITE;
413 	unsigned int mm_flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
414 
415 	if (kprobe_page_fault(regs, esr))
416 		return 0;
417 
418 	/*
419 	 * If we're in an interrupt or have no user context, we must not take
420 	 * the fault.
421 	 */
422 	if (faulthandler_disabled() || !mm)
423 		goto no_context;
424 
425 	if (user_mode(regs))
426 		mm_flags |= FAULT_FLAG_USER;
427 
428 	if (is_el0_instruction_abort(esr)) {
429 		vm_flags = VM_EXEC;
430 		mm_flags |= FAULT_FLAG_INSTRUCTION;
431 	} else if (is_write_abort(esr)) {
432 		vm_flags = VM_WRITE;
433 		mm_flags |= FAULT_FLAG_WRITE;
434 	}
435 
436 	if (is_ttbr0_addr(addr) && is_el1_permission_fault(addr, esr, regs)) {
437 		/* regs->orig_addr_limit may be 0 if we entered from EL0 */
438 		if (regs->orig_addr_limit == KERNEL_DS)
439 			die_kernel_fault("access to user memory with fs=KERNEL_DS",
440 					 addr, esr, regs);
441 
442 		if (is_el1_instruction_abort(esr))
443 			die_kernel_fault("execution of user memory",
444 					 addr, esr, regs);
445 
446 		if (!search_exception_tables(regs->pc))
447 			die_kernel_fault("access to user memory outside uaccess routines",
448 					 addr, esr, regs);
449 	}
450 
451 	perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
452 
453 	/*
454 	 * As per x86, we may deadlock here. However, since the kernel only
455 	 * validly references user space from well defined areas of the code,
456 	 * we can bug out early if this is from code which shouldn't.
457 	 */
458 	if (!down_read_trylock(&mm->mmap_sem)) {
459 		if (!user_mode(regs) && !search_exception_tables(regs->pc))
460 			goto no_context;
461 retry:
462 		down_read(&mm->mmap_sem);
463 	} else {
464 		/*
465 		 * The above down_read_trylock() might have succeeded in which
466 		 * case, we'll have missed the might_sleep() from down_read().
467 		 */
468 		might_sleep();
469 #ifdef CONFIG_DEBUG_VM
470 		if (!user_mode(regs) && !search_exception_tables(regs->pc)) {
471 			up_read(&mm->mmap_sem);
472 			goto no_context;
473 		}
474 #endif
475 	}
476 
477 	fault = __do_page_fault(mm, addr, mm_flags, vm_flags);
478 	major |= fault & VM_FAULT_MAJOR;
479 
480 	if (fault & VM_FAULT_RETRY) {
481 		/*
482 		 * If we need to retry but a fatal signal is pending,
483 		 * handle the signal first. We do not need to release
484 		 * the mmap_sem because it would already be released
485 		 * in __lock_page_or_retry in mm/filemap.c.
486 		 */
487 		if (fatal_signal_pending(current)) {
488 			if (!user_mode(regs))
489 				goto no_context;
490 			return 0;
491 		}
492 
493 		/*
494 		 * Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk of
495 		 * starvation.
496 		 */
497 		if (mm_flags & FAULT_FLAG_ALLOW_RETRY) {
498 			mm_flags &= ~FAULT_FLAG_ALLOW_RETRY;
499 			mm_flags |= FAULT_FLAG_TRIED;
500 			goto retry;
501 		}
502 	}
503 	up_read(&mm->mmap_sem);
504 
505 	/*
506 	 * Handle the "normal" (no error) case first.
507 	 */
508 	if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP |
509 			      VM_FAULT_BADACCESS)))) {
510 		/*
511 		 * Major/minor page fault accounting is only done
512 		 * once. If we go through a retry, it is extremely
513 		 * likely that the page will be found in page cache at
514 		 * that point.
515 		 */
516 		if (major) {
517 			current->maj_flt++;
518 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs,
519 				      addr);
520 		} else {
521 			current->min_flt++;
522 			perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs,
523 				      addr);
524 		}
525 
526 		return 0;
527 	}
528 
529 	/*
530 	 * If we are in kernel mode at this point, we have no context to
531 	 * handle this fault with.
532 	 */
533 	if (!user_mode(regs))
534 		goto no_context;
535 
536 	if (fault & VM_FAULT_OOM) {
537 		/*
538 		 * We ran out of memory, call the OOM killer, and return to
539 		 * userspace (which will retry the fault, or kill us if we got
540 		 * oom-killed).
541 		 */
542 		pagefault_out_of_memory();
543 		return 0;
544 	}
545 
546 	inf = esr_to_fault_info(esr);
547 	set_thread_esr(addr, esr);
548 	if (fault & VM_FAULT_SIGBUS) {
549 		/*
550 		 * We had some memory, but were unable to successfully fix up
551 		 * this page fault.
552 		 */
553 		arm64_force_sig_fault(SIGBUS, BUS_ADRERR, (void __user *)addr,
554 				      inf->name);
555 	} else if (fault & (VM_FAULT_HWPOISON_LARGE | VM_FAULT_HWPOISON)) {
556 		unsigned int lsb;
557 
558 		lsb = PAGE_SHIFT;
559 		if (fault & VM_FAULT_HWPOISON_LARGE)
560 			lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
561 
562 		arm64_force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, lsb,
563 				       inf->name);
564 	} else {
565 		/*
566 		 * Something tried to access memory that isn't in our memory
567 		 * map.
568 		 */
569 		arm64_force_sig_fault(SIGSEGV,
570 				      fault == VM_FAULT_BADACCESS ? SEGV_ACCERR : SEGV_MAPERR,
571 				      (void __user *)addr,
572 				      inf->name);
573 	}
574 
575 	return 0;
576 
577 no_context:
578 	__do_kernel_fault(addr, esr, regs);
579 	return 0;
580 }
581 
582 static int __kprobes do_translation_fault(unsigned long addr,
583 					  unsigned int esr,
584 					  struct pt_regs *regs)
585 {
586 	if (is_ttbr0_addr(addr))
587 		return do_page_fault(addr, esr, regs);
588 
589 	do_bad_area(addr, esr, regs);
590 	return 0;
591 }
592 
593 static int do_alignment_fault(unsigned long addr, unsigned int esr,
594 			      struct pt_regs *regs)
595 {
596 	do_bad_area(addr, esr, regs);
597 	return 0;
598 }
599 
600 static int do_bad(unsigned long addr, unsigned int esr, struct pt_regs *regs)
601 {
602 	return 1; /* "fault" */
603 }
604 
605 static int do_sea(unsigned long addr, unsigned int esr, struct pt_regs *regs)
606 {
607 	const struct fault_info *inf;
608 	void __user *siaddr;
609 
610 	inf = esr_to_fault_info(esr);
611 
612 	/*
613 	 * Return value ignored as we rely on signal merging.
614 	 * Future patches will make this more robust.
615 	 */
616 	apei_claim_sea(regs);
617 
618 	if (esr & ESR_ELx_FnV)
619 		siaddr = NULL;
620 	else
621 		siaddr  = (void __user *)addr;
622 	arm64_notify_die(inf->name, regs, inf->sig, inf->code, siaddr, esr);
623 
624 	return 0;
625 }
626 
627 static const struct fault_info fault_info[] = {
628 	{ do_bad,		SIGKILL, SI_KERNEL,	"ttbr address size fault"	},
629 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 1 address size fault"	},
630 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 2 address size fault"	},
631 	{ do_bad,		SIGKILL, SI_KERNEL,	"level 3 address size fault"	},
632 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 0 translation fault"	},
633 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 1 translation fault"	},
634 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 2 translation fault"	},
635 	{ do_translation_fault,	SIGSEGV, SEGV_MAPERR,	"level 3 translation fault"	},
636 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 8"			},
637 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 access flag fault"	},
638 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 access flag fault"	},
639 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 access flag fault"	},
640 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 12"			},
641 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 1 permission fault"	},
642 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 2 permission fault"	},
643 	{ do_page_fault,	SIGSEGV, SEGV_ACCERR,	"level 3 permission fault"	},
644 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous external abort"	},
645 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 17"			},
646 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 18"			},
647 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 19"			},
648 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 (translation table walk)"	},
649 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 (translation table walk)"	},
650 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 (translation table walk)"	},
651 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 (translation table walk)"	},
652 	{ do_sea,		SIGBUS,  BUS_OBJERR,	"synchronous parity or ECC error" },	// Reserved when RAS is implemented
653 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 25"			},
654 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 26"			},
655 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 27"			},
656 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 0 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
657 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 1 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
658 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 2 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
659 	{ do_sea,		SIGKILL, SI_KERNEL,	"level 3 synchronous parity error (translation table walk)"	},	// Reserved when RAS is implemented
660 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 32"			},
661 	{ do_alignment_fault,	SIGBUS,  BUS_ADRALN,	"alignment fault"		},
662 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 34"			},
663 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 35"			},
664 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 36"			},
665 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 37"			},
666 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 38"			},
667 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 39"			},
668 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 40"			},
669 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 41"			},
670 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 42"			},
671 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 43"			},
672 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 44"			},
673 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 45"			},
674 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 46"			},
675 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 47"			},
676 	{ do_bad,		SIGKILL, SI_KERNEL,	"TLB conflict abort"		},
677 	{ do_bad,		SIGKILL, SI_KERNEL,	"Unsupported atomic hardware update fault"	},
678 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 50"			},
679 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 51"			},
680 	{ do_bad,		SIGKILL, SI_KERNEL,	"implementation fault (lockdown abort)" },
681 	{ do_bad,		SIGBUS,  BUS_OBJERR,	"implementation fault (unsupported exclusive)" },
682 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 54"			},
683 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 55"			},
684 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 56"			},
685 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 57"			},
686 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 58" 			},
687 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 59"			},
688 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 60"			},
689 	{ do_bad,		SIGKILL, SI_KERNEL,	"section domain fault"		},
690 	{ do_bad,		SIGKILL, SI_KERNEL,	"page domain fault"		},
691 	{ do_bad,		SIGKILL, SI_KERNEL,	"unknown 63"			},
692 };
693 
694 asmlinkage void __exception do_mem_abort(unsigned long addr, unsigned int esr,
695 					 struct pt_regs *regs)
696 {
697 	const struct fault_info *inf = esr_to_fault_info(esr);
698 
699 	if (!inf->fn(addr, esr, regs))
700 		return;
701 
702 	if (!user_mode(regs)) {
703 		pr_alert("Unhandled fault at 0x%016lx\n", addr);
704 		mem_abort_decode(esr);
705 		show_pte(addr);
706 	}
707 
708 	arm64_notify_die(inf->name, regs,
709 			 inf->sig, inf->code, (void __user *)addr, esr);
710 }
711 
712 asmlinkage void __exception do_el0_irq_bp_hardening(void)
713 {
714 	/* PC has already been checked in entry.S */
715 	arm64_apply_bp_hardening();
716 }
717 
718 asmlinkage void __exception do_el0_ia_bp_hardening(unsigned long addr,
719 						   unsigned int esr,
720 						   struct pt_regs *regs)
721 {
722 	/*
723 	 * We've taken an instruction abort from userspace and not yet
724 	 * re-enabled IRQs. If the address is a kernel address, apply
725 	 * BP hardening prior to enabling IRQs and pre-emption.
726 	 */
727 	if (!is_ttbr0_addr(addr))
728 		arm64_apply_bp_hardening();
729 
730 	local_daif_restore(DAIF_PROCCTX);
731 	do_mem_abort(addr, esr, regs);
732 }
733 
734 
735 asmlinkage void __exception do_sp_pc_abort(unsigned long addr,
736 					   unsigned int esr,
737 					   struct pt_regs *regs)
738 {
739 	if (user_mode(regs)) {
740 		if (!is_ttbr0_addr(instruction_pointer(regs)))
741 			arm64_apply_bp_hardening();
742 		local_daif_restore(DAIF_PROCCTX);
743 	}
744 
745 	arm64_notify_die("SP/PC alignment exception", regs,
746 			 SIGBUS, BUS_ADRALN, (void __user *)addr, esr);
747 }
748 
749 int __init early_brk64(unsigned long addr, unsigned int esr,
750 		       struct pt_regs *regs);
751 
752 /*
753  * __refdata because early_brk64 is __init, but the reference to it is
754  * clobbered at arch_initcall time.
755  * See traps.c and debug-monitors.c:debug_traps_init().
756  */
757 static struct fault_info __refdata debug_fault_info[] = {
758 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware breakpoint"	},
759 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware single-step"	},
760 	{ do_bad,	SIGTRAP,	TRAP_HWBKPT,	"hardware watchpoint"	},
761 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 3"		},
762 	{ do_bad,	SIGTRAP,	TRAP_BRKPT,	"aarch32 BKPT"		},
763 	{ do_bad,	SIGKILL,	SI_KERNEL,	"aarch32 vector catch"	},
764 	{ early_brk64,	SIGTRAP,	TRAP_BRKPT,	"aarch64 BRK"		},
765 	{ do_bad,	SIGKILL,	SI_KERNEL,	"unknown 7"		},
766 };
767 
768 void __init hook_debug_fault_code(int nr,
769 				  int (*fn)(unsigned long, unsigned int, struct pt_regs *),
770 				  int sig, int code, const char *name)
771 {
772 	BUG_ON(nr < 0 || nr >= ARRAY_SIZE(debug_fault_info));
773 
774 	debug_fault_info[nr].fn		= fn;
775 	debug_fault_info[nr].sig	= sig;
776 	debug_fault_info[nr].code	= code;
777 	debug_fault_info[nr].name	= name;
778 }
779 
780 /*
781  * In debug exception context, we explicitly disable preemption despite
782  * having interrupts disabled.
783  * This serves two purposes: it makes it much less likely that we would
784  * accidentally schedule in exception context and it will force a warning
785  * if we somehow manage to schedule by accident.
786  */
787 static void debug_exception_enter(struct pt_regs *regs)
788 {
789 	/*
790 	 * Tell lockdep we disabled irqs in entry.S. Do nothing if they were
791 	 * already disabled to preserve the last enabled/disabled addresses.
792 	 */
793 	if (interrupts_enabled(regs))
794 		trace_hardirqs_off();
795 
796 	if (user_mode(regs)) {
797 		RCU_LOCKDEP_WARN(!rcu_is_watching(), "entry code didn't wake RCU");
798 	} else {
799 		/*
800 		 * We might have interrupted pretty much anything.  In
801 		 * fact, if we're a debug exception, we can even interrupt
802 		 * NMI processing. We don't want this code makes in_nmi()
803 		 * to return true, but we need to notify RCU.
804 		 */
805 		rcu_nmi_enter();
806 	}
807 
808 	preempt_disable();
809 
810 	/* This code is a bit fragile.  Test it. */
811 	RCU_LOCKDEP_WARN(!rcu_is_watching(), "exception_enter didn't work");
812 }
813 NOKPROBE_SYMBOL(debug_exception_enter);
814 
815 static void debug_exception_exit(struct pt_regs *regs)
816 {
817 	preempt_enable_no_resched();
818 
819 	if (!user_mode(regs))
820 		rcu_nmi_exit();
821 
822 	if (interrupts_enabled(regs))
823 		trace_hardirqs_on();
824 }
825 NOKPROBE_SYMBOL(debug_exception_exit);
826 
827 #ifdef CONFIG_ARM64_ERRATUM_1463225
828 DECLARE_PER_CPU(int, __in_cortex_a76_erratum_1463225_wa);
829 
830 static int __exception
831 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
832 {
833 	if (user_mode(regs))
834 		return 0;
835 
836 	if (!__this_cpu_read(__in_cortex_a76_erratum_1463225_wa))
837 		return 0;
838 
839 	/*
840 	 * We've taken a dummy step exception from the kernel to ensure
841 	 * that interrupts are re-enabled on the syscall path. Return back
842 	 * to cortex_a76_erratum_1463225_svc_handler() with debug exceptions
843 	 * masked so that we can safely restore the mdscr and get on with
844 	 * handling the syscall.
845 	 */
846 	regs->pstate |= PSR_D_BIT;
847 	return 1;
848 }
849 #else
850 static int __exception
851 cortex_a76_erratum_1463225_debug_handler(struct pt_regs *regs)
852 {
853 	return 0;
854 }
855 #endif /* CONFIG_ARM64_ERRATUM_1463225 */
856 
857 asmlinkage void __exception do_debug_exception(unsigned long addr_if_watchpoint,
858 					       unsigned int esr,
859 					       struct pt_regs *regs)
860 {
861 	const struct fault_info *inf = esr_to_debug_fault_info(esr);
862 	unsigned long pc = instruction_pointer(regs);
863 
864 	if (cortex_a76_erratum_1463225_debug_handler(regs))
865 		return;
866 
867 	debug_exception_enter(regs);
868 
869 	if (user_mode(regs) && !is_ttbr0_addr(pc))
870 		arm64_apply_bp_hardening();
871 
872 	if (inf->fn(addr_if_watchpoint, esr, regs)) {
873 		arm64_notify_die(inf->name, regs,
874 				 inf->sig, inf->code, (void __user *)pc, esr);
875 	}
876 
877 	debug_exception_exit(regs);
878 }
879 NOKPROBE_SYMBOL(do_debug_exception);
880